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Part I: Working memory

Working memory: cognitive psychology

Cognitive process that is responsible for temporarily
maintaining and manipulating information.

Example from language:

Problem of long-term dependencies

Working memory: cognitive psychology

Cognitive process that is responsible for temporarily
maintaining and manipulating information.

Example from language:

The athlete realized his goals, which were formed during childhood, to
qualify for this year’s Olympic team, ...

Problem of long-term dependencies

Working memory: cognitive psychology

Cognitive process that is responsible for temporarily
maintaining and manipulating information.

Example from language:

The athlete realized his goals, which were formed during childhood, to
qualify for this year’s Olympic team, ... (quickly/were unattainable).

Problem of long-term dependencies

Working memory: neuroscience

Example: oculomotor delayed-response (ODR) task
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Working memory models
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Compte Brunel, Goldman-Rakic, & Wang (2000)

Weaknesses of the delayed-response /
sustained delay-period activity paradigm

Working memory involves maintenance and manipulation,
but most of the neuroscience focuses only on maintenance.

Neural activity can exhibit complicated dynamics during a delay
period.
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Schmitt et al., Nature (2017)

Working memory: Al
Long short term memory networks (LSTMs):
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Insight: gated integration and reset




Learning to generate Shakespeare

PANDARUS :

Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,

I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and
my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.
Karpathy’s blog, The Unreasonable Effectiveness of

Recurrent Neural Networks (2015)

Leaky neural integrator
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Stability depends on the
eigenvectors of recurrent
weight matrix

What'’s an eigenvector?

Stability depends on the
eigenvectors of recurrent
weight matrix

M=l

2=0.5

Stability depends on the
eigenvectors of recurrent
weight matrix

Response of
neuron 2

Response of
neuron 1

2=0.5

Stability depends on the
eigenvectors of recurrent Response dynamics:
weight matrix

Response of
neuron 2

Response of
neuron 1

2=0.5

Time
Encoding & readout weights Readout derivation
Recurrent weight matrix has two Encoding / embedding (during target presentation):
eigenvalues = 1 and others < 1. Yo = VX0
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Manipulation with
gated integration

Double-step saccade task
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Sequential activity
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Part

Il: Biophysical implementation

Pyramidal cells




Biophysical implementation:
output responses
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Part lll: Canonical computation: sensory &
motor processing

Motor preparation and motor control

Backside double McTwist 1260
(Shawn White, 2018)

Motor preparation and motor control
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Sensory processing

Stack ‘em with convolutional encoding weights, like a deep net:
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Conventional feedforward network
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Part IV: Prediction

ORGaNICs (revisited)

Global optimization:
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Time-series prediction: local computation
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Processing delays mean the brain has to
make predictions:

Processing delays mean the brain has to
make predictions:

Comprehension relies on prediction




Comprehension relies on prediction

Events unfold over time

Events unfold over time

Prediction requires a model

Observation

Prediction

Hierarchy of processing time scales

[l Long (~36s)
Mid (~12s)
[l Short (~4s)

Hasson et al., J Neurosci (2008)
see also:

® Honey et al., Neuron (2012)

e Farbood et al., Frontiers (2015)

Motion prediction




Motion prediction

Motion prediction
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Global optimization
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ORGaNICs (straightforward extension of Conceptual framework:

leaky neural integrators): « Gated integration & reset

* Sensory processing * Effective time constant

® Motor preparation and motor control « Dimensionality

* Executive control (working memory, « Stability / E:l balance
controlling attention).
. T L
o Prediction Time warping via 7
* Inference in a multi-layered recurrent neural
net

Implications for neuroscience

1) Working memory/executive functions, motor preparation/
control, and sensory processing may share a common
computational foundation.

2) Working memory > short-term memory.

3) Complex dynamics:
« Unified model for sustained delay-period activity, sequential activity,
and complex dynamics.
e Read out in spite of complex dynamics.
4) Experiments:
e Example of testable prediction: thalamic input changes the effective
time constant and recurrent gain of a PFC neuron.

* New conceptual framework / new paradigm: gated integration, reset,
effective time constant.

Implications for Al

1) Go complex: simple harmonic motion is everywhere!
2) Stability:
* Avoid exploding gradients by rescaling recurrent weight matrix after
each gradient update (s.t. largest eigenvalue = 1).
e Avoid vanishing gradients by using rectification instead of saturating
nonlinearities.
3) Reset & update gates = gated integration, reset, effective
time-constant.
4) Warp time by scaling the intrinsic time constants.

5) Neuromorphic (analog VLSI) implementation.
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