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Outline of the talk

* Introduction:
* The question: transmission of oscillations downstream
* Plasticity & learning

* The transfer of oscillatory information

» Effect of oscillations on learning dynamics of single
synapse
* Learning dynamics of oscillating synaptic population

* Emergence of oscillations via learning




How can information about oscillatory
activity be transmitted downstream?




Assume simple feed-forward architecture

Input layer
neurons oscillate P1

at frequency f \/v
with uniformly  p, | 1 |
distributed
phases.
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If the synaptic inputs are uniform or

random the input to the downstream

layer will be constant in time or very
weakly modulated.
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To transmit information about oscillatory activity we need a
mechanism that will shape feed-forward synaptic connections
according to their phases



What mechanism facilitates the

transmission of oscillatory activity
downstream?

Is this mechanism genetically hard
wired?

OR

Can it be acquired via a process of
learning?




Spike Timing Dependent Plasticity
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Adopted from Bi and Poo, Dec. 1998;
The Journal of Neuroscience 18(24):
10464-10472

Bi and Poo JNS (1998)
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Haas, Aug. 2006; The Journal of
Neurophysiology Vol.96 n0.6:3305-3313
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STDP as unsupervised learning process



Positive feedback of
“canonical” excitatory STDP

< €< <€ 00 )))1

. 0.8 -
0 1 W 0.6 -
04 -

0.2 -

Weak synapse Strong synapse 2 o

04 -
¢ 4 06 a-causal
Post spike uncorrelated with  Post spike more likelyto s pranch
pre spike follow pre I o 50
@ @ At = tpost - tpre
Learning dynamics will Learning dynamics will
sample randomly both sample more causal branch
branches
1} ’
Synapse will weaken Synapse will strengthen

if a>1



Positive feedback can by weakened by
Scaling the learning with the synaptic

weight
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Giitig et al INS (2003)



Correlations can strengthen the
positive feedback

Red groupis A spike from a Red cell will be more likely Red synaptic weight will

strong == to be followed by post spike potentiate
group A spike froma cell is less synaptic weights will
isweak ™ correlated with post spike == depress

Unsupervised learning

T

Giitig et al INS (2003)



Inhibitory STDP



Negative feedback of

“canonical” inhibitory STDP
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Balance of excitation and inhibition

Excitation A spike from an inhibitory cell will be | Inhibitory synaptic weights
increases correlated with post spike will potentiate

Excitation A spike from an inhibitory cell is less “kﬁ|¥| Inhibitory synaptic weights
decreases to be followed by a post spike will depress

Homeostatic mechanism
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Can STDP facilitate the transmission
of oscillatory activity?

Study the effect of oscillatory activity on Qf;r_l,ﬁc /\/
STDP of a purely feed-forward architecture "‘F’;t\/ Poost

in two stages:
A. STDP of a single synapse

B. STDP of a ‘synaptic population’
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Luz and Shamir (2016)



Single synapse STDP dynamics

r prel post

(t) - Dpre/post + Apre/post

cosS (Vt - (ppre/post )

synapse
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The STDP learning rule
Aw = ﬂ,(f+ (w)K, (at)-f (w)K_ (Al‘))

We assumed a separation of variables: /Yt (W)A(AZ).
The learning rate: 4. We will be interested in the limit of slow learning rate, /—0.
Our interest results from the fact that this is what we can solve.

.

K, () -K ()

50 100

f (w)

K, () - K ()

05 1 -10 0 50 100

Giitig et al JNS (2003) ° ’ \et ot (s

i



Mean-field Fokker Planck Theory

Aw={l+Afl+ (W)K(At) @—AfI— (wPGtétiation term

Depression term

Taking the short times limit Jz—0,
w (t)=Afl+ (W)LTC (t)—AfI— (W)LTA (¢)



Mean-field Fokker Planck Theory

In the limit of slow learning rate, /—0, the STDP dynamics samples the pre-post
correlations over long periods in which the synaptic weight is relatively fixed.

—(A)dA
F@)=(plpre (0)plpost (B))

STDP dynamics is governed by the pre-post correlations.



Single synapse STDP dynamics:

Analytical results

* The “Mean field” Fokker—Planck of the learning

dynamics:
1 d -
—£ (A
T (A)K, (A)dA -1 (w f r'(Aa

* The pre-post correlation structure:

1
F(A)=FD+FACOS(VA+¢); FD=Dprerost, FA=5A A, P =@rre = Cpost

pre” " pos

* W converges to this steady state solution:

whx (p)=1/(a0(p) T /u +1 Q(@)=1+7Ir Ki—Tv cos(N—=Tv+@)/1+/ir Ki+T

Nr=IIA /1D =Alpre Alpost /2
Luz and Shamir (2016) Dipre Dipost



Single synapse STDP — useful model
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How can information about oscillatory
activity be transmitted downstream?
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Luz and Shamir (2016)



The mean-field Fokker Planck Theory

N non-linear equations
‘X
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The mean-field Fokker Planck Theory

The STDP dynamics is dominated by order

parameters

Luz and Shamir (2016)

w(@.t)// =

w(t)F,(¢,t) +w(t)F (¢, 1)
- . do
W .= [ W(()))—n
we'V = [ eEw(p) — ale
. 21
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Fy(p.t) = A— (K" f. (w(g,1))cos(p — Q. — vd — (1))

— K f (w(g,t))cos(p — Q" —vd — (1))}



The STDP dynamics 1s governed by

three order parameters

* The dynamic equations for the order parameters

w,w and ¢ 4

e Where:

Luz and Shamir (2016)

L5502 2((0) Fy 80) F 1)
—%r)

( (1) F, cos((I)O —y (t))+ %’(t)Fl%os((I)l — (t)))
A(w(r) £ sin (@, —y (1)) + (1) FRin (@, ~¢ (1))
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Stability of the homogeneous solution

Aim: study development of non-trivial
phase preference profile.

Problem: non-linear, coupled, high
dimensional.

Strategy: study the homogeneous solution
and investigate when 1t looses stability.



Stability of the homogeneous solution

The stability of the homogeneous solution
1s governed by the temporal structure of
the STDP rule and the pre-post delay

A? (K" N K |
n > ~cos(Q' + vd) — —cos(Q" + vd)
K K

Assumes o>1

Luz and Shamir (2016)



Unstable homogeneous solution

A 1 =0 min B Tf =65 min
30 m|n =70 min
=35 min =75 min
— 40 m| 80 min
0 , . .
20 40 60 80 100 120

synapseld synapse id

t [min
Luz and Shamir (2016) fmin] P Ppost



The limit cycle solution

e Assuming a limit cycle solution
— Ansatz converts our differential equations into algebraic equations:

w(t)=w0 0=WOFO+W1E
Wi)=w  — FFcos(®,)=F FRos(®,)

w(t)=AV,t+y° v

- Fsin(®,) + FRin (@,

* Retrieving the “weak coupling limit” to in the zero drift scenario
— Assuming the drift /{d is zero.

— AP
Dpost=Dw 1—‘r521)2;/y
Ao =AW - 1+Fr1%f cos(Qi +g0—1,u—va’)
wpost =?/j+1/d Q((p>

i 1+1“rf€r cos(QZ +@Q -y —vd)

Luz and Shamir (2016)



The zero drift solution
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The zero drift solution
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Interim Summary

1 STDP can provide a mechanism for shaping
synaptic weights to enable transmission of
oscillatory activity.

 Typically, the weights do not converge to a
fixed point.

 Functionality, in this case, was retained by
stable dynamics of global order parameters.



Can oscillations emerge via STDP?




The reciprocal inhibition model

I I,

1
T, &=-1n+g,—-a -J,n) l T ﬂ
T, &=-a, + Ar,
T, &=-1+g(l,-a,-Jy) A A
7,& =-a, + Ar,

Jis
Outline:
* Understand the dynamics of this system
* Introduce plasticity and study under what

conditions this system will develop the
capacity to oscillate

Shamir & Sompolinsky, unpublished



Rival-1 State

Existence condition:

Fusion State

1, >0

r,>0

Existence condition:

Stability condition:

The fixed points
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VIt <l+€

<1

Shamir & Sompolinsky, unpublished



The Limit Cycle solution
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In regions where there are no
stable fixed points the system 1.5}
converges to a periodic
solution of 1
Anti-phase Oscillations 05|




The Phase diagram

Limit Cycle Solution: N [
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The correlatiqps
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Can oscillations emerge via neuronal
plasticity?
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Hebbian/Anti-Hebbian STDP

The STDP rule: AJ = A(K,(At)-aK _(At))

K_(At) = iexp{mﬂz /7. }O(xHt)
T

re +

At =t -1,

post

A 1s the learning rate, « is the relative strength of depression,

H =1/ -1 for Hebb / Anti-Hebb STDP

Hebbian Anti-Hebbian
AJ AJ

At=t . —t
post pre At = tpost - tpre

Soloduchin and Shamir (2018)



STDP dynamics induce a flow on the
phase diagram

£ = AT, 0[K.(0)-ak_(0]ds Rval2 | B

(E T —— —
Transition from stable Fusion to ?
the Limit Cycle region requires: o L C
: ©
o<1 : 2
1p P
Fu3|on
J = Sy +Jp, 0 :
+ 2 0 1 1+A
R AT (0[K. (1) - aK_(0)]de Jy:

Soloduchin and Shamir (2018)



STDP dynamlcs on the dlagonal

J — J21 + J12
i 2
ﬁf = A’{‘ﬁfpot - a‘ﬁfdep}

It 1s convenient to study

L ier = [TL(OK, _(t)dt

+

AsT =0 L=(1-a)*/(2+4)

For z. <z. we obtain Jgfpot Jgfdep

with equality only at 7=0

Soloduchin and Shamir (2018)
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STDP dynamics 1n the orthogonal
direction
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Soloduchin and Shamir (2018) o F 0



Flow on the phase plane

A Hebbian STDP B Anti-Hebbian STDP
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Soloduchin and Shamir (2018)



Learning synaptic population
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Soloduchin and Shamir (2018)



Learning synaptic population
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Learning synaptic population
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Learning synaptic population
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Soloduchin and Shamir (2018)



Learning synaptic population
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Soloduchin and Shamir (2018)



Summary

[ The phase diagram of the neuronal activities is the

phase plane of the STDP dynamics.

1 STDP can provide a mechanism that enables the

emergence of oscillatory activity in the brain.

1 The STDP rule governs and stabilizes the resultant
oscillatory activity.

1 The specific architecture and the non-linear nature
of the neuronal dynamics may have a major effect
on the STDP dynamics as well.

1 Disruption to the STDP rule may alter the
oscillatory behavior.
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