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Outline

• Experimental distributions of synaptic weights.

• Different types of theories

i) based on a plasticity rule

ii) based on a learning task



Synaptic weight

• Available measurements obtained from somatic recordings :
Synaptic weight defined as peak somatic depolarisation.

A. Mason et al, J Neurosci 11, 72-84 (1991)



Connections between cortical pyramidal cells
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cortex L5 PC−PC

• L2/3: Mason et al, J Neurosci (1991), Holmgren et al, J Physiol
(2003), Feldmeyer et al, J Physiol (2006).

• L5: Sjoström et al, Neuron (2001), Plos. Biol. (2006); Frick et

al, Cereb Cortex (2008).

• connection probability ∼ 10% ; comparison with anatomy:
potential synapses.



Connections between hippocampal pyramidal
cells

0 0.2 0.4 0.6
Weight (mV)

0

5

10

P
ro

ba
bi

lit
y 

de
ns

ity
 (m

V
 −

1 )

hippocampus CA3−CA1

• connection probability ∼ 6%
• CA3-CA1: Sayer et al, J Neurosci (1990).
• “Silent” synapses with NMDA receptors but no AMPA
receptors; immunochemistry: 20% Schaffer collaterals-CA1
pyramidal cell synapses no detectable AMPAR (Nusser et al,
1998).



Cerebellar Parallel fiber-Purkinje cell synapses
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cerebellum GC−PC

• PF-PC: Isope and Barbour, J Neurosci (2002).
• connection probability ∼ 7%
• Comparison with anatomical data (Harvey and Napper,
1991) suggests ∼ 80% of anatomical synapses have
undetectable weights i.e are silent.



Summary of experimental data

• Similar distribution shapes (but different scales) in different
areas : monotonic decay from a peak close to zero weight.

• Large fraction of “potential” synapses (cortex) or “silent”
synapses (cerebellum).

• Explanations?



Distributions from STDP plasticity rules

(Song et al 2000, van Rossum et al 2000, Rubin et al 2001,...)

• prescribed pre and post synaptic activities (e.g. poisson
spike trains with imposed correlations)
• simple additive rule generally lead to bimodal shapes.
• multiplicative rule can lead to unimodal distribution
(depression increases with synaptic strength)
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van Rossum et al, J Neurosci 20 (2000)



Distributions from optimal learning

• weights are modified to perform a task.
• deduce the weight distribution from the task itself.
• bypass the details of the learning rule if the task is
optimally performed.
• example for the cerebellar PF-PC synaptic weight
distribution.



The logic of the cerebellar circuitry

An influential theoretical proposal ( Marr (1969), Albus (1971)):
•Learning: change of the parallel fibers/Purkinje cells synapse
•Teacher: error signal coming from the climbing fibers (one for
each Purkinje cell)

Experiments: Ito,...



The Purkinje cell

B. Barbour



The simplest model: the Purkinje cell as a perceptron

weights
synaptic

1

A

threshold
(θ ± κ)

w1

2w

w3

w4

Purkinje
cell

fibres
parallel

4

3

2

1

0

B

0

1

0

1 0

1

0

1

A B

input patterns

output
Physicist (spike) or Biologist (no spike)?

Input: a set (N ∼ 150000) active (Gi = 1) or inactive (Gi = 0)
granule cells
Rule: spike emission (P = 1) or silence (P = 0) depending on
whether the depolarization created by the inputs is larger or
smaller than a threshold θ with a security margin κ .

P = 1 if ∑
i

wiGi > θ + κ , P = 0 if ∑
i

wiGi < θ −κ

Learning : adjust the synaptic weights (if possible) to associate



• Classic learning problem: can one choose (and how) the
synaptic weights {wi} so as to satisfy desired associations between
input patterns ({G

µ
i },µ = 1, · · · ,p) and outputs Pµ

(Rosenblatt, Minsky et Papert, Cover,...)

Statistical physics techniques are powerful for this kind of problem
(“spin glasses”: Sherrington-Kirkpatrick,...,Parisi,...)

• Main idea (E. Gardner) : compute the typical volume of
solutions in the space of synaptic weights

many contributions ∼ 85−95.

• Particularities here: positive synapses, fraction of active input
f , fraction of active outputs f ′, threshold θ (analogous to
Gutfreund-Stein (1990) + correction for threshold).

• Essential composite parameter : ρ = κ
θ

√

fN
1−f



Distribution of synaptic weights

P(w) =
1

V

∫

δ (w −w1)∏
j

dρ(wj)∏
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Θ

[

(2Pµ −1)
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j

wjG
µ
j −θ

)

−κ

]

Analytical solution using replicas (1/V = limn−>0 V n−1)
When learning is maximal (critical capacity) a finite fraction of
synapses have zero weights!
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Comparison with experimental data

data + 80% of undetected synapses ⇒ ρ = 2.1,w = 0.015mV .
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Two relations between f ,θ et κ
(e.g. θ = 10mV , f = .0045,κ = .81mV ).



What has this theoretical analysis told us?

• Silent synapses : synapses of given sign (excitatory
synapses) + hypothesized maximal learning or maximal
robustness.

• Why are they kept? learning of a new set of associations.

• Estimate of a difficult quantity to assess otherwise : each
Purkinje cell can store up to 40000 associations.

N. Brunel, V. Hakim, P. Isope, J.-P. Nadal et B. Barbour,
Neuron 43, 745-757 (2004).



What about cortical synaptic weight
distributions?

• prescribing attractor states (a cell is either active or
inactive) in a recurrent network is equivalent to
independently solving a perceptron problem for each cell.

• When a maximal number of attractors is stored (or when
maximal robustness is desired for a given number of
attractors), the synaptic weight distribution is identical to
the optimal perceptron distribution.

• Is attractor dynamics a main feature of cortex dynamics? it
is at least a main model for many experimental observations
(persistent activity, tuning curves,....).

• Another optimality criterion? Mitya Chklovskii’s talk.

B. Barbour, N. Brunel, V. Hakim and J.P. Nadal,
TINS 30, 622-629 (2007).



Some conclusions and open issues

• Direct experimental tests of theories: immature vs mature
animals, animals raised in different environments, genetic
manipulation of some parameters (activity, noise,...)?

• Analog or discrete synapses?

• Learning rules : error signal and supervision, optimal
learning with graceful forgetting,...?

• Synaptic weight distributions are interesting quantities that
deserve more analysis.

• New experimental techniques will hopefully make easier the
measure of synaptic weight distributions (Ed Gallaway’s talk).



The End.

Thank you!
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