What can we learn from synaptic weight distributions?

V Hakim

Laboratoire de Physique Statistique, CNRS & ENS, Paris .

N. Brunel (U. ParisV), JP Nadal (LPS) B Barbour (Neurobiology, ENS)

Outline

- Experimental distributions of synaptic weights.
- Different types of theories
- i) based on a plasticity rule
- ii) based on a learning task

Synaptic weight

 Available measurements obtained from somatic recordings : Synaptic weight defined as peak somatic depolarisation.

A. Mason et al, J Neurosci 11, 72-84 (1991)

Connections between cortical pyramidal cells

- L2/3: Mason et al, J Neurosci (1991), Holmgren et al, J Physiol (2003), Feldmeyer et al, J Physiol (2006).
- L5: Sjoström et al, Neuron (2001), Plos. Biol. (2006); Frick et al, Cereb Cortex (2008).
- \bullet connection probability $\sim 10 \%$; comparison with anatomy: potential synapses.

Connections between hippocampal pyramidal cells

- connection probability $\sim 6\%$
- CA3-CA1: Sayer et al, J Neurosci (1990).
- "Silent" synapses with NMDA receptors but no AMPA receptors; immunochemistry: 20% Schaffer collaterals-CA1 pyramidal cell synapses no detectable AMPAR (Nusser et al, 1998).

4日 → 4周 → 4 目 → 4 目 → 9 Q P

Cerebellar Parallel fiber-Purkinje cell synapses

- PF-PC: Isope and Barbour, J Neurosci (2002).
- connection probability ~ 7%
- Comparison with anatomical data (Harvey and Napper, 1991) suggests $\sim 80\%$ of anatomical synapses have undetectable weights i.e are silent.

Summary of experimental data

- Similar distribution shapes (but different scales) in different areas : monotonic decay from a peak close to zero weight.
- Large fraction of "potential" synapses (cortex) or "silent" synapses (cerebellum).
- Explanations?

Distributions from STDP plasticity rules

(Song et al 2000, van Rossum et al 2000, Rubin et al 2001,...)

- prescribed pre and post synaptic activities (e.g. poisson spike trains with imposed correlations)
- simple additive rule generally lead to bimodal shapes.
- multiplicative rule can lead to unimodal distribution (depression increases with synaptic strength)

van Rossum et al, J Neurosci 20 (2000)

Distributions from optimal learning

- weights are modified to perform a task.
- deduce the weight distribution from the task itself.
- bypass the details of the learning rule if the task is optimally performed.
- example for the cerebellar PF-PC synaptic weight distribution.

The logic of the cerebellar circuitry

An influential theoretical proposal (Marr (1969), Albus (1971)):

- •Learning: change of the parallel fibers/Purkinje cells synapse
- Teacher: error signal coming from the climbing fibers (one for each Purkinje cell)

Experiments: Ito,...

The Purkinje cell

B. Barbour

The simplest model: the Purkinje cell as a perceptron

Input: a set ($N \sim 150000$) active ($G_i = 1$) or inactive ($G_i = 0$) granule cells

Rule: spike emission (P=1) or silence (P=0) depending on whether the depolarization created by the inputs is larger or smaller than a threshold θ with a security margin κ .

$$P = 1 \text{ if } \sum_{i} w_{i} G_{i} > \theta + \kappa, \ P = 0 \text{ if } \sum_{i} w_{i} G_{i} < \theta - \kappa$$

• Classic learning problem: can one choose (and how) the synaptic weights $\{w_i\}$ so as to satisfy desired associations between input patterns $(\{G_i^\mu\}, \mu=1,\cdots,p)$ and outputs P^μ (Rosenblatt, Minsky et Papert, Cover,...)

Statistical physics techniques are powerful for this kind of problem ("spin glasses": Sherrington-Kirkpatrick,..., Parisi,...)

- Main idea (E. Gardner): compute the typical volume of solutions in the space of synaptic weights
- Particularities here: positive synapses, fraction of active input f, fraction of active outputs f', threshold θ (analogous to Gutfreund-Stein (1990) + correction for threshold).
- ullet Essential composite **parameter** : $ho = rac{\kappa}{ heta} \sqrt{rac{fN}{1-f}}$

many contributions $\sim 85-95$.

Distribution of synaptic weights

$$P(w) = \frac{1}{V} \int \delta(w - w_1) \prod_j d\rho(w_j) \prod_{\mu} \Theta\left[(2P^{\mu} - 1) \left(\sum_j w_j G_j^{\mu} - \theta \right) - \kappa \right]$$

Analytical solution using replicas $(1/V = \lim_{n\to 0} V^{n-1})$ When learning is maximal (critical capacity) a finite fraction of synapses have zero weights!

Comparison with experimental data

data + 80% of undetected synapses $\Rightarrow \rho = 2.1, \overline{w} = 0.015 \text{mV}$.

Two relations between f, θ et κ (e.g. $\theta = 10 \, mV, f = .0045, \kappa = .81 \, mV$).

What has this theoretical analysis told us?

- Silent synapses: synapses of given sign (excitatory synapses) + hypothesized maximal learning or maximal robustness.
- Why are they kept? learning of a new set of associations.
- Estimate of a difficult quantity to assess otherwise : each Purkinje cell can store up to 40000 associations.

N. Brunel, V. Hakim, P. Isope, J.-P. Nadal et B. Barbour, Neuron **43**, 745-757 (2004).

What about cortical synaptic weight distributions?

- prescribing attractor states (a cell is either active or inactive) in a recurrent network is equivalent to independently solving a perceptron problem for each cell.
- When a maximal number of attractors is stored (or when maximal robustness is desired for a given number of attractors), the synaptic weight distribution is identical to the optimal perceptron distribution.
- Is attractor dynamics a main feature of cortex dynamics? it is at least a main model for many experimental observations (persistent activity, tuning curves,....).
- Another optimality criterion? Mitya Chklovskii's talk.

B. Barbour, N. Brunel, V. Hakim and J.P. Nadal, TINS **30**, 622-629 (2007).

Some conclusions and open issues

- Direct experimental tests of theories: immature vs mature animals, animals raised in different environments, genetic manipulation of some parameters (activity, noise,...)?
- Analog or discrete synapses?
- Learning rules : error signal and supervision, optimal learning with graceful forgetting,...?
- Synaptic weight distributions are interesting quantities that deserve more analysis.
- New experimental techniques will hopefully make easier the measure of synaptic weight distributions (Ed Gallaway's talk).

The End.

Thank you!