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Learning and  credit-assignment 

Example: learning a complex movement 
(walking, riding a bike, skiing….)  

A task generally composed of many 
coordinated sub-tasks but the error is often
 only global.

Many muscle involved, which muscle 
command should be modified to avoid 
falling?

A supplementary difficulty : the sign of the 
error is not known i.e. was one particular 
muscle too contracted or not enough?



A possible solution : trial and error.

-During the task, perturb  a few elements (cells, synapses,...) 
(...Doya and Sejnowski, 1995;...; Seung, 2004; Fiete et al, 2007;..)

-> Changes in the task performance can be attributed to the
     elements that were perturbed

An attractive framework that has been primarily considered in the 
context of song learning in birds but detailed implementation still to be 
worked out (how is the song evaluated, where are the sites of 
plasticity,...?)

Here : examine the question for learning complex coordinated 
movements  at the level of the cerebellum.

!



Learning by trial-and-error/stochastic gradient descent
                          in the cerebellum?
     
The questions we would like to anwer :

-During the task, a few cells should be perturbed ->
Question I : what is the source of this perturbation?

-Evaluation of the current performance  needed to evaluate whether the 
perturbation has improved or deteriorated it ->
Question II : where is current performance stored/how is the 

    comparison made?

Question III: characteristics of the resulting learning algorithm        
(convergence, speed, ...)?

Question IV:  specific experimentally testable predictions?

!!!



Outline.

-  Cerebellum and movement learning : cerebellar anatomy and the          
classical Marr-Albus  theory

-  A new proposal 

-  Some experimental results

-  Simple mathematical implementations and analysis

-  Further theoretical questions and experiments



The cerebellum is a main site of motor learning

Learning a gain change in the VOR is dependent on cerebellum

Vestibulo-ocular reflex (VOR)

the slip of retinal images from the surroundings. 
We can induce motor learning in the VOR by fitting 

monkeys with goggles that create retinal slip during 
head turns 3'4. Suppose, for example, that a monkey 
turns his head while viewing through 2 x magnifying 
spectacles. To prevent images from slipping across 
the retina, smooth eye movement must be twice the 
amplitude of each head movement. If worn by a 
monkey with a normal VOR, magnifying spectacles 
create a mismatch of visual and vestibular stimuli that 
drives the learning process. Subsequent tests with 
passive head rotation in darkness reveal that the gain 
of the VOR gradually increases and reaches values as 
high as 1.8 after several days. A similar approach with 
¼ x miniaturizing spectacles produces decreases in the 
gain of the VOR to values as low as 0.3. 

Normal Wearing Magnifying Spectacles 

Multiple, parallel VOR pathways 
The inputs for the VOR arise in the semicircular 

canals of the vestibular apparatus and enter the brain 
over the vestibular nerve. As shown in Fig. 1, the 
vestibular inputs are processed in several parallel 
pathways in the brain stem and cerebellum, and finally 
converge on ocular motoneurons 5. The most direct 
pathway is disynaptic and consists of vestibular 
primary afferents, VOR interneurons in the vestibular 
nucleus, and ocular motoneurons. A second pathway 
is at least trisynaptic, and includes an interneuron that 
is located in the medial vestibular nucleus and 
receives monosynaptic inhibition from the flocculus 
of the cerebellum. We have recently identified these 
'flocculus target neurons' (or FTNs) by their in- 
hibition at monosynaptic latencies following single 
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Box 1. Motor learning in the VOR. In a normal monkey (lefthand column), a head turn to the 
left causes an equal and opposite eye rotation to the right. As a result of the compensatory eye 
movement, the banana he is viewing casts images that remain stable on the retina. As shown 
in the oscilloscope tracings, eye and head movement are equal in ampfitude and opposite in 
direction so that the trace indicating retinal 'slip' is flat. Immediately after the monkey starts 
wearing spectacles that magnify the visual scene to twice its normal size (middle columh), eye 
movement is still equal and opposite to head movement. However, the change in the apparent 
size of the visual scene means that the image from the banana slips across the retina during the 
head turn. The spectacles cause retinal slip to be associated with each head turn, indicating in 
this case that the VOR is too small. After the monkey has wom the spectacles for several days 
(righthand column), the VOR has adapted to the new visual conditions. Now, the original head 
turn causes compensatory eye movements at twice the odginal ampfitude. The VOR is now 
appropriate for the visual conditions, and the images from the banana no Ionger slip across the 
retina. In the oscilloscope records, the slip trace is again flat. The circuit diagram in the lower 
part of the figure indicates that the input for the VOR originates in the semicircular canal of the 
vestibular apparatus, which senses angular head velocity. The inputs are processed in 
pathways in the brain stem and cerebellum before the movement commands are sent to the 
motoneurons. The shortest pathways contain just one interneuron, while other pathways 
include feedback and more intemeurons. 

shocks through electrodes im- 
planted chronically in the flocculus 
(Lisberger, S. G. and Pavelko, 
T. A., unpublished observations). 
A third pathway involves trisynap- 
tic vestibular inputs to Purkinje 
cells, which are the output cells 
from the flocculus. 

The different parallel VOR path- 
ways appear to have different roles 
in motor learning. For example, the 
use of a transient vestibular stim- 
ulus revealed that only a subset of 
the VOR pathways are subject to 
modification in association with 
motor learning 6. Fig. 2A shows the 
VOR evoked by a 'rapid change in 
head velocity' that was imposed in 
darkness and accelerated the head 
from 0 to 30 deg s-1 in 50 ms. The 
three traces labelled 'eye velocity' 
show that the response to this 
stimulus had a latency of 14 ms 
and an amplitude that varied 
appropriately when the gain of the 
VOR was 0.32, 1.05 or 1.57. The 
high sweep-speed records in Fig. 
2B provide a detailed look at the 
events surrounding the initiation of 
the VOR, which is marked by the 
arrow labelled '1'. In the first few 
milliseconds following initiation of 
the VOR, eye velocity always 
followed the same trajectory. When 
the gain of the VOR was high 
or low, the eye velocity diverged 
from control at arrows 2 and 3, 
respectively. These data suggest 
that the shortest latency VOR 
pathways are not modified. In 
addition, the latency at which the 
eye velocity diverged from normal 
estimates the latency of the modi- 
fied pathways, which averaged 
19 ms. 

Fig. 2A shows a second property 
of the VOR that has been useful in 
determining the characteristics of 
the modified and unmodified path- 
ways. Changes in the gain of the 
VOR also caused changes in the 
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the same Pini as the wild-type, we set wPG
ini ! 1.85, and for V to have an

initial gain of 1, we set wVM
ini ! 0.7.

Simulation protocol of the detailed model and parameter setting. The
detailed model was used to reproduce the phase-reversal learning task
(Wulff et al., 2009) (Fig. 1B). The table rotates at 0.6 Hz. Before the
learning protocol, an initialization phase is performed: the model is sim-
ulated for 50 cycles with a target gain of 1, gt ! 1, followed by two nights
in the dark, i.e., 2880 cycles. Then the phase-reversal learning task starts.
For the first 50 cycles, the target gain is set to gt ! 0 (day 1 training), then
1440 cycles with no retinal slip (corresponding to the first night), then 50
cycles at gt ! "0.5 (day 2), then 1440 cycles without retinal slip (night 2),
then 50 cycles at gt ! "1 (day 3), then 1440 without retinal slip (night 3),
then 50 cycles at gt ! "1 (day 4), and then three times 1440 cycles
without retinal slip (corresponding to 3 d where the animals are kept in
the dark). In the numerical simulations, Equations 23–24 are integrated
with a time step of dt ! 1 ms. Weight changes are updated in a batch
manner at the end of every cycle.

The parameters are chosen according to the following procedure.
First, since !PG controls the speed of learning, it is set so that the gain is
decreased to about 0.5 during the first day of training. Second, the decay
rate !d is chosen so that at the end of each night, wPG, are back to baseline.
Third, the learning rate !VM is chosen so that almost all the memory is
transferred after every night, but not all, as seen experimentally in the
wild-type. Finally, the noise " ! 0.02 is set to reproduce the qualitative
amount of forgetting of PC-##2 during the first night. All the other
parameters were kept fixed.

When the lower bound of GC3PC weights is set at zero, other param-
eters of the model have to be changed for the model to reproduce the
experimental data. Basically, the mean GC to PC weights need to be
sufficiently close to the lower bound, once the inhibition onto PCs is
removed (for PC-##2) or once the GC excitability is increased (for GC-
#Kcc2). Thus, in this case we increased inhibition (IN) in the wild-type
case, and increased GC excitability in the GC-#Kcc2 case. Both effects
lower the mean GC to PC weights in the case of the mutant mice, so that
the weights hit the bound at zero during learning. The simulations with
these parameters give similar results as shown in this paper, but develop
silent (zero weight) synapses (data not shown).

The detailed model will be posted on Mod-
elDB (https://senselab.med.yale.edu/modeldb).

Results
VOR learning is one of the most com-
monly used tasks to study cerebellar
learning. It is a reflexive eye movement
that stabilizes images on the retina during
head movement by producing an eye
movement in the opposite direction.
With a stable visual surrounding in the
light, the eye movement compensates the
head movement (visually enhanced VOR
gain ! 1). If the visual image is not still,
for example, due to eye muscle weakness,
the VOR is adapted. To study this effect in
a controlled setting, mice are fixed to a
turntable that rotates. Their visual field
can also be rotated, leading to VOR adap-
tation (Fig. 1B). If the visual field rotates
together with the turntable, the target
VOR gain is 0. If the visual field rotates at
double the speed of the turntable, the tar-
get VOR gain is "1 (phase reversal, or eye
movement in the opposite direction as in
the normal situation).

In this paper, we first review already
published experimental results of the
VOR adaptation for three types of mice:
wild-types and two cell-specific mutant

mice (Wulff et al., 2009; Seja et al., 2012). Additionally, for the
wild-type mice, we present novel electrophysiological recordings
of PCs, before and after learning. Based on both experimental and
theoretical data we introduce a minimal model that accurately
reflects the learning behavior. The minimal model is appealing in
its analytical tractability, but it fails to reproduce electrophysio-
logical data in wild-type mice, and behavioral data in the mutant
mice. Therefore we extended the minimal model to a more
detailed one that reproduces both behavioral and electrophysio-
logical results. The detailed model makes a number of experi-
mentally testable predictions that will be discussed below.

Experimental results: behavior and electrophysiology
On day 1, mice undergo a 50 min gain-decrease training, with
target VOR gain of 0. In between the training sessions, the ani-
mals are kept in the dark. On day 2, the animals undergo another
50 min training with a target gain of gt ! "0.5. On days 3 and 4,
there is a 50 min training with target gain gt ! "1 (phase rever-
sal). We show here behavioral data that have already been pub-
lished (Wulff et al., 2009; Seja et al., 2012). We use wild-type mice
and two mutant mouse lines. The inhibitory knock-out mouse
(PC-##2) is missing inhibition onto PC (Wulff et al., 2009, their
Materials and Methods and Results). The GC mutant (GC-
#KCC2) has an increased GC excitability (Seja et al., 2012, their
Materials and Methods and Results). The gain and the phase of
the eye movement is measured in the dark, and is shown on
Figure 2A and B. For the wild-type, the gain decreases during the
first day, and during the three following days the phase slowly
reverses to 180 degrees. The gain increases again toward the end
of training (Wulff et al., 2009). In the light ((V)VOR), the animal
has a gain of above 0.9, as seen in Galliano et al. (2013), their
Figure 4G; in Wulff et al. (2009), their Fig. S5C; and in Seja et al.
(2012), their Fig. 8C. The two mutant mice have similar qualita-

Figure 1. A, VOR circuit. The MFs encode the head velocity. They project onto the GCs and to the MVN. The GCs project onto the
PCs and onto the molecular INs, which in turn inhibit PCs. PCs receive excitatory inputs from CFs, which encode the error coming
with a delay. Finally MVNs are inhibited by PCs and are responsible for the eye movement. In the model, we consider two plasticity
sites: (1) the synaptic weights wPG from GCs to PCs at which depression is induced by costimulation of GCs and CFs, whereas
stimulation of GCs alone produces potentiation and (2) synaptic weights wVM from MFs onto MVN where under MF and PC
coactivation or co-inactivation depression is induced, whereas potentiation is due to sole activation of MF or PC. When the
animal is placed on a turntable, MF is a cosine waveform since it encodes the head velocity. GCs, INS, and CFs are modulated
in-phase with the head movement, whereas the PC is modulated in anti-phase. Since MVN is also modulated in-phase, and
is mainly inhibitory, the eye movement is the inverse of the head movement, producing the VOR. In the case of the
inhibitory knock-out mice, PC-##2, PCs do not receive inhibition, and in the case of the GC mutant, GC-#KCC2, GC
excitability is increased. B, VOR learning task. The mice are placed on a turntable. If the visual field is fixed, the target gain
gt corresponds to 1. If the visual field turns with the table, gt ! 0, and if the visual field turns twice the distance as the turn
table, gt ! "1, which corresponds to a phase-reversal learning.

Clopath, Badura et al. • Vestibulo-Ocular Reflex Adaptation In Wild-Type and Mutant Mice J. Neurosci., May 21, 2014 • 34(21):7203–7215 • 7207

Lisberger, TINS 1988
De!Zeeuw!et!al,!Neuron!(2010),!
...;!Nat!Rev!Neur!(2012)!
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Classic theory of cerebellar learning (Marr-Albus-Ito):

Plasticity of the parallel fibre (PF)-Purkinje cell synapse

                                                                                 

 
under the control of the
 inferior olive
 (climbing fibers)

                                                                                  
Supervised learning
(teacher: climbing fiber)

granule!cell!

Raymond,!Lisberger,!Mauk,!Science!(1996)!
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Classic theory of cerebellar learning (Marr-Albus-Ito)

Climbing fibers : error signal -> depression of PF-PC synapse

Compensating potentiation : high frequency PF activity 
    with no error signal

In cerebellar slices:



 Marr-Albus-Ito theory : some questions/difficulties 

-  In the theory of M-A-I, errors always lead to synaptic depression. Is it the case that 
     errors always come from too strong synapses?

-  the VOR is a simple task, sign of the error clear (given by retinal slip). For subtasks
    of complex movements less so, how can one determine if a synapse should be 
    depressed or potentiated?

-  For complex movements, how does the brain determine the precise source of error, the
     precise muscle that was not enough or too much contracted?

« Credit assignment problem »    (Minsky, 1961)



The present proposal :

the cerebellum learns complex movements by performing 
stochastic gradient descent guided by a global estimate of 
the movement performance.



Proposal I : perturbation source

Climbing fiber- induced complex spikes serve both as perturbations
 of  movements and as a signal errors (as classically proposed)

Olivary cells are spontaneously active at 1Hz
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Proposal II : storage of current performance/
  comparison with perturbed task

Proposal: the level of current performance is measured by the level
 of  inhibition  of olive neurones provided by NoN neurones
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A toy model

N cells with firing rates           P1, …..PN
Successful task firing rates      T1,…..,TN

Mean error

Internal estimated value of the error : I

Learning task : bring the Pi’s to their target values Ti’s

E(t) =
1

N

X

i

|Pi(t)� Ti|



A toy model
Learning algorithm (I): 

-choose randomly one of the rate ic and perturb it by A>0: Pic=Pic+A
-Error with perturbation

-compare Ep estimated value of the error I

  If  Ep < I good to increase the rate, modify Pic  -> Pic+ ΔP ,
update error estimation I   ->   I – ΔI

  If  Ep > I perturbation is bad, decrease Pic  -> Pic- ΔP ,
I   ->   I + ΔI

  

Ep =
1

N

X

i

|Pi(t) + �i,ic A� Ti|
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With these moves only, conservation of:
! cannot converge!



Learning algorithm (II)

Remedy :

-  make the previous moves with perturbation (« type A » )
     with probability ρ

-  Make moves with no perturbation and just error estimation 
     adjustment (« Type B » ) with probability 1-ρ

« Type B » moves:

 If  E < I     then  I   ->  I – ΔI
 If  E > I    I   ->   I + ΔI
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Toy model : convergence 
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Learning vs. time: estimated error (red) and true (black) error
nmax=10; pert xp=.1; modifs dr=.2, de=.5dr/nmax= .01; proba modif dr =.2

Three successive phases in the learning dynamics

Role of the different parameters? convergence speed?



The one cell case

One pattern, cell fires with rate P, desired firing rate T. 
Current inhibition on olive I

Two types of trials :
-Perturbation with probability ρ,  P->P+A,  E = IP+A –TI!
!!If E > I, error CS,       P-> P – ΔP, I -> I + ΔI
      E < I, no error CS,  P-> P +ΔP,  I -> I –ΔI  
 !
-No perturbation with probability 1-ρ,   E = IP–TI!
!!If E > I, error CS,       I -> I + ΔI   (P unchanged)
      E < I, no error CS,  I -> I + ΔI   (P unchanged)!

!

Internal estimated value of the error : I

Learning task : bring the Pi’s to their target values Ti’s
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- convergence speed?
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Reduced model : one cell phase-plane
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One cell (P, I) phase-plane dynamics     

N dynamics    A dynamics
| P +A-T |= I| P -T |= I

- Two convergence « corridors »
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- Purkinje cell as an analog perceptron
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E = |P � Tµ| Error for pattern µ
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 Perceptron plasticity rules  !
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 Synaptic weight changes :  !

η=0,1!with prob. ρ  perturbation A
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RelaUon!to!toy!model!



 Perceptron : learning p patterns with estimated error   !

N=1000, coding fraction f=0.2

Usual 
delta rule

p



N cells, estimated global error



Many cells
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Reduced model : multiple cells
(black: individual Di, red:mean error, yellow: analytics;N=100, A=2, ∆P=0.2, ∆I=0.004, αI=2, ρ=0.75)
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Reduced model : multiple cells
(black: individual Di, red:mean error, yellow: analytics;N=100, A=2, ∆P=0.2, ∆I=0.004, αI=2, ρ=0.75)
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Reduced model : multiple cells
(black: individual Di, red:mean error, yellow: analytics;N=100, A=2, ∆P=0.2, ∆I=0.004, αI=2, ρ=0.75)

I=E+A/N!

I=EDA/N!

Generalized analysis possible, cells
successively reach their limiting rates
convergence curve depend on initial condition



What’s next ?

Theory :

- convergence dynamics with ‘interfering’ patterns
- different forms of global error

Experiment : in vivo data

- evidence from perturbation during movement
- extraction of plasticity rules from data

Both : - Other structures where a similar type of 
             learning may apply? (e.g. basal ganglia; dopamine   

 release  signals reward but also promotes movement  
 initiation, plasticity rules involving this two successive

             releases?).
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