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Eyes:
Structures, Molecules & Origins

1) Constraints on eyes, diversity of eyes, history of thinking about eye evolution;

2) Diversity vs. specialization of eyes: Clues for evolution?

3) Evidence about eye origins: What can we use?
a) Eye development?
b) Lenses?
c) Phototransduction: opsins and their transduction cascades?
d) How fast could an eye evolve?
4) Speculation

Of 30 animal phyla, 1/3 have eyes, 1/3 have some light detection, 1/3 have no
specialization for detecting light (the first group are most successful!)



Light is the premier selective force on the planet

Light carries energy and information
~10"™ sunrises/sunsets since the big bang;



We see only a small fraction of the EM spectrum
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Why?



Consider the spectrum of sunlight
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Why don’t we “see” over a wider range?
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Because life (and eyes) began in the sea
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Properties of light severely constrain eye structures
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1) Light travels in straight lines,
reflects, refracts, is spectral, and can
be polarized

2) In the best cases, eyes can extract
information about where & what an

object is.
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Habronattus americanus



Eyes have remarkable adaptations




Seeing in air and water




Seeing in the ultraviolet range

normal
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Short history of thoughts on Eye Evolution

~ “This is a tough problem” Darwin 1860

1977- There were multiple (40-65) eye origins (morphology, Salvini-Plawin/Mayr)

1979- There was probably a single origin (opsin family; Autrum)

1992- Probably multiple origins (opsin evolved before eyes; Land & Fernald)

1996- Single origin, master gene hypothesis (Pax 6 can induce eyes; Gehring)

2004-2006 Multiple origins (“eyes” preceded bilateria; Fernald; Nilsson)



Eye optical systems are not that diverse, actually
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Eight eye types have evolved in 500myr
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Eye tissues have distinct issue origins and developmental stages

Vertebrate cephalopod

(a) \ (b) Cuticular
Optic
nerve

Retina Retina Crystalline
cone body
. Neural tissue Epidermal cells / <aill= Ciliary photoreceptor cell — -all= Microvillar photoreceptor cefll
‘Ve rtebrate, ‘Invel"tebrate, rrent Opinion in Neurobiology
7/

Arthropod compound eye Polychaete tube worm

Strongly suggests independent origin
Nilsson, CON




Are developmental molecules (genes) for eyes conserved?

1) Pax6is (a paired domain and homeodomain) a factor that has been found in the
regulatory cascades of developing eyes in many animals, including Drosophila where
it is called eyeless (ey);

2) Pax6 homologues are proposed to share conserved functions across all phyla;

3) Does having common genes recruited for functional purpose allow one to conclude
that eyes are monophyletic?



Many genes are essential for eye development

Notch Eqfr

Several genes are capable of causing ectopic eye formation:
toy, ey, eya, so, optix, Dac, Eyg (within a limited set of

Teh antennal disks).
Hh

Dpp

MAPK RTK

Essential for eye formation:

Hth + Exd Toy, ey, eya, so, optix, Dac, Eyg
(if any one absent, no eyes)
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Eye specification _
Figure 1 | Genetic control of eye specification in ey Is pax 6 homol ogue

Drosophila. A set of nuclear proteins, patterning pathways
and signal-transduction cascades form a complicated
regulatory network and are together required to specify the
compound eye in Drosophila. The arrows in this diagram
indicate the direction of the genetic, molecular and
biochemical relationships. Dac, Dachshund; Dpp,
Decapentaplegic; Egfr, Epidermal growth factor receptor;
Exd, Extradenticle; Ey, Eyeless; Eya, Eyes absent; Eyg, Eye
gone; Hh, Hedgehog; Hth, Homothorax; MAPK, Mitogen-
activated protein kinase; RTK, receptor tyrosine kinase; So,
Sine oculis; Toy, Twin of eyeless; Tsh, Teashirt. Kuma F, 2002



Many genes are essential for eye development
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Eve lens proteins are diverse: enzymes, stress proteins etc.
Crystallin Distribution (Related] or Identical |
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Ubiquitous stress crystallins |

a All vertebrates Small heat shock proteins (aB)
[Schistosoma mansoni antigen)

B All vertebrates (embryonic y not [Myxococcus xanthus Protein S)

Y } in birds) [Physarum polycephalum spherulin 33)

Taxon-specific enzyme crystalling ~ Gene sharing”

3 Most birds, reptiles Arginingsuccinate lyase. (62)

£ Crocodiles. some birds Lactate dehydrogenase B

4 Guinea-pig. degu rock cavy, NADPH:quinone oxidoreductase

camel, llama

! n Elephant shrews Aldehyde dehydrogenase |
l A Rabbits, hares [Hydroxyacyl CoA dehydrogenase]
| p Kangaroos, quoll [Ornithine cyclodeaminase]
P Frogs Rana [NAPDH-dependent reductases)
1 Lamprey. turtie; moderately a-Enolase

From Wistow TIBS 1993



Eve lens proteins are diverse: enzymes, stress proteins etc.
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Figure2 Animal lens crystallin diversity. For ubiquitous vertebrate crystallins (@, 8. y ). bars across top indicate distribution (embryonic
y crystallin expression is absent in birds). Taxon-specific crystallins are shown only for the taxa in which they have been found and their
complete distributions are not necessarily indicated. Two novel crystallins. J2 andJ3. havealso been found in jellyfish ( Tomarev & Piatigorsky
1996). Figure adapted from Wistow 1993. with further information from Tomarev & Piatigorsky 1996 and Janssens & Gehring 1999,

True & Carroll, Annu.Rev.Cell. Dev. Bio.18:53 (2002)
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There are two main pathways for transducing light in animals
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Both pathways are in invertebrates

Marine ragworm
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Both pathways are ALSO in vertebrates

Melanopsin, a
photopigment typical of
invertebrates is found in
the inner retina of
mammals.

0_
£ Light-activated melanopsin preferentially
2 o activates the Gg/G11 class of G proteins,
2 followed by activation of PLC-b, similar to
® 4 — ipracs that used by invertebrates
g —— Rods
— ——— Green cones
—— UV cones
6 ; : : :
400 500 600 700

Panda et al., 2005
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Including human retinas

Human retina- melanopsin containing ganglion cells (~0.2%)

1)  Project to the brain (LGN, SCN);
2)  Respond to illumination and color;

Dacey et al., Nature 433:749 (2004)



You have some fruitfly eye bits in your eye!
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Unexpectedly, ‘eye’ types collaborate to produce “vision”

The competition we associate with evolutionary selective pressure is often
thought to produce a single outcome.

In both invertebrates and vertebrates, both canonical eye types collaborate to
harvest and deliver information from photons to the brain.



What to think about repeated use of similar genes in eye evolution?

1) The primitive ancestral source of photodetection may have been produced by Pax6
interacting with opsin to activate its expression;
2) With increasing eye complexity, Pax6 began to be confined to photoreceptors;
3) The details of the regulation of conserved genes and networks support the idea they
have been recruited independently (cephalopods!);
4) Interlinked genetic pathways (hh, EGFR, etc.) regulate complex developmental events;
5) BUT similar strategies do NOT imply common ancestries but reflect:
a) Reuse of efficient mechanisms evolved for similar tasks (biology!);
b) The consequences of a small genome.

6) Gene interactions are like an improvisational acting troupe: get together, act out a
scene, if it works, keep it
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Modeling suggests eyes can evolve rapidly

Start with a flat photosensitive
pigment spot and you can get a
Vertebrate eye in 2000 sequential
changes of 1% in length, width or
protein density.

If each change took ~ 1year, this
would mean an “eye” in < 0.5 myr

Nilsson & Pelger, 1994
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Both eye types had to exist prior to the rise of bilateria
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Opsin nigment
S/ N

Evolution of receptor cell specializations
for increased sensitivity

Pax6, eya
- / AN

Ciliary photoreceptors Rhabdomeric photoreceptors

~

Single chambered  Compound eyes Single chambered ~ Compound eyes
eyes eyes
Vertebrates Arc clams Cephalopods Trilobites
Box jellyfish Polychaete Snails Insects

tubeworms spiders crustaceans



And the story isn’t over

Gq-coupled invertebrate opsins (r-opsins)
Gg4-coupled melanopsin

encephalopsin/
tmt opsins

Gi-coupled vertebrate opsins (c-opsins)
& non-visual opsins

Go-coupled opsin subfamily

neuropsin subfamily

peropsin subfamily

Photoisomerase (RGR) subfamily

There are more opsin types found in humans and other vertebrates whose
functions are not known.

Fernald Science (2006)



Eyes have evolved many (hundreds?) of times

1) It seems clear that eyes as we know them evolved at least twice
since there are at least two types of “eye” in many extant organisms.

2) These two eye types were present before bilateral organisms and
thus must have both existed prior to that time.

3) There may be more types of photoreception when we learn how
the rest (5) of the opsin types and cryptochrome function.

4) The excitement about ‘conservation’ of genes used in eye
development may be a red herring, reflecting instead gene
improvisation in solution of developmental problems.



“Eyes arose many times
and the evidence is in our eyes”
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There is another opsin in the world

Animals all use “type 2” opsins, what about “type 1” opsins?

1) Present in all three domains of life;

2) Progenitors of these proteins may have existed in early
evolution before the divergence of archaea, eubacteria, and
eukaryotes.

In 1999, four known examples, now ~800 (Venter et al., 2004;
Sargasso sea)



Type 1 opsins are closely related to one another

Phylogenetic tree of 46 microbial
rhodopsins
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Type 1 opsins also use a form of retinal

Retinal photoisomerization in:

Archaea type 1 rhodopsins

l 6- s-trans

(Spudich et al., 2000)



But it shortens in response to light

Retinal photoisomerization in:

Archaea type 1 rhodopsins

- h
N -
\I/Q'jtfans /\( ~7°
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Visual pigments (type 2)

light
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[ ] TSN
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(Spudich et al., 2000)



Opsins are positioned in membranes differently

Electron density
projection maps (Spudich
et al., 2000)

Archaea rhodopsins

Visual rhodopsins

N.p. Sensory Rhodopsin I

Bovine Rhodopsin




Type 1 opsins have very different outputs

Light response: Proton pumps, photon transduction

Sen Rhodopsin | - Anabaena
Proteorhodopein  Halorhodopsin Transducer Complex Sensory Rhodopsin ~ Chlamydomonas  Chlamydomonas
(proteobacteria)  (haloarchaea) (haloarchaea) (cyanobacteria) CSRA CSR8

PHOTOSENSORY
SIGNAL MEMBRANE
retinal (physiological CURRENTS
function unknown)
\ Is-klna l
FLAGELLAR ® FLAGELLAR
MOTOR *— AXONEME

Solar to proton movement: Est. 104 Watts

Spudich and Jung, 2005



Similarities and differences

Proteorhodopsin Rhodopsin
Photoisomerization of retinal

Steric trigger-different sites on retinal

Schiff base proton transfer-
different acceptors

Helices C & F implicated in activation

Helix F most mobile

Protein-protein interaction->
signal transduction

Membrane Soluble factors (G
embedded proteins)



Alternate method of harvesting information

Gene sequence and three-dimensional structures suggest:

1) Evolution discovered retinal twice;

2) When solvated with 7-transmembrane protein it is useful for
turning the energy of photons into other forms;

3) These remarkably similar mechanisms could result from “likely

reinvention” that is due to the inherent properties of retinal as a
chromophore;

4) Are there “eye-like” structures still to be discovered?
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