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L ocal Dark Matter distribution

What is the dark matter (DM) distribution in the Solar neighborhood?




L ocal Dark Matter distribution

What is the dark matter (DM) distribution in the Solar neighborhood?

Uncertainties in the local DM distribution == large uncertainties
in the interpretation of direct detection data.



Dark Matter halo

ndard Halo model (SHM): isothermal sphere with an
otropic Maxwell-Boltzmann velocity distribution with a pea
speed equal to the local circular speed (~220 kml/s).




Astrophysical inputs
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Astrophysical inputs
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Dark Matter only simulations

- DM speed distributions from cosmological N-body simulations
without baryons, deviate substantially from a Maxwellian.
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- Significant systematic uncertainty since the impact of baryons neglected.



Hydrodynamical simulations

Each hydrodynamical (DM + baryons) simulation adopts a
different galaxy formation model, spatial resolution, DM particle mass.
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Hydrodynamical simulations

Each hydrodynamical (DM + baryons) simulation adopts a
different galaxy formation model, spatial resolution, DM particle mass.

Different criteria used to identify MW-like galaxies among
different groups. The most common criterion is the MW mass
constraint, which has a large uncertainty.
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Hydrodynamical simulations

» Each hydrodynamical (DM + baryons) simulation adopts a
different galaxy formation model, spatial resolution, DM particle mass.

Different criteria used to identify MW-like galaxies among
different groups. The most common criterion is the MW mass
constraint, which has a large uncertainty.
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EAGLE and APOSTLE

We use the EAGLE and APOSTLE hydrodynamic simulations.
Calibrated to reproduce the observed distribution of stellar masses
and sizes of low-redshift galaxies.
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ldentifying Milky Way analogues

» ldentify MW-like galaxies by taking into account observational
constraints on the MV, in addition to the mass constraint;

rotation curves [locco, Pato, Bertone, 1502.03821], total stellar mass.
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Dark Matter density profiles

» Spherically averaged DM density profiles of the MWV analogues:
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Dark Matter density profiles

» Spherically averaged DM density profiles of the MWV analogues:

507 ¥
s i
i
1
10 -
o 5

Ny ' I
> 1 g
S 0.50} o |
-1
Y ' nl
0.05} o |

| | » N: | o

0.5 1 5 10

R [kpc]

» To find the DM density at the position of
the Sun, consider a torus aligned with the

stellar disc.
Py = 0.41 - 0.73 GeV/cm?
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Local speed distributions

In the galactic rest frame:
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Local speed distributions

In the galactic rest frame:

DMO simulations
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- Maxwellian distribution with a free peak provides a better fit to
haloes in the hydrodynamical simulations compared to their
DMO counterparts.

- Best fit peak speed: |Vpeak = 223 - 289 km/s



Local speed distributions

Common trends in different hydrodynamical simulations:

- Baryons deepen the gravitational potential in the inner halo,
shifting the peak of the DM speed distribution to higher speeds.

* In most cases, baryons appear to make the local DM speed
distribution more Maxwellian.
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Departure from isothermal
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» At the Solar circle, haloes in the hydrodynamical simulation are
closer to isothermal than their DMO counterparts.



Components of the velocity distribution
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Comparison with DMO
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How common are dark disks?

Clear velocity anisotropy at the Solar circle.

Two haloes have a rotating DM component in the disc with
mean velocity comparable (within 50 km/s) to that of the stars.



How common are dark disks?

* Clear velocity anisotropy at the Solar circle.

+ Two haloes have a rotating DM component in the disc with
mean velocity comparable (within 50 km/s) to that of the stars.

+ Hint for the existence of a co-rotating dark disk in 2 out of |4
MW-like haloes. ==p Dark disks are relatively rare in our

halo sample. Bozorgnia et al., 1601.04707
Schaller et al., 1605.02770



How common are dark disks?

* Clear velocity anisotropy at the Solar circle.

+ Two haloes have a rotating DM component in the disc with
mean velocity comparable (within 50 km/s) to that of the stars.

+ Hint for the existence of a co-rotating dark disk in 2 out of |4
MW-like haloes. ==p Dark disks are relatively rare in our

halo sample. Bozorgnia et al., 1601.04707
Schaller et al., 1605.02770

« Sizable dark disks also rare in other hydro simulations:

+ They only appear in simulations where a large satellite
merged with the MW in the recent past, which is robustly
excluded from MWV kinematical data.
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The halo integral

*+ For standard spin-independent and spin-dependent interactions:
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The halo integral

 Halo integrals for the best fit Maxwellian velocity distribution

(pbeak speed 223 - 289 km/s) fall within the |0 uncertainty band
of the halo integrals of the simulated haloes.
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The halo integral

Common trend in different hydrodynamical simulations:

- Halo integrals and hence direct detection event rates obtained
from a Maxwellian velocity distribution with a free peak are
similar to those obtained directly from the simulated haloes.

Bozorgnia et al., 1601.04707 (EAGLE & APOSTLE)
Kelso et al., 1601.04725 (MaGICC)
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Implications for direct detection

Assuming the Standard Halo Model:
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Implications for direct detection

» Compare with simulated Milky Way-like haloes:

10_395------| —— T 3
; <« DAMA 5
10—40 = - \ 5
10741 = / -
: 7
9 ; few GeV shift
— 10_43;_ in mass I
b : _
i factor of ~2-3 ]
107% L shift in cross E
: section /
10745
46 4 NN IR
10 10. 100 1000
m, (GeV)

Nassim Bozorgnia CDM Conference, KITP, 3 May 2018



Implications for direct detection

Fix local py=0.3 GeV cm-3
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+ Difference in the local DM density == overall difference with the SHM.

» Variation in the peak of the DM speed distribution == shift in the low
mass region.



Implications for direct detection

Comparison to other hydrodynamical simulations:

Fix local py=0.3 GeV cm-3
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Non-standard interactions

For a very general set of non-relativistic effective operators:
Kahlhoefer & Wild, 1607.04418

dng_ d0'1 1 | dO’Q
dER N dERU2 | dER




Non-standard interactions

+ For a very general set of non-relativistic effective operators:
Kahlhoefer & Wild, 1607.04418

doyn dop 1 | doa
dEr  dEgrv?2 dEg
7](1/’111111975) h(vmin, ?f) — / d*v v fdet (Vat)
J U >Umin



Non-standard interactions

- For a very general set of non-relativistic effective operators:
Kahlhoefer & Wild, 1607.04418
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Summary

- To make precise quantitative predictions for the DM distribution
from simulations == [dentify MVV analogues by taking into
account observational constraints on the MW.

* Local DM density agrees with local and global estimates.
Constraints from Gaia could be used in future simulations.

* Halo integrals of MWV analogues match well those obtained from
best fit Maxwellian velocity distributions.

- A Maxwellian velocity distribution with a peak speed
constrained by hydrodynamical simulations could be adopted for
the analysis of direct detection data. == Can substantially
reduce astrophysical uncertainties by a better selection of MW-
like galaxies in simulations.



Backup Slides



Selection criteria for MWV analogues
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» M, strongly correlated with v at 8 kpc, while the correlation of
Mooo With v¢ Is weaker.

> M,(R < 8 kpc) = (0.5— 0.9)M,.
> Mtot(R < 8 kpC) = (001 — 0.1 )Mzoo.

» Over the small halo mass range probed, little correlation between
MDM(R < 8 kpC) and Moqp.



Departure from isothermal
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Halo shapes

Is there an enhancement of the local DM density in the Galactic disc
compared to the halo?

» Compare the the average ppyv in the torus with the value in a
spherical shell at 7 < R < 9 kpc.

torus - hell fy,,-
oM 1S larger than ppy by:

2 — 27% for 10 haloes,
greater than 10% for 5 haloes, and
greater than 20% for only two haloes.

» The increase in the DM density in the disc could be due to the
DM halo contraction as a result of dissipational baryonic
processes.



Halo shapes

» To study the shape of the inner (R < 8 kpc) DM haloes, we
calculate the inertia tensor of DM particles within 5 and 8 kpc.
= ellipsoid with three axes of lengtha > b > c.

» Calculate the sphericity: s = ¢/ a.

» s = 1: perfect sphere. s < 1: increasing deviation from sphericity.

» At 5 kpc, s = [0.85,0.95]. At 8 kpc, s lower by less than 10%.

» Due to dissipational baryonic processes, DM sphericity

systematically higher in the hydrodynamic simulations compared to
DMO haloes in which s = [0.75,0.85].



Halo shapes

» Describe a deviation from sphericity by the triaxiality parameter:

a° — b?

T =
2 _ o2

» Oblate systems,a~b>c= T = 0.

» Prolate systems,a>b~xc= T = 1.

» In the hydro case, since inner haloes are very close to spherical,
deviation towards either oblate or prolate is small. DMO
counterparts have a preference for prolate inner haloes.



Parameters of the simulations

Simulation code Npm mg [Mg] mpwMm [Mg] € [pc]
Ling et al. RAMSES 2662 — 7.46 x 10° 200
Eris GASOLINE 81213 2 x 104 9.80 x 104 124
NIHAO EFS-GASOLINE2 - 3.16 x 10°  1.74 x 10° 931
EAGLE (HR) P-GADGET (ANARCHY)  1821-3201 2.26 x 10°  1.21 x 10° 350
APOSTLE (IR) P-GADGET (ANARCHY) 2160, 3024 1.3 x 10° 5.9 x 10° 308
MaGICC CASOLINE 4849, 6541 2.2 x 10° 1.11 x 106 310
Sloane et al. GASLOINE H84T7-T7460 2.7 x 104 1.5 x 10° 174

Properties of the selected MWV analogues

Simulation Count  Mstar [X101%Mg]  Myale [X1012Mg]  py [GeV/em®]  vpeak [km/s]
Ling et al. 1 ~ 8 0.63 0.37-0.39 239
Eris 1 3.9 0.78 0.42 239
NIHAO 5 15.9 ~ 1 0.42 192-363
EAGLE (HR) 12 4.65-7.12 2.76-14.26 0.42-0.73 232-289
APOSTLE (IR) 2 4.48, 4.88 1.64-2.15 0.41-0.54 223-234
MaGICC 2 2.4-8.3 0.584, 1.5 0.346, 0.493 187, 273
Sloane et al. 4 2.24-4.56 0.68-0.91 0.3-04 185-204




