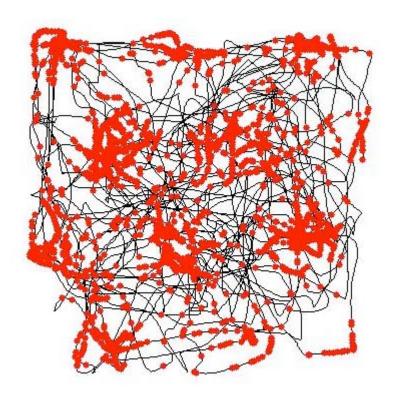
Dynamics in the grid cell network and the code for position in the rat brain.

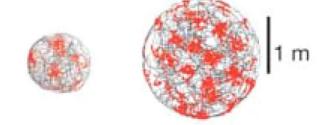
Ila Fiete, Caltech

Grid cell

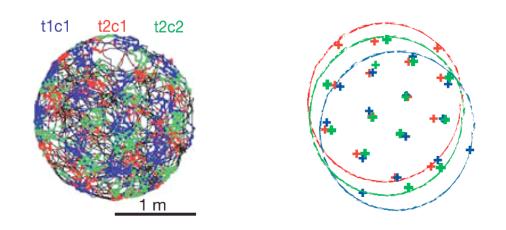


Layer II/III cell, Hafting et al., 2005

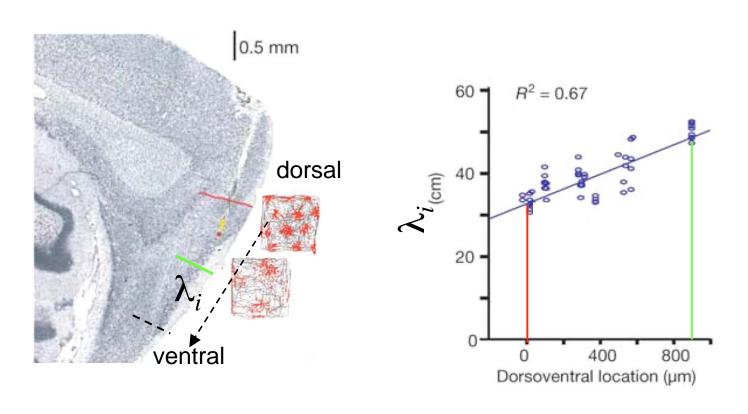
Response (period, orientation) independent of enclosure size, shap



Neighbors share period, orientation



Range of periods: but narrow range



 λ_i : 30 cm - 70 cm

 λ_{max} <~ 2 m << rat range!?

- Why such a vizzare decomposition of 2-coordinate position?

Position determines firing, but does firing determine position? I.e., what is conveyed by the code?

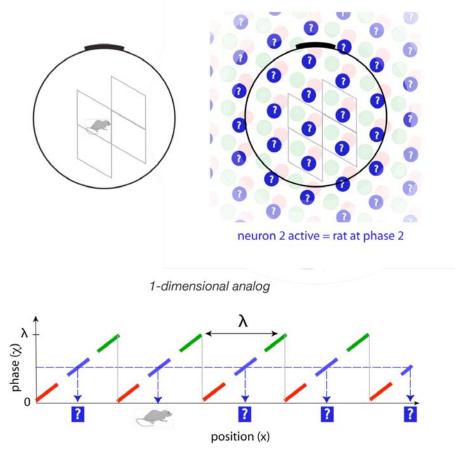
In collaboration with Y. Burak and T. Brookings

- How?

How can network dynamics produce grid cells?

In collaboration with Y. Burak

Population readout in one lattice



modulo remainder: $^{\prime}x = (x \mod \lambda)$

many-to-one mapping: position → phase

Population-of-populations code

$$(\lambda_1, ..., \lambda_N)$$
 set of grid periods

$$\hat{x}_i = (x \mod \lambda_i)$$
 set of position phases

Capacity

Idealized case

idealization: x, λ_i whole numbers (dimensionless)

CRT: unique, invertible representation of x in $[0, x_{max}-1]$

$$x_{max} = \mathsf{LCM}(\lambda_i) = \prod_i \lambda_i \sim \lambda^N$$

modulii: (13, 15, 16, 17, 19)
$$x_{max} = 1007760$$

20 = (7, 5, 4, 3, 1)
1000000 = (1, 10, 0, 9, 11)

Actual (non-idealized) dMEC

- x, periods (modulii λ) non-integer, dimensional
- phases not modulo residues $\phi_i = 2\pi (x \mod \lambda_i)/\lambda_i$
- phase uncertainty: $\Delta \phi$ (across all lattices)

No mathematical results for range/capacity/invertibility.

What's capacity?

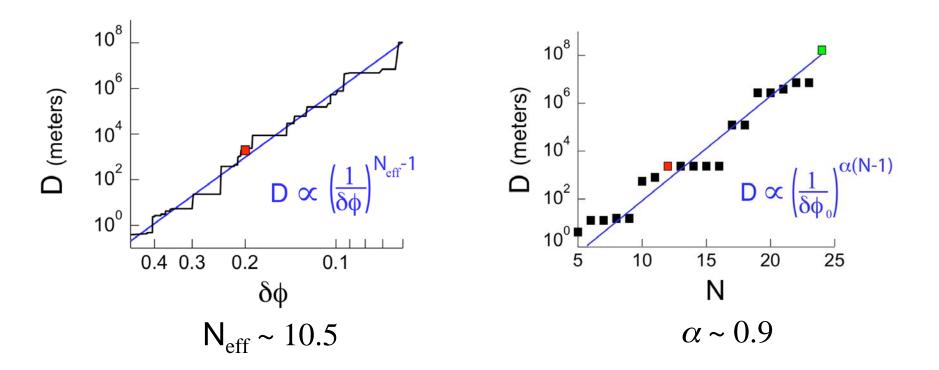
Crude capacity estimate ~ $\lambda\Delta\phi$ $(1/\Delta\phi)^N$

travel distance # states to state transition

Actually, how far you can travel before landing within $\Delta \phi$ of a previously encountered set of phases.

Realistic case capacity

x real-valued, dimensional; phase inexact



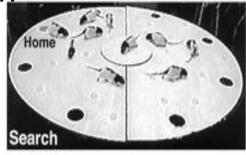
Scales like idealized case: capacity *combinatorial* in N (even though wasteful within each lattice)

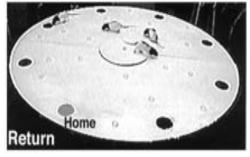
Why capacity is important: behavior

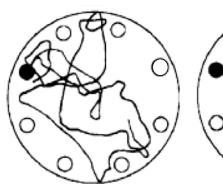
(1) Unique name-labels for large range~ 100 m x 100 m sature 2005

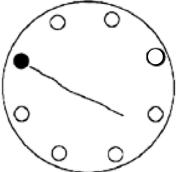
(2) high-resolution position resolution for local path

integration









Maaswinkel et al., Hippocampus 1999

Comparison: EC, hippocampus

N	$\delta\varphi_o$	D (m)	# grid cells	# place cells		
12	0.2	2 x 10 ³	5 x 10 ⁴	~10 ¹⁰		
24	0.2	2 x 10 ⁸	1 x 10 ⁵	~10 ²⁰		
			<u> </u>			
5000 neurons/grid				10 neurons / (6 cm) ²		
=	=5000	neurons	$/(30 \text{ cm})^2$			

- -10 6 HPC cells cover <(20 m) 2 .
- -Uniform coverage of large spaces impossible.
- -Hippocampus not path integrator or locus of general purpose position representation.

Beyond capacity...

Narrow register range

	registers	capacity	
decimal	$(10^5, 10^4, 10^3, 10^2, 10^1, 10^0)$	1,000,000	
modulo	(1003, 103, 13)	1,343,017	
modulo	(18, 17, 16, 15, 14, 13)	1,113,840	

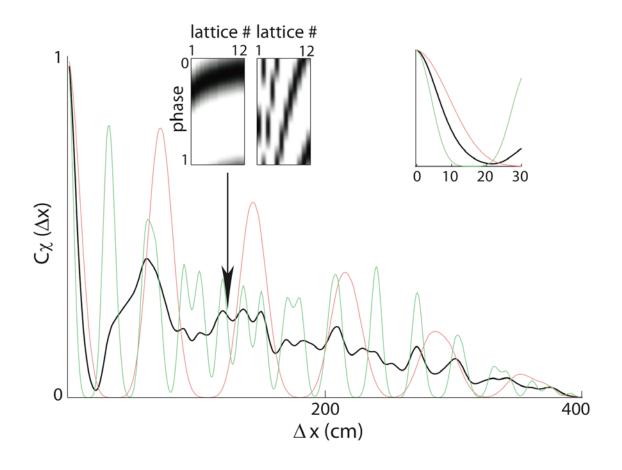
decimal		modulo (18, 17, 16, 15, 14, 13)			
45	=	(9, 11, 13, 0, 3, 6)			
800,000	=	(8, 14, 0, 5, 12, 6)			
800,001	=	(9, 15, 1, 6, 13, 7)			

Do not require network parameters to span several orders of magnitude. Lesions of any lattice equal.

Carry-free arithmetic

No carry-over of information across lattices for position updating when rat moves

Metrics unrelated to real-space metrics

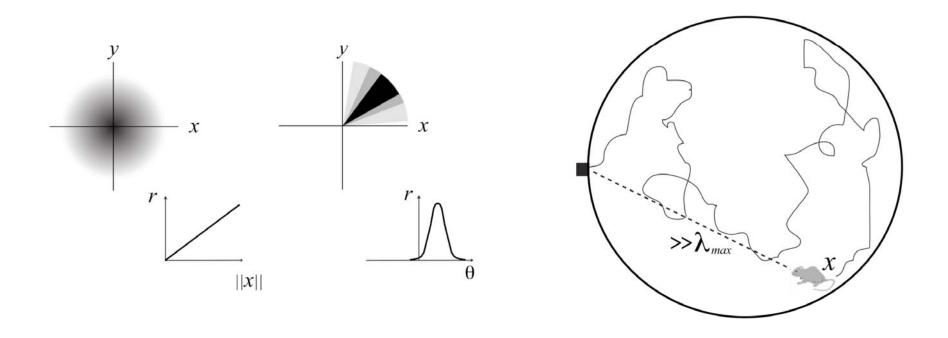


Not easy to make distance comparisons beyond

Downstream uses of dMEC responses?

- Explicitly metric readout: for spatial tasks like distance/direction vector computation in landmark-free homing.
- Non-metric landmark labeling: dMEC phases as name labels.

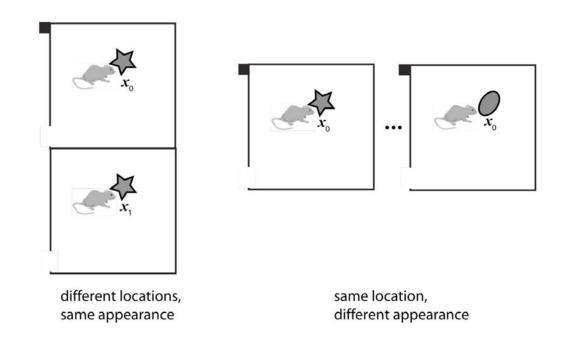
Explicit metric use of dMEC code



General phase→ position/distance/vector reconstruction over large spaces for homing after random trajectories

Name-label use of dMEC

large library of unique labels for different locations



Have arithmetic properties gone to waste?

No! Metric phase updating in dMEC allows recall of same label for landmark regardless of path

Novel abstract encoding scheme

Representation	Capacity	Algorith rep(x)	nmic ru ×+y	les for: x>y?	Carry-free	Narrow range
unary	~N	✓	✓	✓	_	_
roman numeral	~e ^N	✓	×	✓	_	_
combinatorial name	~e ^N	✓	×	×	_	_
fixed-base	~e ^N	✓	\checkmark	✓	×	😾
modulo	~e ^N	✓	✓	×	✓	✓

Continuous metric variable represented by arithmetic-friendly positional numeral system in population-of-populations code

What controls balance of N, Δ ϕ ?

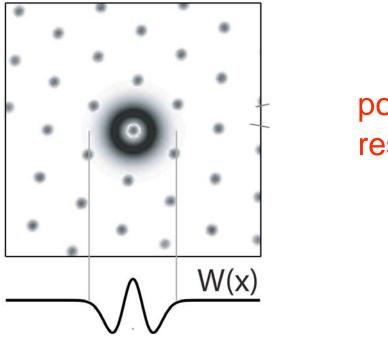
total neurons
$$\sim N^*(1/\Delta\phi)$$

capacity $\sim (1/\Delta\phi)^{N-1}$

Tradeoff between high capacity and accurate dynamics

How?

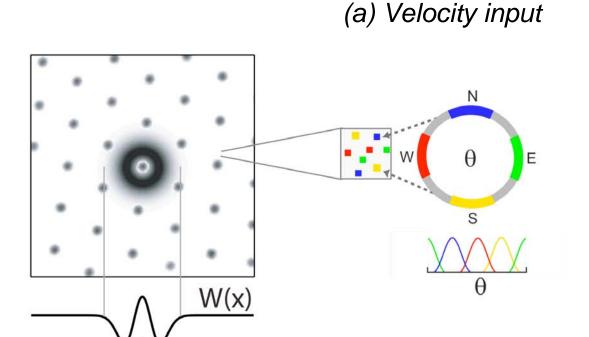
(1) Static pattern formation



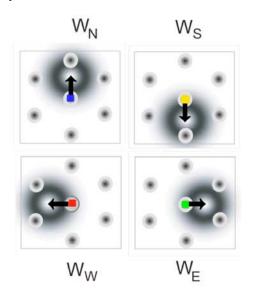
population response

Center-surround connectivity

(2) Pattern flow through velocity coupling

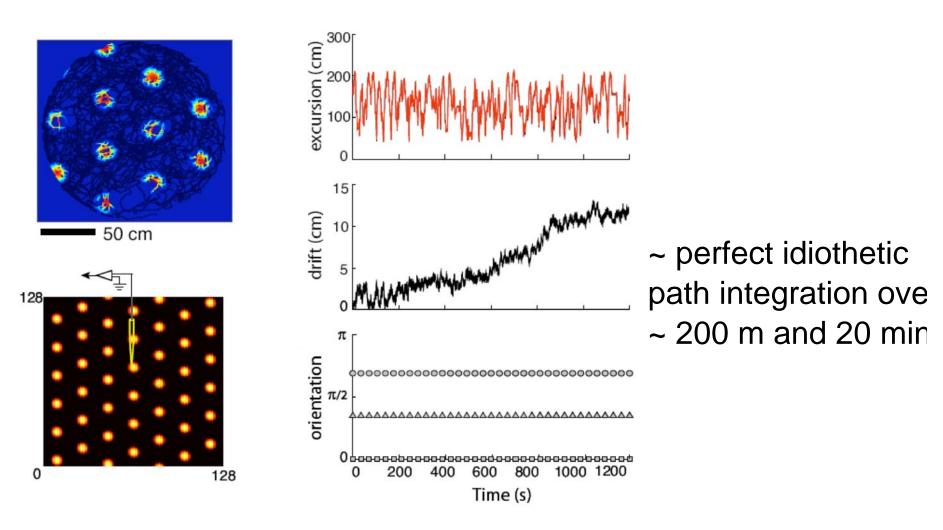


(b) Shifted connections



Zhang 1996; Redish et al, 1996; Goodridge & Touretzky, 2000; Xie et al. 2002; Fuhs & Touretzky 2006.

Periodic boundaries



Works great, but unrealistic?

Boundary conditions not academic

- aperiodic
- periodic, multi-unit cell
- periodic, single unit cell

Experimental probes:

- distribution of maximum firing rates
- existence of defects
- tiling of defect if defect exists

Deduction of function from connectivity?

- 0th order connections center-surround but possibly non-topographic.
- Very subtle connectivity shifts, depending on angular preference of neuron (1-neuron shift).
- Must functionally map phases of all neurons; then look for connectivity shifts as a function of phase.

Self-organization/learning

- Aperiodic+static pattern formation easy if topographic.
- Velocity shift mechanism?
- Isotropy?
- Non-topographic connectivity?
- Periodic boundary: many unit cells or one?

Collaborators

- Coding:
 - Yoram Burak (Harvard)
 - Ted Brookings (Brandeis)
- Dynamics
 - Yoram Burak (Harvard)
 - Peter Welinder (Caltech)