## **Intramural Virtual Electrodes**

## Vladimir G. Fast University of Alabama at Birmingham

## Mechanism of defibrillation

- "Defibrillation requires ... depolarizing a large number of multiple asynchronous reentrant circuits" (Hurst's The Heart, 10<sup>th</sup> edition, 2001, p.933)
- "The current penetrates most of the fibers of the ventricles at the same time, thus stimulating essentially all parts of the ventricles simultaneously" (Textbook of Medical Physiology, Guyton AC & Hall JE,10th edition, 2000, p.140)

## How does a shock depolarize and stimulate all parts of the ventricles simultaneously?

## Shock stimulation





- 1. A shock does not only depolarize, it also hyperpolarizes
- 2. V<sub>m</sub> is not changed in the majority of intramural tissue
- 3. A shock can stimulate only a narrow sub-surface region on the cathodal side of the wall

#### Mechanisms of Virtual Electrodes 1. Resistive barriers



Plonsey and Barr, Med Biol Eng Comput, 1986 Krassowska et al, IEEE Trans Biomed Eng, 1987

#### Mechanisms of Virtual Electrodes 2. Non-uniform shock field

Local current application in 1D cable model



**"Activating function"** Rattay, IEEE Trans Biomed Eng,1989

#### Mechanisms of Virtual Electrodes 2. Non-uniform shock field

## Local current application in 2D anisotropic bidomain model



Sepulveda et al, Biophys J, 1989 Knisley et al, Biophys J, 1994 Wikswo et al, Biophys J, 1995

Wikswo et al, Biophys J, 1995

#### Mechanisms of Virtual Electrodes 3. Changing fiber orientation

## Uniform field application in 3D anisotropic bidomain LV model



Entcheva et al, IEEE Trans Biomed Eng, 1999

 Intramural virtual electrodes are formed where fiber orientation rapidly changes with respect to electric field

Trayanova et al, 1993; 1998; 2001 Roth, 1994 Entcheva et al, 1998; 1999 Efimov et al, 2000

# Questions about IVE for experiments

- 1. Do IVE really exist in the heart?
- 2. Can IVE cause simultaneous tissue activation?
- 3. What is the mechanism of IVE?

## Optical Mapping of Intramural V<sub>m</sub> in Wedge Preparations



#### Intramural $\Delta V_m$ : Weak shocks



Fast et al, Circulation, 2002

## Intramural $\Delta V_m$ : Intermediate shocks





 Significant non-uniform intramural ΔV<sub>m</sub>
ΔV<sub>m</sub> are asymmetric: ΔV<sup>-</sup><sub>m</sub>

 $> \Delta V_m^+$ 

- 3.  $\Delta V_{m}^{-}$  extend to the cathodal side
- 4. APD is prolonged for both  $\Delta V_m^+$  and  $\Delta V_m^-$

## Intramural $\Delta V_m$ : Strong shocks



Fast et al, Circulation, 2002

## Limitations of the wedge preparation

1. Cut transmural surface

2. Boundary conditions

#### Mapping of IVE from intact epicardial surface



Sharifov & Fast, Circulation, 2004 Sharifov & Fast, Heart Rhythm, 2006

## Epicardial SS vs GS $\Delta V_m$ Weak shocks





## Epicardial SS vs GS $\Delta V_m$ Intermediate shocks





## Epicardial SS vs GS $\Delta V_m$ Strong shocks



## Epicardial SS vs GS $\Delta V_m$



Sharifov & Fast, Heart Rhythm, 2006

## Conclusion 1

Results of both transmural and epicardial mapping experiments indicate that shocks produce intramural virtual electrodes

## Questions

- 1. Do IVE really exist in the heart?
- 2. Can IVE cause simultaneous tissue activation?
- 3. What is the mechanism of IVE?

#### Intramural activation: Weak shocks



#### Intramural activation: Intermediate shocks



#### Intramural activation: Strong shocks



#### Latency and time of intramural activation



## Conclusion 2

Shocks applied during diastole cause direct and rapid activation of the intramural myocardium over a wide range of shock strength due to formation of IVE

## Questions

- 1. Do IVE really exist in the heart?
- 2. Can IVE cause simultaneous tissue activation?
- 3. What is the mechanism of IVE?

## Why are all plateau $\Delta V_m$ negative during strong shocks?

#### Hypothesis

- Shocks produce both positive and negative  $\Delta V_m$  on a *microscopic scale*
- Because of the negative asymmetry of  $V_m$  response, positive  $\Delta V_m$  are averaged out in macroscopic optical recordings

#### The role of cell boundaries in IVE

#### **Experiments**

1. Cellular "saw-tooth"  $\Delta V_m$  were not observed in cell cultures (Gillis et al, Circ Res, 1996)



2. "Saw-tooth"  $\Delta V_m$  were not found in microelectrode measurements (20- $\mu$ m steps) from porcine LV (Zhou et al, 1998)



Plonsey and Barr, 1986 Krassowska et al, 1987

#### The role of cell boundaries in IVE

3. Only small "saw-tooth"  $\Delta V_m$  were measured in isolated cell pairs (Sharma & Tung, JCE, 2001)



#### Possible anatomic substrate for IVE

Collagen staining



#### Possible anatomic substrate for IVE

Collagen staining



0.25 mm

#### High-resolution mapping of intramural $\Delta V_m$ Sub-epicardial $\Delta V_m$



Sharifov et al, Cardiovasc Res, 2004

#### High-resolution mapping of intramural $\Delta V_m$ Mid-wall $\Delta V_m$



Sharifov et al, Cardiovasc Res, 2004

## Resolution limit of optical mapping

• On microscopic scale, optical resolution is limited not by detector dimensions but by light scattering and light integration from tissue depth (Ding et al, 2001; Hyatt et al, 2003)

Estimation of 80% light collection area and depth using Monte-Carlo model of light propagation (Ding et al, IEEE Trans Biomed Eng, 2001)



#### Microscopic $\Delta V_m$ in cultured cell strands Effect of spatial averaging



High resolution (dx=0.1 mm)

#### Transition of AP upstroke shape



Cheek et al, JCE, 2005

#### Transition to delayed activation



## Conclusions

- 1. Shocks produce intramural virtual electrodes
- 2. When shocks are applied during diastole, IVE cause nearly simultaneous activation of the intramural myocardium over a wide range of shock strength
- 3. Intramural virtual electrodes produced by strong shocks have microscopic origin
- 4. The likely mechanism of such IVE is discontinuous tissue structure with dimensions of discontinuities on the order of 100  $\mu$ m

## Acknowledgements

- Oleg Sharifov
- Eric Cheek
- Jonathan Newton
- Raymond Ideker
- NIH
- AHA