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Outline of the talk 

•  Introduction:  
§  The question: transmission of oscillations downstream 
§  Plasticity & learning 

•  The transfer of oscillatory information 
§  Effect of oscillations on learning dynamics of single 

synapse 
§  Learning dynamics of oscillating synaptic population 

•  Emergence of oscillations via learning 



How can information about oscillatory 
activity be transmitted downstream? 	  



Assume simple feed-forward architecture 

Input layer 
neurons oscillate 
at frequency f 
with uniformly 
distributed 
phases. 

If the synaptic inputs are uniform or 
random the input to the downstream 
layer will be constant in time or very 
weakly modulated. 

To transmit information about oscillatory activity we need a 
mechanism that will shape feed-forward synaptic connections 
according to their phases 



What mechanism facilitates the 
transmission of oscillatory activity 

downstream? 	  

Is this mechanism genetically hard 
wired?  

OR  
Can it be acquired via a process of 
learning? 



Spike Timing Dependent Plasticity	  

Bi and Poo JNS (1998)
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Adopted from Bi and Poo, Dec. 1998; 
The Journal of Neuroscience 18(24):
10464-10472 
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Introduction – STDP	  
Bi and Poo, Dec. 1998; The Journal of 
Neuroscience 18(24):10464-10472 

Haas, Aug. 2006; The Journal of 
Neurophysiology Vol.96 no.6:3305-3313 



STDP as unsupervised learning process	  



Positive feedback of 
“canonical” excitatory STDP 

Weak	  synapse	  

Post	  spike	  uncorrelated	  with	  
pre	  spike	  

Learning	  dynamics	  will	  
sample	  randomly	  both	  

branches	  

Synapse	  will	  weaken	  
if	  α>1	  

causal	  
branch

a-‐causal	  
branch
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Strong	  synapse	  

Post	  spike	  more	  likely	  to	  
follow	  pre	  

Learning	  dynamics	  will	  
sample	  more	  causal	  branch	  

Synapse	  will	  strengthen	  

∆t = tpost – tpre 



Positive feedback can by weakened by 
Scaling the learning with the synaptic 

weight 

causal	  
branch

a-‐causal	  
branch
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∆t = tpost – tpre  

Gütig et al JNS (2003)



Correlations can strengthen the 
positive feedback 

Red	  group	  is	  
strong

A	  spike	  from	  a	  Red	  cell	  will	  be	  more	  likely	  
to	  be	  followed	  by	  post	  spike

Red	  synap>c	  weight	  will	  
poten>ate

Yellow	  group	  
is	  weak

A	  spike	  from	  a	  Yellow	  cell	  is	  less	  
correlated	  with	  post	  spike

Yellow	  synap>c	  weights	  will	  
depress

∑

Unsupervised	  learning

Gütig et al JNS (2003)



Inhibitory STDP 



Negative feedback of 
“canonical” inhibitory STDP 

Weak	  synapse	  

Post	  spike	  uncorrelated	  with	  
pre	  spike	  

Learning	  dynamics	  will	  
sample	  randomly	  both	  

branches	  

Synapse	  will	  strengthen	  
if	  α<1	  

causal	  
branch

a-‐causal	  
branch

1

α
0 1 ww* 

Strong	  synapse	  

Post	  spike	  less	  likely	  to	  
follow	  pre	  

Learning	  dynamics	  will	  
sample	  more	  the	  a-‐causal	  

branch	  

Synapse	  will	  weaken	  
Haas et al JNP (2006)

∆t = tpost – tpre  



Balance of excitation and inhibition 

Excita>on	  
increases

A	  spike	  from	  an	  inhibitory	  cell	  will	  be	  less	  
correlated	  with	  post	  spike

Inhibitory	  synap>c	  weights	  
will	  poten>ate

Excita>on	  
decreases

A	  spike	  from	  an	  inhibitory	  cell	  is	  less	  likely	  
to	  be	  followed	  by	  a	  post	  spike

Inhibitory	  synap>c	  weights	  
will	  depress

∑

Homeosta>c	  mechanism



Can STDP facilitate the transmission 
of oscillatory activity? 	  

ρpostΣ

ρN

ρ1

ρ2

wN

w1

w2

ρpost

ρpre

non	  
plas>c	  
input

Σ
wpre

Study the effect of oscillatory activity on 
STDP of a purely feed-forward architecture 
in two stages: 
A.  STDP of a single synapse 
B.  STDP of a ‘synaptic population’ 

Luz and Shamir (2016)



Single synapse STDP dynamics 

•  In this case study, we consider “weak” coupling in the sense that 
postsynaptic activity is not altered by presynaptic firing 
–  This setup approximates a cell with many presynaptic inputs, such that a change 

in one of them is negligible. 
•  Both pre/post neurons are oscillating in the same frequency 

( ) ( )/ / / /pre post pre post pre post pre postr t D A cos tν ϕ= + −



The STDP learning rule 
( ) ( ) ( ) ( )( )w f w K t f w K tλ + + − −= −Δ Δ Δ

( ) ( )
( )

f w w

f w w

µ

µα
+

−

= −

=

1

We assumed a separation of variables: 𝑓↓± (𝑤)𝐾(Δ𝑡).  
The learning rate: 𝜆. We will be interested in the limit of slow learning rate, 𝜆→0. 
Our interest results from the fact that this is what we can solve.  

Gütig et al JNS (2003)



Mean-field Fokker Planck Theory 

Δ𝑤={█■+𝜆𝑓↓+ (𝑤)𝐾(Δ𝑡)@−𝜆𝑓↓− (𝑤)𝐾(Δ𝑡)  Potentiation term 
 
Depression term 

𝑤(𝑡+𝛿𝑡)−𝑤(𝑡)= ±𝜆𝑓↓± (𝑤)𝑋(^𝑠𝑝𝑖𝑘𝑒↑𝑝𝑜𝑠𝑡↓∈[𝑡,𝑡+𝛿𝑡] )∫−∞↑𝑡▒𝑑𝑡↑′ 𝜌↓𝑝𝑟𝑒 (𝑡↑′ ) 𝐾
±(𝑡− 𝑡↑′ ) ± 𝜆𝑓↓± (𝑤)𝑋(^𝑠𝑝𝑖𝑘𝑒↑𝑝𝑟𝑒↓∈[𝑡,𝑡+𝛿𝑡] )∫−∞↑𝑡▒𝑑𝑡′ 𝜌↓𝑝𝑜𝑠𝑡 (𝑡′)𝐾±(𝑡′−𝑡) 

Taking the short times limit  𝛿𝑡→0, 

𝑤 (𝑡)= 𝜆𝑓↓+ (𝑤)ℒ↑𝐶 (𝑡)− 𝜆𝑓↓− (𝑤)ℒ↑𝐴 (𝑡)

ℒ↑𝐶 (𝑡)=∫−∞↑𝑡▒𝜌↓𝑝𝑟𝑒 (𝑡′)𝜌↓𝑝𝑜𝑠𝑡 (𝑡)𝐾↓+ (𝑡−𝑡′)𝑑𝑡↑′  



Mean-field Fokker Planck Theory 

〈𝑤〉 (𝑤)= 𝜆𝑓↓+ (𝑤)∫−∞↑∞▒Γ(Δ)𝐾+(∆)𝑑Δ − 𝜆𝑓↓− (𝑤)∫−∞↑∞▒Γ(Δ)𝐾
−(∆)𝑑Δ 	  
Γ(Δ)≡〈𝜌↓𝑝𝑟𝑒 (0)𝜌↓𝑝𝑜𝑠𝑡 (Δ)〉

In the limit of slow learning rate, 𝜆→0, the STDP dynamics samples the pre-post 
correlations over long periods in which the synaptic weight is relatively fixed. 

STDP dynamics is governed by the pre-post correlations.  



Single synapse STDP dynamics: 
Analytical results 

•  The “Mean field” Fokker–Planck of the learning 
dynamics: 

( ) ( ) ( ) ( ) ( ) ( )1 Γ Δ Δ Δ Γ Δ Δ Δd w f w K d f w K d
dtλ

∞ ∞

+ + − −−∞ −∞
= −∫ ∫

( ) ( ) , 1Γ Δ Γ Γ cos Δ ; Γ Γ
2

,D A D pre post A pre post pre postD D A Aν ϕ ϕ ϕ ϕ= + + = = = −

𝛤↓𝑟 ≡ 𝛤↓𝐴 ∕𝛤↓𝐷  = 𝐴↓𝑝𝑟𝑒 𝐴↓𝑝𝑜𝑠𝑡 ∕2 
𝐷↓𝑝𝑟𝑒 𝐷↓𝑝𝑜𝑠𝑡  

𝑤↑∗ (𝜑)= 1/(𝛼𝑄(𝜑))↑1∕𝜇  +1  𝑄(𝜑)= 1+ 𝛤↓𝑟 𝐾↓−↑𝜈  cos(𝛺↓−↑𝜈 +𝜑)/1+ 𝛤↓𝑟 𝐾↓+↑𝜈  cos(𝛺↓+↑𝜈 +𝜑)  

•  The pre-post correlation structure: 

•  W converges to this steady state solution: 

Luz and Shamir (2016)



Single synapse STDP – useful model 



How can information about oscillatory 
activity be transmitted downstream?  

Luz and Shamir (2016)



The mean-field Fokker Planck Theory	  

N non-linear equations 

The delayed linear-Poisson neuron 

Luz and Shamir (2016)



The mean-field Fokker Planck Theory	  
The STDP dynamics is dominated by order 
parameters 

Luz and Shamir (2016)



The STDP dynamics is governed by 
three order parameters 

•  The dynamic equations for the order parameters 
𝑤 , 𝑤  and 𝜓: 

•  Where: 
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Stability of the homogeneous solution 

Aim: study development of non-trivial 
phase preference profile. 
 

Problem: non-linear, coupled, high 
dimensional.  
 

Strategy: study the homogeneous solution 
and investigate when it looses stability. 



Stability of the homogeneous solution	  

The stability of the homogeneous solution 
is governed by the temporal structure of 
the STDP rule and the pre-post delay 

Assumes α>1 

Luz and Shamir (2016)



Unstable homogeneous solution 

Luz and Shamir (2016)



The limit cycle solution 
•  Assuming a limit cycle solution 

–  Ansatz converts our differential equations into algebraic equations: 

•  Retrieving the “weak coupling limit” to in the zero drift scenario 
–  Assuming the drift 𝑉↓𝑑  is zero. 
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The zero drift solution 

Luz and Shamir (2016)



The zero drift solution	  

Luz and Shamir (2016)



Interim Summary 

q  STDP can provide a mechanism for shaping 
synaptic weights to enable transmission of 
oscillatory activity. 

q  Typically, the weights do not converge to a 
fixed point. 

q  Functionality, in this case, was retained by 
stable dynamics of global order parameters. 



Can oscillations emerge via STDP?	  



The reciprocal inhibition model	  

1	   2	  

I1 I2 

A A 
J21 

J12 
Where 

For simplicity we shall assume  

1 1 1 1 12 2

1 1 1

2 2 2 2 21 1

2 2 2

( )
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r r g I a J r
a a Ar
r r g I a J r
a a Ar

τ

τ

τ

τ

= − + − −

= − +

= − + − −

= − +

&
&
&
&

Complete analytical solution available for slow adaptation 

Shamir & Sompolinsky, unpublished 

Outline: 
•  Understand the dynamics of this system 
•  Introduce plasticity and study under what 

conditions this system will develop the 
capacity to oscillate 



The fixed points	  

1	   2
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Existence condition: 

Existence condition: 

Stability condition: 
Shamir & Sompolinsky, unpublished 



The Limit Cycle solution	  

In regions where there are no 
stable fixed points the system 
converges to a periodic 
solution of  
Anti-phase Oscillations 

1	  

I1 I2 
A A 

J21 

J12 
2	  



The Phase diagram	  
Limit Cycle Solution: 
Denote Ti the dominance time 
of population i. 
•  T1 = T2 on the diagonal 
•  T1 diverges on the border 

of Rival-1 
•  T1/2 goes to zero on the 

border of Fusion  

1	  

I1 I2 
A A 

J21 

J12 
2	  

1T 2T



The correlations	  

0
( ) ( ) ( )

T

ij i j
dt r t r t
T

Γ Δ = + Δ∫The correlations:  

12 21

21 12

( ) ( )( )
2

( ) ( ) ( )

+

−

Γ Δ +Γ Δ
Γ Δ =

Γ Δ = Γ Δ −Γ Δ

Ø  Always positive and symmetric w.r.t. time. 
 
Ø  Odd function of time. Zero on the diagonal and anti-symmetric 

w.r.t. reflection around the diagonal. 



Can oscillations emerge via neuronal 
plasticity? 	  

1	   2	  

I1 I2 

A 
A 

J21 

J12 



Hebbian/Anti-Hebbian STDP	  

Hebbian     Anti-Hebbian  

( )

{ }

( ) ( )
1( ) exp / ( )

J K t K t

K t Ht Ht

λ α

τ
τ

+ −

± ±
±

Δ = Δ − Δ

Δ = Θ ±m

The STDP rule: 

λ α

1/ 1H = −

is the learning rate, is the relative strength of depression,  

for Hebb / Anti-Hebb STDP 

post pret t tΔ = −

post pret t tΔ = −

JΔ

post pret t tΔ = −

JΔ

Soloduchin and Shamir (2018)



STDP dynamics induce a flow on the 
phase diagram 	  

[ ]( ) ( ) ( )ij ijJ t K t K t dtλ α+ −= Γ −∫&

[ ]

21 12

2
( ) ( ) ( )

J JJ

J t K t K t dtλ α

+

+ + + −

+
=

= Γ −∫&

Transition from stable Fusion to 
the Limit Cycle region requires: 

1α <

Soloduchin and Shamir (2018)



STDP dynamics on the diagonal	  

{ }

21 12

pot dep

2
J JJ

J J Jλ α

+

+ + +

+
=

= −& & &

pot/dep /( ) ( )J t K t dt+ + + −= Γ∫&
It is convenient to study 

The period T maps the diagonal along the Limit 
Cycle region from the Fusion border at T=0 to the 
Bi-Stable region at T diverges to infinity. 

As 0T → ( )22(1 ) / 2J I Aα+ = − +&

For τ τ+ −< pot depJ J+ +≤& &we obtain 

with equality only at T=0 

Soloduchin and Shamir (2018)



STDP dynamics in the orthogonal 
direction	  

{ }
21 12

pot dep

J J J

J J Jλ α
−

− − −

= −

= −& & &

On the diagonal      is zero.  J−&

As      is an odd function of time,         tend to 
be positive, whereas,        tends to be 
negative, under the Hebbian STDP 
dynamics. 
As a result the STDP dynamics is unstable in 
the       direction.     

If STDP dynamics are unstable in the      
direction for Hebbian plasticity they 
will be stable for Anti-Hebbian rule 
and vice versa.   

J−

Soloduchin and Shamir (2018)



Flow on the phase plane	  

STDP induces a flow on the phase diagram. Assuming initial 
conditions of relatively weak coupling (near the origin) the 
flow will drive the system from the Fusion state to the Limit 
Cycle region if 

Soloduchin and Shamir (2018)



Learning synaptic population	  

1	   2	  

I1 I2 

A A 

Soloduchin and Shamir (2018)



Learning synaptic population	  

Soloduchin and Shamir (2018)



Learning synaptic population	  

Soloduchin and Shamir (2018)



Learning synaptic population	  

Soloduchin and Shamir (2018)



Learning synaptic population	  

1.433T = 1.436T =1.432T =

Soloduchin and Shamir (2018)



Summary 
q  The phase diagram of the neuronal activities is the 

phase plane of the STDP dynamics. 
q  STDP can provide a mechanism that enables the 

emergence of oscillatory activity in the brain. 
q  The STDP rule governs and stabilizes the resultant 

oscillatory activity. 
q  The specific architecture and the non-linear nature 

of the neuronal dynamics may have a major effect 
on the STDP dynamics as well. 

q  Disruption to the STDP rule may alter the 
oscillatory behavior. 
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