

מרכז זלוטובסקי למדעי העצב Zlotowski Center for Neuroscience

Emergence of oscillatory activity via spike timing dependent plasticity

laoz Shamir

Department of Physiology, Department of Physics Ben-Gurion University of the Negev Recording, analyzing, manipulating, interpreting, and modeling whole brain activity Kavli Institute for Theoretical Physics, Santa Barbara CA USA, September 5th 2018

Outline of the talk

- Introduction:
 - The question: transmission of oscillations downstream
 - Plasticity & learning
- The transfer of oscillatory information
 - Effect of oscillations on learning dynamics of single synapse
 - Learning dynamics of oscillating synaptic population
- Emergence of oscillations via learning

How can information about oscillatory activity be transmitted downstream?

Assume simple feed-forward architecture

To transmit information about oscillatory activity we need a mechanism that will shape feed-forward synaptic connections according to their phases

What mechanism facilitates the transmission of oscillatory activity downstream?

Is this mechanism genetically hard wired?

OR

Can it be acquired via a process of learning?

Spike Timing Dependent Plasticity

Adopted from Bi and Poo, Dec. 1998; The Journal of Neuroscience 18(24): 10464-10472

Introduction – STDP

LTP

LTD

50

0

STDP as unsupervised learning process

Positive feedback of "canonical" excitatory STDP

Positive feedback can by weakened by Scaling the learning with the synaptic weight

Gütig et al JNS (2003)

Correlations can strengthen the positive feedback

Gütig et al JNS (2003)

Inhibitory STDP

Negative feedback of "canonical" inhibitory STDP

Balance of excitation and inhibition

Can STDP facilitate the transmission of oscillatory activity?

Study the effect of oscillatory activity on STDP of a purely feed-forward architecture in two stages:

- A. STDP of a single synapse
- B. STDP of a 'synaptic population'

Single synapse STDP dynamics

$$r_{pre/post}(t) = D_{pre/post} + A_{pre/post} \cos\left(\nu t - \varphi_{pre/post}\right)$$

The STDP learning rule $\Delta w = \lambda \left(f_+(w) K_+(\Delta t) - f_-(w) K_-(\Delta t) \right)$

We assumed a separation of variables: $f \downarrow \pm (w) K(\Delta t)$. The learning rate: λ . We will be interested in the limit of slow learning rate, $\lambda \rightarrow 0$. Our interest results from the fact that this is what we can solve.

Mean-field Fokker Planck Theory

 $\Delta w = \{ \blacksquare + \lambda f \downarrow + (w) K(\Delta t) @ - \lambda f \downarrow - (w) K(\Delta t) \}$ ation term

Depression term

 $w(t+\delta t)-w(t)=\pm \lambda f \downarrow \pm (w) X(^{spike} post \downarrow \in [t,t+\delta t]) \int -\infty \uparrow t = dt \uparrow \rho \downarrow pre(t\uparrow') K \\ \pm (t-t\uparrow') \pm \lambda f \downarrow \pm (w) X(^{spike} pre \downarrow \in [t,t+\delta t]) \int -\infty \uparrow t = dt' \rho \downarrow post(t') K \\ \pm (t'-t)$

Taking the short times limit $\delta t \rightarrow 0$,

$$w(t) = \lambda f \downarrow + (w) \mathcal{L} \uparrow \mathcal{C}(t) - \lambda f \downarrow - (w) \mathcal{L} \uparrow \mathcal{A}(t)$$

 $\mathcal{L}\uparrow \mathcal{C}(t) = \int -\infty \uparrow t = \rho \downarrow pre(t') \rho \downarrow post(t) K \downarrow + (t-t') dt \uparrow'$

Mean-field Fokker Planck Theory

In the limit of slow learning rate, $\lambda \rightarrow 0$, the STDP dynamics samples the pre-post correlations over long periods in which the synaptic weight is relatively fixed.

$$\begin{aligned} \langle w \rangle (w) &= \lambda f \downarrow + (w) \int -\infty \uparrow \infty @ \Gamma(\Delta) K + (\Delta) d\Delta - \lambda f \downarrow - (w) \int -\infty \uparrow \infty @ \Gamma(\Delta) K \\ -(\Delta) d\Delta \\ \Gamma(\Delta) &\equiv \langle \rho \downarrow pre \ (0) \rho \downarrow post \ (\Delta) \rangle \end{aligned}$$

STDP dynamics is governed by the pre-post correlations.

Single synapse STDP dynamics: Analytical results

• The "Mean field" Fokker–Planck of the learning dynamics:

$$\frac{1}{\lambda}\frac{d}{dt}w = f_{+}(w)\int_{-\infty}^{\infty}\Gamma(\Delta)K_{+}(\Delta)d\Delta - f_{-}(w)\int_{-\infty}^{\infty}\Gamma(\Delta)K_{-}(\Delta)d\Delta$$

- The pre-post correlation structure: $\Gamma(\Delta) = \Gamma_D + \Gamma_A \cos(\nu\Delta + \varphi); \quad \Gamma_D = D_{pre} D_{post}, \quad \Gamma_A = \frac{1}{2} A_{pre} A_{post}, \quad \varphi = \varphi_{pre} - \varphi_{post}$
- W converges to this steady state solution: $w^{\uparrow *}(\varphi) = 1/(\alpha Q(\varphi))^{\uparrow 1/\mu} + 1 \quad Q(\varphi) = 1 + \Gamma \downarrow r K \downarrow - \uparrow \nu \cos(\Omega \downarrow - \uparrow \nu + \varphi)/1 + \Gamma \downarrow r K \downarrow + \uparrow$

$$\Gamma \downarrow r \equiv \Gamma \downarrow A / \Gamma \downarrow D = A \downarrow pre A \downarrow post / 2$$

D \ pre D \ post

Single synapse STDP – useful model

How can information about oscillatory activity be transmitted downstream?

The mean-field Fokker Planck Theory

N non-linear equations

$$\dot{w}(\varphi,t)/\lambda = f_+(w(\varphi,t)) \int_{-\infty}^{\infty} \Gamma(\varphi,\Delta) K_+(\Delta) d\Delta - f_-(w(\varphi,t)) \int_{-\infty}^{\infty} \Gamma(\varphi,\Delta) K_-(\Delta) d\Delta$$

The delayed linear-Poisson neuron

$$\langle \rho_{post}(t) \rangle = \frac{1}{N} \sum_{j=1}^{N} w_j \rho_j(t-d)$$

The mean-field Fokker Planck Theory

The STDP dynamics is dominated by order parameters

$$\dot{w}(\varphi,t)/\lambda = \bar{w}(t)F_0(\varphi,t) + \tilde{w}(t)F_1(\varphi,t)$$

$$\bar{w} := \int_{-\pi}^{\pi} w(\phi) \frac{d\phi}{2\pi},$$
$$\tilde{w} e^{i\psi} := \int_{-\pi}^{\pi} e^{i\phi} w(\phi) \frac{d\phi}{2\pi}$$

$$\begin{split} F_{0}(\varphi,t) &:= D^{2}(\bar{K}_{+}f_{+}(w(\varphi,t)) - \bar{K}_{-}f_{-}(w(\varphi,t))), \\ F_{1}(\varphi,t) &:= \frac{A^{2}}{2} \{ \tilde{K}_{+}^{v}f_{+}(w(\varphi,t))\cos(\varphi - \Omega_{+}^{v} - vd - \psi(t)) \\ &- \tilde{K}_{-}^{v}f_{-}(w(\varphi,t))\cos(\varphi - \Omega_{-}^{v} - vd - \psi(t))] \end{split}$$

The STDP dynamics is governed by three order parameters

• The dynamic equations for the order parameters W, W and ψ : $\frac{d}{dt}\overline{w}(t) = \lambda(\overline{w}(t)\overline{F_0} + \Re(t)\overline{F_1}(t))$ $\frac{d}{dt}\Re(t) = \lambda(\overline{w}(t)\overline{F_0}\cos(\Phi_0 - \psi(t)) + \Re(t)\overline{F_1}\cos(\Phi_1 - \psi(t)))$ $\Re(t)\frac{d}{dt}\psi(t) = \lambda(\overline{w}(t)\overline{F_0}\sin(\Phi_0 - \psi(t)) + \Re(t)\overline{F_1}\sin(\Phi_1 - \psi(t)))$

$$F_{0}(\varphi) = \frac{D^{2}}{2\pi} \left(\overline{K_{+}} f_{+} \left(w(\varphi) \right) - \overline{K_{-}} f_{-} \left(w(\varphi) \right) \right)$$

$$F_{1}(\varphi, t) = \frac{A^{2}}{4\pi} \left(\frac{\cancel{K}_{+} f_{+} \left(w(\varphi) \right) \cos\left(\Omega_{+} + \psi(t) + \varphi\right)}{-\cancel{K}_{-} f_{-} \left(w(\varphi) \right) \cos\left(\Omega_{-} + \psi(t) + \varphi\right)} \right)$$

$$\overline{F_{n}} = \int_{-\pi}^{\pi} F_{n}(\varphi) d\varphi \quad F_{n} e^{i\Phi_{n}} = \int_{-\pi}^{\pi} e^{-i\theta} F_{n}(\varphi) d\varphi$$

$$\cancel{K}_{+/-} = \cancel{K}_{+/-}^{\nu} \qquad \Omega_{+/-} = \nu d - \Omega_{+/-}^{\nu}$$

• Where:

Stability of the homogeneous solution

Aim: study development of non-trivial phase preference profile.

Problem: non-linear, coupled, high dimensional.

Strategy: study the homogeneous solution and investigate when it looses stability.

Stability of the homogeneous solution

The stability of the homogeneous solution is governed by the temporal structure of the STDP rule and the pre-post delay

$$\mu_{c} \geq \frac{A^{2}}{4D^{2}} \left(\frac{\tilde{K}_{+}^{v}}{\bar{K}} \cos(\Omega_{+}^{v} + vd) - \frac{\tilde{K}_{-}^{v}}{\bar{K}} \cos(\Omega_{-}^{v} + vd) \right)$$

Assumes α>1

Unstable homogeneous solution

The limit cycle solution

- Assuming a limit cycle solution
 - Ansatz converts our differential equations into algebraic equations:

$$\overline{w}(t) = w_0 \qquad 0 = w_0 \overline{F_0} + w_1 \overline{F_1}$$

$$\widehat{w}(t) = w_1 \qquad \rightarrow \qquad \overline{F_1} \overline{F_0} \cos(\Phi_0) = \overline{F_0} \overline{F_1} \cos(\Phi_1)$$

$$\psi(t) = \lambda V_d t + \psi^0 \qquad V_d = -\frac{\overline{F_1}}{\overline{F_0}} \overline{F_0} \sin(\Phi_0) + \overline{F_1} \sin(\Phi_1)$$

Retrieving the "weak coupling limit" to in the zero drift scenario
Assuming the drift *V*Jd is zero.

The zero drift solution

The zero drift solution

Interim Summary

- □ STDP can provide a mechanism for shaping synaptic weights to enable transmission of oscillatory activity.
- □ Typically, the weights do not converge to a fixed point.
- □ Functionality, in this case, was retained by stable dynamics of global order parameters.

Can oscillations emerge via STDP?

The reciprocal inhibition model

$$\begin{aligned} \tau_m R &= -r_1 + g(I_1 - a_1 - J_{12}r_2) \\ \tau_a R &= -a_1 + Ar_1 \\ \tau_m R &= -r_2 + g(I_2 - a_2 - J_{21}r_1) \\ \tau_a R &= -a_2 + Ar_2 \end{aligned}$$

Outline:

- Understand the dynamics of this system
- Introduce plasticity and study under what conditions this system will develop the capacity to oscillate

The fixed points

Rival-1 State

$$r_1 = \frac{I_1}{A+1}$$
$$r_2 = 0$$

Existence condition:

$$1 < \frac{J_{21}}{A+1}$$

Fusion State

$$r_{1} > 0$$

$$r_{2} > 0$$
Existence condition: $\frac{J_{xy}}{A+1} < 1$
Stability condition: $\sqrt{J_{12}J_{21}} < 1 + \varepsilon$

Shamir & Sompolinsky, *unpublished*

The Limit Cycle solution

In regions where there are no stable fixed points the system converges to a periodic solution of *Anti-phase Oscillations*

The Phase diagram

2 **Limit Cycle Solution:** Rival 2 В Denote T_i the dominance time 1.5 1+A of population *i*. J 12 L.C. L Rival 1 $T_1 = T_2$ on the diagonal 0.5 T_1 diverges on the border 1 0 Fusion of Rival-1 0 -0.5 ^{_} -4 0 1 1+A -2 0 2 Δ $T_{1/2}$ goes to zero on the • J 21 time border of Fusion 20 J_{2^1} 15 A A J_{12} **⊢** 10 5 0 1.5 2 2.5 3

J

 $\Gamma_{-}(\Delta) = \Gamma_{21}(\Delta) - \Gamma_{12}(\Delta)$

Always positive and symmetric w.r.t. time.

Odd function of time. Zero on the diagonal and anti-symmetric w.r.t. reflection around the diagonal.

Can oscillations emerge via neuronal plasticity?

Hebbian/Anti-Hebbian STDP

The STDP rule:

$$\Delta J = \lambda \left(K_{+}(\Delta t) - \alpha K_{-}(\Delta t) \right)$$

$$\Delta t = t_{\text{post}} - t_{\text{pre}} \qquad \qquad K_{\pm}(\Delta t) = \frac{1}{\tau_{\pm}} \exp\left\{\text{mHt} / \tau_{\pm}\right\} \Theta(\pm Ht)$$

 λ is the learning rate, α is the relative strength of depression,

H = 1/-1 for Hebb / Anti-Hebb STDP

STDP dynamics induce a flow on the phase diagram

$$\mathscr{P}_{ij} = \lambda \int \Gamma_{ij}(t) \left[K_{+}(t) - \alpha K_{-}(t) \right] dt$$

Transition from stable Fusion to the Limit Cycle region requires:

 $\alpha < 1$

$$J_{+} = \frac{J_{21} + J_{12}}{2}$$
$$\mathcal{J}_{+} = \lambda \int \Gamma_{+}(t) \left[K_{+}(t) - \alpha K_{-}(t) \right] dt$$

STDP dynamics on the diagonal

$$J_{+} = \frac{J_{21} + J_{12}}{2}$$
$$\mathcal{P}_{+} = \lambda \left\{ \mathcal{P}_{+\text{pot}} - \alpha \mathcal{P}_{+\text{dep}} \right\}$$

It is convenient to study

$$\mathscr{P}_{+\text{pot/dep}} = \int \Gamma_{+}(t) K_{+/-}(t) dt$$

As
$$T \to 0$$
 $\mathscr{P}_{+} = (1 - \alpha)I^2 / (2 + A)^2$

For
$$\tau_{+} < \tau_{-}$$
 we obtain $\mathscr{F}_{+pot} \leq \mathscr{F}_{+dep}$
with equality only at $T=0$

STDP dynamics in the orthogonal direction

$$J_{-} = J_{21} - J_{12}$$
$$\mathcal{J}_{-} = \lambda \left\{ \mathcal{J}_{-\text{pot}} - \alpha \mathcal{J}_{-\text{dep}} \right\}$$

On the diagonal $\mathscr{J}_{-}^{\&}$ is zero.

If STDP dynamics are unstable in the direction for Hebbian plasticity they will be stable for Anti-Hebbian rule and vice versa.

Flow on the phase plane

Summary

- □ The phase diagram of the neuronal activities is the phase plane of the STDP dynamics.
- □ STDP can provide a mechanism that enables the emergence of oscillatory activity in the brain.
- □ The STDP rule governs and stabilizes the resultant oscillatory activity.
- The specific architecture and the non-linear nature of the neuronal dynamics may have a major effect on the STDP dynamics as well.
- Disruption to the STDP rule may alter the oscillatory behavior.

Thanks

- Students:
 - Yotam Luz
 - Oran Zohar
 - Or Mendels
 - Shiri Gaber
 - Shir Sivrony
 - Noa Bar
 - Sarit Nagar
 - Eyal Fish Be-Can'an
 - Nimrod Sherf
 - Gabi Socolovsky

- Collaborators:
 - Adam Kohn
 - Alan Palmer
 - Trevor Shackleton
 - Israel Nelken
 - Ronen Segev
 - Heiko Luhmann
 - Yael Amitai
 - Oren Shriki

Funding

ISF

Marie Curie International Reintegration Grants National Institute for Psychobiology in Israel BSF

Thank you

