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A brief history of polarons in cold atoms starts from 
imbalanced Fermi gases across a Feshbach resonance ---
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Fully polarized phase

Mixed normal phase?
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This question is answered by numbers of theory work and 
later confirmed by experiments ---
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Polaron Fermi Liquid

Superfluid
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The Fermi liquid parameter A, m* can be obtained from 
single impurity atom problem

|Ψ〉 =

(
φ0c

†
q0↓ +

∑

k>kF,q<kF

φkqc
†
q0+q−k↑c

†
k↑cq↑ + . . .

)
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Variational wave function approach: 

Chevy, PRA, 74, 063628 (2006)
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Combescot, Recati, Lobo and 
Chevy, PRL, 98, 180402 (2007)
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Experiments: 
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MIT exp: PRL, 102, 230402 (2009)

ENS exp: PRL, 103, 170402 (2009)

Fixed nodes MC:

Diagrammatic MC:

Lobo, Recati, Giorgini and Stringari, 
PRL, 97, 200403 (2006)
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Prokofev and Svistunov, PRB, 77, 
020408 (2008) and 77, 125101 (2008)

compared with MC results:
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This question is answered by numbers of theory work and 
later confirmed by experiments ---
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Fully polarized phase

Polaron Fermi Liquid

Superfluid
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Two topics in this talk:

1. Whether a fully magnetized itinerant ferromagnetism is 
energetically favorable in a strongly repulsively interacting 
Fermi gas?

2. Whether a boson-fermion mixture is stable across an inter-
species Feshbach resonance?



1. Whether a fully magnetized itinerant ferromagnetism is 
energetically favorable in a strongly repulsively interacting 
Fermi gas?



Fig. 35. – Feshbach resonances in 6Li between the two lowest hyperfine states |F, m〉 = |1/2, 1/2〉
and |1/2,−1/2〉. A wide Feshbach resonance occurs at 834.15 G. The resonance position is
shifted by an unusually large amount of ∼ 300 G from the crossing of the uncoupled molecular
state at 543 G (thick dashed line). A second, narrow Feshbach resonance occurs right at 543 G,
shifted by less than 200 mG. The solid line shows the energy of the bound molecular state, and
the dotted line the scattering length.

this fact that has allowed direct evaporation of the gas at a fixed magnetic field directly
into a molecular condensate, an experiment almost as straightforward in principle as
Bose-Einstein condensation of bosonic atoms in a magnetic trap. Lithium is the fermion
of choice at Duke, Rice, Innsbruck, ENS and MIT, and also in a growing number of new
experimental groups.

Fig. 35 shows the s-wave scattering length for collisions between the two lowest hy-
perfine states of 6Li, |F, m〉 = |1/2, 1/2〉 and |1/2,−1/2〉. The prominent feature is the
broad Feshbach resonance centered around B0 = 834.15 G. The resonance is approxi-
mately described by Eq. 207 with abg = −1 405 a0, ∆B = 300 G [135]. These values are
very untypical when compared with scattering lengths and Feshbach resonance widths in
other alkali atoms. Background scattering lengths are typically on the order of ±100 a0

or less, roughly the range of the van der Waals-potential. Widths of other observed Fes-
hbach resonances are two, rather three orders of magnitude smaller than ∆B. Clearly,
the broad Feshbach resonance in 6Li is a special case.

The unusually large background scattering length of 6Li that approaches −2 100 a0 at
high fields, signals a resonance phenomenon even away from the wide Feshbach resonance.
Indeed, if the triplet potential of 6Li were just about !2/ma2

bg ≈ h · 300 kHz deeper, it
would support a new bound state. This “missing” potential depth should be compared
to typical spacings between the highest lying bound states of the van der Waals potential,
several tens of GHz. The resulting very large background scattering length modifies the

133

MIT experiment: Science (2009)
comment: HZ, PRA, 80, 051605 (2009)

Repulsive interaction and “ upper branch ” 

upper branch --- atoms remain in the scattering state ( with the 
molecular state excluded ) with positive scattering length

repulsive interaction --- the interaction energy of atoms in the 
upper branch is positive and increases with the increase of 
the scattering length

r
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Whether the two-component Fermi gas will become ferromagnetic 
( phase separated ) when repulsion is strong enough?

Mean field + Perturbation theory: Yes

H =
∑

k

εknkσ + g
∑

r

n↑(r)n↓(r) (1)

2

by 2Dn. We studied an ensemble in which the
number of atoms in each spin state is conserved.
This is equivalent to a free electron gas at zero
external magnetic field where the total magne-
tization is zero. The interaction term represents
any short-range spin-independent potential. When
the gas is fully polarized, it avoids the repulsive
interaction but increases its kinetic energy by a
factor of 22/3. The phase transition occurs when
the minimum in energy is at nonzero magneti-
zation (Fig. 1A) at kFa = p/2. This onset was
previously discussed in the context of phase sep-
aration in a two-component Fermi gas (15–18).
Figure 1B shows several consequences of the
phase transition for a system at constant pres-
sure. First, for increasing repulsive interactions,
the gas expands, lowering its density and Fermi
energy; kinetic energy is therefore reduced.
When the gas enters the ferromagnetic phase,
kinetic energy increases rapidly because of the
larger local density per spin state. Furthermore,
the volume has a maximum value at the phase
transition. This can be understood by noting that
pressure in our model is (2/3)Ekin/V + Eint/V,
where Ekin is kinetic energy andEint is interaction
energy. At the phase transition, the system in-
creases its kinetic energy and reduces its inter-
action energy, thus reducing the pressure. This
maximum in pressure at constant volume turns
into a maximum in volume for a system held at
constant pressure or in a trapping potential. We
have observed three predictions of this model: (i)
the onset of local magnetization through the
suppression of inelastic collisions, (ii) the mini-
mum in kinetic energy, and (iii) the maximum in
the size of the cloud. These qualitative features
are generic for the ferromagnetic phase transition
and should also be present in more-advanced
models (19).

We start with an atom cloud consisting of an
equal mixture of 6Li atoms in the lowest two
hyperfine states, held at 590 G in an optical
dipole trap with additional magnetic confine-
ment (23). The number of atoms per spin state is
approximately 6.5 × 105, which corresponds to
a Fermi temperature TF of ~1.4 mK. The ef-
fective temperature T could be varied between
T/TF = 0.1 and T/TF = 0.6 and was determined
immediately after the field ramp by fitting the
spatial distribution of the cloud with a finite
temperature Thomas-Fermi profile. We define
k∘F as the Fermi wave vector of the noninteract-
ing gas calculated at the trap center. Applying
the procedure discussed in (24) to repulsive in-
teractions, we estimate that the real temperature
is approximately 20% larger than the effective
one. The effective temperature did not depend
on k∘F a for koFa < 6. At higher temperatures,
additional shot-to-shot noise was caused by
large fluctuations in the atom number. From
the starting point at 590 G, the magnetic field
was increased toward the Feshbach resonance at
834 G, thus providing adjustable repulsive inter-
actions. Because of the limited lifetime of the
strongly interacting gas, it was necessary to ap-

ply the fastest possible field ramp, limited to
4.5 ms by eddy currents. The ramp time is ap-
proximately equal to the inverse of the axial trap
frequency (23) and therefore only marginally
adiabatic. Depending on the magnetic field dur-
ing observation, either atoms or atoms and
molecules were detected by absorption imaging
as described in fig. S1 (25).

The emergence of local spin polarization can
be observed by the suppression of (either elastic
or inelastic) collisions, because the Pauli exclu-
sion principle forbids collisions in a fully po-
larized cloud. We monitored inelastic three-body
collisions, which convert atoms into molecules.
The rate (per atom) is proportional to f (a,T)n1n2
or f(a,T) n2(1 − h2) and is therefore a measure
of the magnetization h. For kFa << 1, the rate
coefficient f(a,T) is proportional to a6 max(T,TF)
(26). This rate can be observed by monitoring
the initial drop in the number of atoms during
the first 2 ms after the field ramp. We avoided
longer observation times, because the increasing
molecule fraction could modify the properties of
the sample.

A sharp peak appears in the atom loss rate
around koFa ≅ 2.5 at T/TF = 0.12 (Fig. 2), in-
dicating a transition in the sample to a state with
local magnetization. The gradual decrease is con-
sistent with the inhomogeneous density of the
cloud, where the transition occurs first in the
center. The large suppression of the loss rate
indicates a large local magnetization of the cloud.

The kinetic energy of the cloud was deter-
mined by suddenly switching off the optical trap
and the Feshbach fields immediately after the
field ramp and then imaging state |1〉 atoms at
zero field using the cycling transition after a
ballistic expansion time of Dt = 4.6 ms. The ki-
netic energy was obtained from the Gaussian
radial width sx as Ekin = [(3msx

2)/(2Dt2)] where
m is the mass of the 6Li atom. A minimum of
the kinetic energy at koFa ≅ 2.2 for the coldest
temperature T/TF = 0.12 nearly coincided with

the onset of local polarization (Fig. 3). The peak in
the atom loss rate occurs slightly later than the
minimum of kinetic energy, probably because
f(a,T) increases with a (22). Because the temper-
ature did not change around koFa ≅ 2.2, the in-
crease in kinetic energy is not caused by heating
but by a sudden change in the properties of the
gas, which is consistent with the onset of ferro-
magnetism. The observed increase in kinetic ener-
gy is approximately 20% at T/TF = 0.12, smaller
than the value (22/3 − 1) = 0.59 predicted for a
fully polarized gas. This discrepancy could be
due to the absence of polarization or partial po-
larization in the wings of the cloud. Also, it is
possible that the measured kinetic energy of the
strongly interacting gas before the phase transition
includes some interaction energy if the Feshbach
fields are not suddenly switched off. For the cur-
rent switch-off time of ~100 ms, this should be
only a 5% effect, but the magnetic field decay
may be slower because of eddy currents.

Finally, Fig. 4 shows our observation of a
maximum cloud size at the phase transition, in
agreement with the prediction of the model. The
cloud sizemay not have fully equilibrated, because
our ramp time was only marginally adiabatic, but
this alone cannot explain the observed maximum.

The suppression of the atom loss rate, the
minimum in kinetic energy, and the maximum
in cloud size show a strong temperature depen-
dence between T/TF = 0.12 and 0.22. The prop-
erties of a normal Fermi gas approaching the
unitarity limit withk∘F a >> 1 should be insensitive
to temperature variations in this range; therefore,
the observed temperature dependence provides
further evidence for a transition to a new phase.

At higher temperature (e.g., T/TF = 0.39 as
shown in Fig. 3), the observed nonmonotonic
behavior becomes less pronounced and shifts to
larger values of koFa for 3 ≤ koFa ≤ 6. For all three
observed properties (Figs. 2 to 4), a nonmonotonic
behavior is no longer observed atT/TF = 0.55 (27).
One interpretation is that at this temperature and

Fig. 1. Ferromagnetic phase tran-
sition at T = 0, according to the
mean-field model described in the
text. The onset of itinerant ferro-
magnetism occurs when the energy
as a function of magnetization flips
from a U shape to a W shape (A).
(B) Enthalpy, volume, and kinetic
energy, normalized to their values
for the ideal Fermi gas, and mag-
netization as a function of the inter-
action parameter kFa. kF is defined
by the density of the gas. The dotted
line marks the phase transition.
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Stoner’ MF theory

standard techniques, the atomic system can be prepared in
a pseudospin coherent (ferromagnetic) state, in which all
atoms share the same spinor:

j!FM!t"i #
1!!!
2

p
Y

jkj<21=3kF

!cyk;" $ ei!’%"Et=@"cyk;#"jvaci: (1)

(cyk;! creates an atom with momentum k and hyperfine spin
!.) In Eq. (1), ’ specifies the orientation of the magnetic
order parameter in the x% y plane and "E is the Zeeman
energy difference between the hyperfine states. (Since the
number of atoms in each is conserved, we can transform to
a rotating wave picture and let "E! 0.) Overall spin
polarizations in the ẑ direction are not accessible. This
fully spin coherent state always has a lower energy than
the phase-separated state discussed in Refs. [16–18] since,
in the magnetic language, the latter has a domain wall
which costs finite energy. Ferromagnetism in these systems
will be manifested by persistent coherence between hyper-
fine states.

In this Letter, we argue that ferromagnetism occurs on
the repulsive interaction side of a Feshbach resonance. Our
principle results are summarized in Figs. 1 and 3. We find
that (i) Hartree-Fock theory underestimates the tendency
towards ferromagnetism [42], (ii) the transition between
ferromagnetic and paramagnetic states is first-order at low
temperatures, and (iii) the coherence decay rate decreases
rapidly as the thermodynamic stability region of the ferro-
magnetic state is approached from the repulsive side of the
resonance.

Second-order perturbation theory.—It is convenient to
view the gas as a mixture of two independent noninteract-
ing gases of spinless fermions. The grand-canonical
Hamiltonian of the system is then

H #
Z
dx

X

!#f$;%g
 y
!!x"

"
% @2r2

2m
%"!

#
 !!x"

$ g
Z
dx y

$!x" y
%!x" %!x" $!x"; (2)

with g # 4#a@2=m. The chemical potentials are deter-
mined by n! # @p0!=@"!, where n! is the density of
atoms in hyperfine state j!i, and the pressure of the non-
interacting gas is given by

p0! # kBT
V

X

k
ln&1$ e%$!%k%"!"'; (3)

with kBT the thermal energy, V the volume, and %k #
@2k2=2m the single-particle dispersion. The entropy den-
sity is determined by s # @!p0$ $ p0%"=@T, and the total
free energy density is given by f!n$; n%" # e% Ts, with
the total energy density expressed as the sum of three
contributions, e # e!0" $ e!1" $ e!2". The first two contri-
butions correspond to Hartree-Fock theory and are given
by

e!0" $ e!1" # 1

V

X

k

$ X

!#f$;%g
Nk;!%k

%
$ gn$n%; (4)

where Nk;! is a Fermi occupation factor. The contribution
to the energy density that is second-order in interactions is
given by [13]
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where the prime indicates that the sum is over wave vectors
such that k1 $ k2 # k3 $ k4. The above second-order
correction takes into account the so-called unitarity limit,
i.e., the energy dependence of the vacuum scattering am-
plitude to all orders in ka, to second order [43]. Note also
that, because of the use of the renormalized interaction
strength g, this second-order term is not negative definite
as in the case of the electron gas.

Results.—The magnetization results, summarized in
Fig. 1, were obtained by numerically minimizing the total
free energy f!n%; n$" vs & ( !n$ % n%"=!n$ $ n%" for a
series of temperatures and total densities n$ $ n% #
k3F=3#

2. At zero temperature, we find that the system
becomes partially polarized if kFa ) 1:054 and reaches
the fully polarized state at kFa # 1:112. For higher tem-
peratures, interactions have to be stronger to polarize the
system. For temperatures T < Ttc, where Ttc ’ 0:2TF, with
TF the Fermi temperature, the transition is discontinuous,
and the magnetization exhibits a jump. The jump becomes
smaller with increasing temperature, vanishing at Ttc. The
inset shows the transition temperature as a function of kFa.
A line of first-order transitions, denoted by the solid line,
joins a line of continuous transitions, denoted by the dotted
line at T # Ttc and kFa # 1:119.

The first-order behavior at low temperatures is expected
on the basis of the arguments of Belitz et al. [11]. In our
case, the gapless modes that drive the transition first order
are particle-hole excitations. The coupling of these excita-
tions to the magnetization is neglected in Hartree-Fock
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standard techniques, the atomic system can be prepared in
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where the prime indicates that the sum is over wave vectors
such that k1 $ k2 # k3 $ k4. The above second-order
correction takes into account the so-called unitarity limit,
i.e., the energy dependence of the vacuum scattering am-
plitude to all orders in ka, to second order [43]. Note also
that, because of the use of the renormalized interaction
strength g, this second-order term is not negative definite
as in the case of the electron gas.

Results.—The magnetization results, summarized in
Fig. 1, were obtained by numerically minimizing the total
free energy f!n%; n$" vs & ( !n$ % n%"=!n$ $ n%" for a
series of temperatures and total densities n$ $ n% #
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2. At zero temperature, we find that the system
becomes partially polarized if kFa ) 1:054 and reaches
the fully polarized state at kFa # 1:112. For higher tem-
peratures, interactions have to be stronger to polarize the
system. For temperatures T < Ttc, where Ttc ’ 0:2TF, with
TF the Fermi temperature, the transition is discontinuous,
and the magnetization exhibits a jump. The jump becomes
smaller with increasing temperature, vanishing at Ttc. The
inset shows the transition temperature as a function of kFa.
A line of first-order transitions, denoted by the solid line,
joins a line of continuous transitions, denoted by the dotted
line at T # Ttc and kFa # 1:119.

The first-order behavior at low temperatures is expected
on the basis of the arguments of Belitz et al. [11]. In our
case, the gapless modes that drive the transition first order
are particle-hole excitations. The coupling of these excita-
tions to the magnetization is neglected in Hartree-Fock
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Whether the two-component Fermi gas will become ferromagnetic 
( phase separated ) when repulsion is strong enough?

Strongly Correlated Approach : Maybe not

Projected wave function for Hubbard model

—

η = 1 (15)

E =
3

5

!2

2m
n5/3((1 + η)5/3 + (1− η)5/3) +

4π!2as

m
n(1 + η)n(1− η) (16)

∏

i

(1− ηni↑ni↓)|Ψ0〉 (17)

3

Effect of correlations on the ferromagnetism of transition metals
Martin C. Gutzwiller PRL 10, 159  (1963)



Assuming a fully magnetized ferromagnetic state, 
and ask whether it is energetic stable

H =
∑

k

εknkσ + g
∑

r
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εk =
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↓ (3)
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n↑ = n↓ = n (5)

E ∼ 2n5/3 + gn2 (6)

n↑ = 2n (7)

n↓ = 0 (8)

n↑ = 0 (9)

n↓ = 2n (10)

E ∼ (2n)5/3 (11)

n↑ = n(1 + h) (12)

n↓ = n(1− h) (13)

δE = EN,1 − EN+1,0 (14)
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==> A fully polarized state is unstable

--- Single impurity atom problem can now help 
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(
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†
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†
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eiq0m|N〉.

Pm = 1− c†m↑cm↑

3

A upper bound of 

− 1

kF as
(1)

as =∞ (2)

h = µ↑ − µ↓ (3)

E = EF↑

(
1 +

5A

3
x +

m

m∗x
5/3

)
(4)

variational wave function

A = −0.61EF↑ (5)

m∗ = 1.17m (6)

fixed node MC

A = −0.58EF↑ (7)

m∗ = 1.04m (8)

diagrammatic MC

A = −0.615EF↑ (9)

m∗ = 1.20m (10)

Exp

A = −0.64EF↑ (11)

m∗ = 1.17m (12)

1

kF as
= 0.84(V WF ); 0.90(DMC); 0.73(FMC); 0.76(EXP ) (13)

EN,1 (14)
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(I) Applying this method to Hubbard model
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To justify our approach 
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Ĥint|Ψ〉 = 0

ρ = N/Ns

3

fermion density
Fully magnetized FM is 

unstable even for infinite U
In sharp contrast to Stoner MF

FM is stable, 
rigorously 
proved by
Nagaoka,

PR, 147, 392 
(1966)  

Even at U=Infinity



Relation to Gutzwiller’s wave function|Ψ〉 =
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Gutzwiller projection Back-flow correction 

Shastry, Krishnamurthy 
and Anderson, 41, 2375  (1990)

This variational wave function contains sufficient 
short-range correlations !!



(II) Applying this method to hard core gas in 
continuum
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∑

〈ij〉,σ c†iσcjσ + h.c.,

Hint = U
∑

i ni↑ni↓

φkq ≡ φk

φ0 = −
∑

k>kF
φk
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Ĥ =
∑

k

!2k2

2m
nkσ +

∫
Ψ†

↑(r)Ψ
†
↓(r

′)V (r− r′)Ψ(r′)↓Ψ↑(r)drdr
′ (17)

U → +∞, E/EF = 2kF/(3k0) < 1

k0 = 1/r0 (18)

as < r0 ' 1/kF (19)

kF as ( 1 (20)

3

|Ψ〉 =

(
φ0c

†
q0↓ +

∑

k>kF,q<kF

φkqc
†
q0+q−k↑c

†
k↑cq↑ + . . .

)
|N〉 (15)

|Ψ〉 =

(
φ0c

†
q0↓ +

∑

k>kF,q<kF

φkqc
†
q0+q−k↓c

†
k↑uq↑

)
|N〉, (16)
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Applying this method to hard core gas in continuum

no fully magnetized FM !
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2.35
lower bound for 

fully polarized FM

=> 1.87
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Itinerant ferromagnetism of a repulsive atomic Fermi gas:
a quantum Monte Carlo study

S. Pilati,1 G. Bertaina,2 S. Giorgini,2 and M. Troyer1

1Theoretische Physik, ETH Zurich, CH-8093 Zurich, Switzerland
2Dipartimento di Fisica, Università di Trento and CNR-INO BEC Center, I-38050 Povo, Trento, Italy

We investigate the phase diagram of a two-component repulsive Fermi gas at T = 0 by means of
quantum Monte Carlo simulations. For a given value of the positive s-wave scattering length, both
purely repulsive and purely attractive model potentials are considered in order to analyze the limits
of the universal regime where the details of interatomic forces can be neglected. The equation of
state of both balanced and unbalanced systems is calculated as a function of the interaction strength
and the critical density for the onset of ferromagnetism is determined. The energy per particle of the
strongly polarized gas is calculated and parametrized in terms of the physical properties of repulsive
polarons, which are relevant for the stability of the fully magnetized ferromagnetic state. Finally,
we analyze the phase diagram in the polarization/interaction plane under the assumption that only
phases with homogeneous magnetization can be produced.

PACS numbers: 05.30.Fk, 03.75.Hh, 75.20.Ck

Over the past decade there has been substantial
progress in the experimental realization of quantum de-
generate atomic Fermi gases. A major part of the activ-
ity carried out so far was devoted to the investigation
of the role of attractive interactions, with special em-
phasis on the onset of pairing and superfluidity in the
vicinity of a Feshbach resonance as well as in the pres-
ence of spin imbalance [1]. More recently attention was
drawn to repulsive interactions and the onset of mag-
netic behavior. This topic is particularly important in
optical lattices because of its connection with the repul-
sive Hubbard model, a fundamental paradigm of con-
densed matter physics with still many unanswered ques-
tions [2], but also for continuous systems where a major
recent achievement has been the observation of itiner-
ant ferromagnetism induced by repulsive forces in a two-
component Fermi gas [3]. This experiment realizes the
Stoner model, a textbook Hamiltonian that aims to de-
scribe itinerant ferromagnetism in an electron gas with
screened Coulomb interaction [4].
On the theoretical side there have been a number of

papers addressing the problem of stability of a repulsive
two-component Fermi gas [5] and of phase separation in
harmonic trapped configurations within the local density
approximation [6]. These studies are based on a simple
mean-field description of interaction effects that is valid
to linear order in the scattering length. In homogeneous
systems at T = 0 they predict a second order phase tran-
sition to a magnetized state if the interaction strength
is larger than the critical value kF a > π/2, where a is
the s-wave scattering length and kF = (3π2n)1/3 is the
Fermi wave vector in terms of the total particle density of
the gas n = n↑ + n↓. An extension of this approach that
includes next order corrections to the interaction energy
was developed in Ref. [7] and predicts a smaller value of
the critical density (kF a > 1.054), as well as a discontin-
uous jump in the magnetization. Low-energy theories of
itinerant fermions also predict a first-order transition [8].
A recent non-perturbative quantum Monte Carlo calcu-
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FIG. 1: (color online). Phase diagram of the HS gas in the
interaction/polarization plane. The green region corresponds
to the homogeneous phase. The other regions correspond to
phase separated states with partially polarized domains (yel-
low) and fully ferromagnetic domains (pink). The (blue) sym-
bols correspond to the minimum of the curve E(P ) and the
solid/dashed line is the phase boundary determined from the
equilibrium condition for pressure and chemical potentials.
The blue and red arrows indicate the critical densities where
χ diverges and full ferromagnetism sets in, respectively for
the HS and SW potential.

lation, instead, suggests the existence of a textured mag-
netic phase at the border of the ferromagnetic transition
and yields the value kFa ! 0.8 for the critical density [9].
On the other hand, the existence of a ferromagnetic tran-
sition has been questioned in Ref. [10] by arguing that
nonmagnetic states with strong short-ranged repulsive
correlations could be energetically favorable compared to
ferromagnetic ones.
Various important issues concerning the regime of

strong repulsion are still open. In this Letter we provide
answer to some of them, in particular: i) we calculate the
equation of state of the Fermi gas using different poten-
tials to determine the regime of interaction strength kFa

S. Pilati, et al. PRL, 105, 030405 (2010)

standard techniques, the atomic system can be prepared in
a pseudospin coherent (ferromagnetic) state, in which all
atoms share the same spinor:

j!FM!t"i #
1!!!
2

p
Y

jkj<21=3kF

!cyk;" $ ei!’%"Et=@"cyk;#"jvaci: (1)

(cyk;! creates an atom with momentum k and hyperfine spin
!.) In Eq. (1), ’ specifies the orientation of the magnetic
order parameter in the x% y plane and "E is the Zeeman
energy difference between the hyperfine states. (Since the
number of atoms in each is conserved, we can transform to
a rotating wave picture and let "E! 0.) Overall spin
polarizations in the ẑ direction are not accessible. This
fully spin coherent state always has a lower energy than
the phase-separated state discussed in Refs. [16–18] since,
in the magnetic language, the latter has a domain wall
which costs finite energy. Ferromagnetism in these systems
will be manifested by persistent coherence between hyper-
fine states.

In this Letter, we argue that ferromagnetism occurs on
the repulsive interaction side of a Feshbach resonance. Our
principle results are summarized in Figs. 1 and 3. We find
that (i) Hartree-Fock theory underestimates the tendency
towards ferromagnetism [42], (ii) the transition between
ferromagnetic and paramagnetic states is first-order at low
temperatures, and (iii) the coherence decay rate decreases
rapidly as the thermodynamic stability region of the ferro-
magnetic state is approached from the repulsive side of the
resonance.

Second-order perturbation theory.—It is convenient to
view the gas as a mixture of two independent noninteract-
ing gases of spinless fermions. The grand-canonical
Hamiltonian of the system is then

H #
Z
dx

X

!#f$;%g
 y
!!x"

"
% @2r2

2m
%"!

#
 !!x"

$ g
Z
dx y

$!x" y
%!x" %!x" $!x"; (2)

with g # 4#a@2=m. The chemical potentials are deter-
mined by n! # @p0!=@"!, where n! is the density of
atoms in hyperfine state j!i, and the pressure of the non-
interacting gas is given by

p0! # kBT
V

X

k
ln&1$ e%$!%k%"!"'; (3)

with kBT the thermal energy, V the volume, and %k #
@2k2=2m the single-particle dispersion. The entropy den-
sity is determined by s # @!p0$ $ p0%"=@T, and the total
free energy density is given by f!n$; n%" # e% Ts, with
the total energy density expressed as the sum of three
contributions, e # e!0" $ e!1" $ e!2". The first two contri-
butions correspond to Hartree-Fock theory and are given
by

e!0" $ e!1" # 1

V

X

k

$ X

!#f$;%g
Nk;!%k

%
$ gn$n%; (4)

where Nk;! is a Fermi occupation factor. The contribution
to the energy density that is second-order in interactions is
given by [13]

e!2" # % 2g2

V3

X0Nk1;$Nk2;%!Nk3;$ $ Nk4;%"
%k1

$ %k2
% %k3

% %k4

; (5)

where the prime indicates that the sum is over wave vectors
such that k1 $ k2 # k3 $ k4. The above second-order
correction takes into account the so-called unitarity limit,
i.e., the energy dependence of the vacuum scattering am-
plitude to all orders in ka, to second order [43]. Note also
that, because of the use of the renormalized interaction
strength g, this second-order term is not negative definite
as in the case of the electron gas.

Results.—The magnetization results, summarized in
Fig. 1, were obtained by numerically minimizing the total
free energy f!n%; n$" vs & ( !n$ % n%"=!n$ $ n%" for a
series of temperatures and total densities n$ $ n% #
k3F=3#

2. At zero temperature, we find that the system
becomes partially polarized if kFa ) 1:054 and reaches
the fully polarized state at kFa # 1:112. For higher tem-
peratures, interactions have to be stronger to polarize the
system. For temperatures T < Ttc, where Ttc ’ 0:2TF, with
TF the Fermi temperature, the transition is discontinuous,
and the magnetization exhibits a jump. The jump becomes
smaller with increasing temperature, vanishing at Ttc. The
inset shows the transition temperature as a function of kFa.
A line of first-order transitions, denoted by the solid line,
joins a line of continuous transitions, denoted by the dotted
line at T # Ttc and kFa # 1:119.

The first-order behavior at low temperatures is expected
on the basis of the arguments of Belitz et al. [11]. In our
case, the gapless modes that drive the transition first order
are particle-hole excitations. The coupling of these excita-
tions to the magnetization is neglected in Hartree-Fock
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FIG. 1. Magnetization & as a function of kFa, for various
temperatures. From left to right T=TF # 0; 0:1; 0:15; 0:2; 0:25.
The dashed lines indicate magnetization jumps. The inset shows
the critical temperature as a function of the gas parameter. The
solid line indicates first-order transitions, and the dotted line
second-order transitions. The dashed line is the Hartree-Fock
theory result.
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Summary for this part

Conclusion 1: For a repulsive potential, both in lattice and in 
continuum, a fully polarized FM is not stable, in sharp contrast to 
Stoner’s mean-field results. 
( Show important effect of correlation ) 

Conclusion 2: For a resonance model, in metastable scattering state, 
FM is possible, but the lower bound we obtained is larger than what 
obtained from mean-field+perturbation
(Also show substantial effect of correlation)

From the single impurity atom problem, we learn: 

Ref: Xiao-Ling Cui and HZ, PRA, 81, 041602(R), 2010



Issues for this part :

1. The discrepancy between different approaches 

2. Whether the metastability of “ upper branch ” is treated properly; 
effect of coupling ( decay ) to molecular branch to ferromagnetism ?

3. We can not rule out more stronger correlation effects can make the 
system non-ferromagnetic 



2. Whether a boson-fermion mixture is stable across an inter-
species Feshbach resonance?



The requirement for a stable mixture at resonance ?

small three-body loss rate 
==> 

long enough life time

 positive compressibility 
==> 

stand against collapse
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Stability condition for a boson-fermion mixture:

Stability and Properties of the Polaron Condensate in a Strongly Interacting
Boson-Fermion Mixture

Zeng-Qiang Yu,1 Shizhong Zhang,2 and Hui Zhai1
1Institute for Advanced Study, Tsinghua University, Beijing, 100084, China

2Department of Physics, The Ohio-State University, Columbus, OH, 43210, USA
(Dated: November 20, 2010)

In this letter we study the properties of dilute bosons immersed in a single component Fermi sea
across a broad boson-fermion Feshbach resonance using a single channel model. The stability of
the condensate of bosonic polarons requires that the interaction strength between bosons exceeds a
critical value, which is a universal number at boson-fermion resonance and exhibits a maximum in
unitary regime. We calculate the condensate fraction and the sound velocity across the resonance.
The transition from polaron condensate to molecular Fermi gas is also discussed.

Feshbach resonance is an important route to achieve
strong interactions in degenerate quantum gases. The
many-body system at resonance, if stable, is of great in-
terest since the s-wave scattering length as diverges and
the system cannot be treated by conventional perturba-
tive means. On the other hand, universal properties arise
at resonance and greatly simplifies the problem. In gen-
eral, the stability of a degenerate atomic gas requires at
least two conditions. Firstly, the atom loss rate should
be small to ensure long enough lifetime and, Secondly,
the system should have a positive compressibility against
mechanical collapse.

So far, two-component Fermi gas is the only case whose
stability at resonance has been established both exper-
imentally [1] and theoretically [2, 3]. In the last a few
years, enormous amount of work on fermion mixture at
resonance has revealed many interesting physics, among
which the most profound one is perhaps that the system
exhibits universal behavior [3, 4]. In contrast, bosons
at resonance suffer from rapid atom loss [5] and collapse
instability [6], and are not stable.

For a boson-fermion mixture, the atom loss rate (dom-
inated by the three-body recombination) depends on the
concentration of both species. In the typical situation
of current experiments [7], the boson density at the trap
center nB is much larger than the fermion density nF,
thus atom loss is also significant at resonance. However,
in the limit of low boson concentration, most three-body
process involves two identical fermions and one boson,
and the loss rate can be greatly suppressed. As for the
stability condition against collapse, the weak coupling
mean-filed theory for a uniform mixture gives [8],

kFaBB ! 1
2π

(kFaBF)2
(1 + γ)2

γ
, (1)

where kF = (6π2nF)1/3, γ = mB/mF, aBB and aBF are
the scattering lengthes between bosons, and between bo-
son and fermion, respectively. The question is how to
generalize this stability condition to strongly interacting
regime where aBF → ±∞.

In this letter we consider the system with nB/nF # 1

and show that the stability condition becomes

kFaBB ! ζc, (2)

at resonance, where ζc is a universal positive constant of
the order of unity. Since nB/nF # 1, the diluteness con-
dition n1/3

B aBB # 1 can still be satisfied so that the in-
teraction between bosons will not cause significant atom
loss. With these conditions satisfied, we will have a new
mixture of atomic gases that is stable in the strongly
interacting regime. In this case, the ground state is ex-
pected to be a condensate of bosonic polarons. We shall
highlight some universal properties of the polaron con-
densate.

Before proceeding, we shall mention some previous rel-
evant works. Firstly, the highly polarized fermion mix-
ture is found to be a polaron Fermi liquid [9, 10]. Various
theoretical approaches have been used to study its Fermi
liquid properties [11, 12], and the results are consistent
with each other and also agree with the experiments.
In contrast, in our case, the polaron are bosonic, and
will Bose condense at low temperature. Secondly, het-
eronuclear Feshbach resonance between various boson-
fermion species have been observed [13]. Many theoreti-
cal works on resonant mixture have also been done [14],
most of which either stay away from resonance or ad-
dress resonance physics with a mean-field treatment of a
two-channel model. Two very recent works studied pair-
ing fluctuation effect within a single-channel model for
a broad resonance [15, 16]. They find that even at res-
onance, the ground state [15] and condensation temper-
ature [16] are not significantly modified by pairing fluc-
tuations. However, the condensate properties in strong
interacting regime, such as condensate fraction and sound
velocity, are rarely discussed. These will be the focus of
the present work.

Model. The single-channel Hamiltonian for boson-
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Feshbach resonance is an important route to achieve
strong interactions in degenerate quantum gases. The
many-body system at resonance, if stable, is of great in-
terest since the s-wave scattering length as diverges and
the system cannot be treated by conventional perturba-
tive means. On the other hand, universal properties arise
at resonance and greatly simplifies the problem. In gen-
eral, the stability of a degenerate atomic gas requires at
least two conditions. Firstly, the atom loss rate should
be small to ensure long enough lifetime and, Secondly,
the system should have a positive compressibility against
mechanical collapse.

So far, two-component Fermi gas is the only case whose
stability at resonance has been established both exper-
imentally [1] and theoretically [2, 3]. In the last a few
years, enormous amount of work on fermion mixture at
resonance has revealed many interesting physics, among
which the most profound one is perhaps that the system
exhibits universal behavior [3, 4]. In contrast, bosons
at resonance suffer from rapid atom loss [5] and collapse
instability [6], and are not stable.

For a boson-fermion mixture, the atom loss rate (dom-
inated by the three-body recombination) depends on the
concentration of both species. In the typical situation
of current experiments [7], the boson density at the trap
center nB is much larger than the fermion density nF,
thus atom loss is also significant at resonance. However,
in the limit of low boson concentration, most three-body
process involves two identical fermions and one boson,
and the loss rate can be greatly suppressed. As for the
stability condition against collapse, the weak coupling
mean-filed theory for a uniform mixture gives [8],
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where kF = (6π2nF)1/3, γ = mB/mF, aBB and aBF are
the scattering lengthes between bosons, and between bo-
son and fermion, respectively. The question is how to
generalize this stability condition to strongly interacting
regime where aBF → ±∞.

In this letter we consider the system with nB/nF # 1

and show that the stability condition becomes

kFaBB ! ζc, (2)

at resonance, where ζc is a universal positive constant of
the order of unity. Since nB/nF # 1, the diluteness con-
dition n1/3

B aBB # 1 can still be satisfied so that the in-
teraction between bosons will not cause significant atom
loss. With these conditions satisfied, we will have a new
mixture of atomic gases that is stable in the strongly
interacting regime. In this case, the ground state is ex-
pected to be a condensate of bosonic polarons. We shall
highlight some universal properties of the polaron con-
densate.

Before proceeding, we shall mention some previous rel-
evant works. Firstly, the highly polarized fermion mix-
ture is found to be a polaron Fermi liquid [9, 10]. Various
theoretical approaches have been used to study its Fermi
liquid properties [11, 12], and the results are consistent
with each other and also agree with the experiments.
In contrast, in our case, the polaron are bosonic, and
will Bose condense at low temperature. Secondly, het-
eronuclear Feshbach resonance between various boson-
fermion species have been observed [13]. Many theoreti-
cal works on resonant mixture have also been done [14],
most of which either stay away from resonance or ad-
dress resonance physics with a mean-field treatment of a
two-channel model. Two very recent works studied pair-
ing fluctuation effect within a single-channel model for
a broad resonance [15, 16]. They find that even at res-
onance, the ground state [15] and condensation temper-
ature [16] are not significantly modified by pairing fluc-
tuations. However, the condensate properties in strong
interacting regime, such as condensate fraction and sound
velocity, are rarely discussed. These will be the focus of
the present work.
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Feshbach resonance is an important route to achieve
strong interactions in degenerate quantum gases. The
many-body system at resonance, if stable, is of great in-
terest since the s-wave scattering length as diverges and
the system cannot be treated by conventional perturba-
tive means. On the other hand, universal properties arise
at resonance and greatly simplifies the problem. In gen-
eral, the stability of a degenerate atomic gas requires at
least two conditions. Firstly, the atom loss rate should
be small to ensure long enough lifetime and, Secondly,
the system should have a positive compressibility against
mechanical collapse.

So far, two-component Fermi gas is the only case whose
stability at resonance has been established both exper-
imentally [1] and theoretically [2, 3]. In the last a few
years, enormous amount of work on fermion mixture at
resonance has revealed many interesting physics, among
which the most profound one is perhaps that the system
exhibits universal behavior [3, 4]. In contrast, bosons
at resonance suffer from rapid atom loss [5] and collapse
instability [6], and are not stable.

For a boson-fermion mixture, the atom loss rate (dom-
inated by the three-body recombination) depends on the
concentration of both species. In the typical situation
of current experiments [7], the boson density at the trap
center nB is much larger than the fermion density nF,
thus atom loss is also significant at resonance. However,
in the limit of low boson concentration, most three-body
process involves two identical fermions and one boson,
and the loss rate can be greatly suppressed. As for the
stability condition against collapse, the weak coupling
mean-filed theory for a uniform mixture gives [8],

kFaBB ! 1
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(kFaBF)2
(1 + γ)2

γ
, (1)

where kF = (6π2nF)1/3, γ = mB/mF, aBB and aBF are
the scattering lengthes between bosons, and between bo-
son and fermion, respectively. The question is how to
generalize this stability condition to strongly interacting
regime where aBF → ±∞.

In this letter we consider the system with nB/nF # 1

and show that the stability condition becomes

kFaBB ! ζc, (2)

at resonance, where ζc is a universal positive constant of
the order of unity. Since nB/nF # 1, the diluteness con-
dition n1/3

B aBB # 1 can still be satisfied so that the in-
teraction between bosons will not cause significant atom
loss. With these conditions satisfied, we will have a new
mixture of atomic gases that is stable in the strongly
interacting regime. In this case, the ground state is ex-
pected to be a condensate of bosonic polarons. We shall
highlight some universal properties of the polaron con-
densate.

Before proceeding, we shall mention some previous rel-
evant works. Firstly, the highly polarized fermion mix-
ture is found to be a polaron Fermi liquid [9, 10]. Various
theoretical approaches have been used to study its Fermi
liquid properties [11, 12], and the results are consistent
with each other and also agree with the experiments.
In contrast, in our case, the polaron are bosonic, and
will Bose condense at low temperature. Secondly, het-
eronuclear Feshbach resonance between various boson-
fermion species have been observed [13]. Many theoreti-
cal works on resonant mixture have also been done [14],
most of which either stay away from resonance or ad-
dress resonance physics with a mean-field treatment of a
two-channel model. Two very recent works studied pair-
ing fluctuation effect within a single-channel model for
a broad resonance [15, 16]. They find that even at res-
onance, the ground state [15] and condensation temper-
ature [16] are not significantly modified by pairing fluc-
tuations. However, the condensate properties in strong
interacting regime, such as condensate fraction and sound
velocity, are rarely discussed. These will be the focus of
the present work.
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Feshbach resonance is an important route to achieve
strong interactions in degenerate quantum gases. The
many-body system at resonance, if stable, is of great in-
terest since the s-wave scattering length as diverges and
the system cannot be treated by conventional perturba-
tive means. On the other hand, universal properties arise
at resonance and greatly simplifies the problem. In gen-
eral, the stability of a degenerate atomic gas requires at
least two conditions. Firstly, the atom loss rate should
be small to ensure long enough lifetime and, Secondly,
the system should have a positive compressibility against
mechanical collapse.

So far, two-component Fermi gas is the only case whose
stability at resonance has been established both exper-
imentally [1] and theoretically [2, 3]. In the last a few
years, enormous amount of work on fermion mixture at
resonance has revealed many interesting physics, among
which the most profound one is perhaps that the system
exhibits universal behavior [3, 4]. In contrast, bosons
at resonance suffer from rapid atom loss [5] and collapse
instability [6], and are not stable.

For a boson-fermion mixture, the atom loss rate (dom-
inated by the three-body recombination) depends on the
concentration of both species. In the typical situation
of current experiments [7], the boson density at the trap
center nB is much larger than the fermion density nF,
thus atom loss is also significant at resonance. However,
in the limit of low boson concentration, most three-body
process involves two identical fermions and one boson,
and the loss rate can be greatly suppressed. As for the
stability condition against collapse, the weak coupling
mean-filed theory for a uniform mixture gives [8],

kFaBB ! 1
2π

(kFaBF)2
(1 + γ)2

γ
, (1)

where kF = (6π2nF)1/3, γ = mB/mF, aBB and aBF are
the scattering lengthes between bosons, and between bo-
son and fermion, respectively. The question is how to
generalize this stability condition to strongly interacting
regime where aBF → ±∞.

In this letter we consider the system with nB/nF # 1

and show that the stability condition becomes

kFaBB ! ζc, (2)

at resonance, where ζc is a universal positive constant of
the order of unity. Since nB/nF # 1, the diluteness con-
dition n1/3

B aBB # 1 can still be satisfied so that the in-
teraction between bosons will not cause significant atom
loss. With these conditions satisfied, we will have a new
mixture of atomic gases that is stable in the strongly
interacting regime. In this case, the ground state is ex-
pected to be a condensate of bosonic polarons. We shall
highlight some universal properties of the polaron con-
densate.

Before proceeding, we shall mention some previous rel-
evant works. Firstly, the highly polarized fermion mix-
ture is found to be a polaron Fermi liquid [9, 10]. Various
theoretical approaches have been used to study its Fermi
liquid properties [11, 12], and the results are consistent
with each other and also agree with the experiments.
In contrast, in our case, the polaron are bosonic, and
will Bose condense at low temperature. Secondly, het-
eronuclear Feshbach resonance between various boson-
fermion species have been observed [13]. Many theoreti-
cal works on resonant mixture have also been done [14],
most of which either stay away from resonance or ad-
dress resonance physics with a mean-field treatment of a
two-channel model. Two very recent works studied pair-
ing fluctuation effect within a single-channel model for
a broad resonance [15, 16]. They find that even at res-
onance, the ground state [15] and condensation temper-
ature [16] are not significantly modified by pairing fluc-
tuations. However, the condensate properties in strong
interacting regime, such as condensate fraction and sound
velocity, are rarely discussed. These will be the focus of
the present work.

Model. The single-channel Hamiltonian for boson-
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Feshbach resonance is an important route to achieve
strong interactions in degenerate quantum gases. The
many-body system at resonance, if stable, is of great in-
terest since the s-wave scattering length as diverges and
the system cannot be treated by conventional perturba-
tive means. On the other hand, universal properties arise
at resonance and greatly simplifies the problem. In gen-
eral, the stability of a degenerate atomic gas requires at
least two conditions. Firstly, the atom loss rate should
be small to ensure long enough lifetime and, Secondly,
the system should have a positive compressibility against
mechanical collapse.

So far, two-component Fermi gas is the only case whose
stability at resonance has been established both exper-
imentally [1] and theoretically [2, 3]. In the last a few
years, enormous amount of work on fermion mixture at
resonance has revealed many interesting physics, among
which the most profound one is perhaps that the system
exhibits universal behavior [3, 4]. In contrast, bosons
at resonance suffer from rapid atom loss [5] and collapse
instability [6], and are not stable.

For a boson-fermion mixture, the atom loss rate (dom-
inated by the three-body recombination) depends on the
concentration of both species. In the typical situation
of current experiments [7], the boson density at the trap
center nB is much larger than the fermion density nF,
thus atom loss is also significant at resonance. However,
in the limit of low boson concentration, most three-body
process involves two identical fermions and one boson,
and the loss rate can be greatly suppressed. As for the
stability condition against collapse, the weak coupling
mean-filed theory for a uniform mixture gives [8],

kFaBB ! 1
2π

(kFaBF)2
(1 + γ)2

γ
, (1)

where kF = (6π2nF)1/3, γ = mB/mF, aBB and aBF are
the scattering lengthes between bosons, and between bo-
son and fermion, respectively. The question is how to
generalize this stability condition to strongly interacting
regime where aBF → ±∞.

In this letter we consider the system with nB/nF # 1

and show that the stability condition becomes

kFaBB ! ζc, (2)

at resonance, where ζc is a universal positive constant of
the order of unity. Since nB/nF # 1, the diluteness con-
dition n1/3

B aBB # 1 can still be satisfied so that the in-
teraction between bosons will not cause significant atom
loss. With these conditions satisfied, we will have a new
mixture of atomic gases that is stable in the strongly
interacting regime. In this case, the ground state is ex-
pected to be a condensate of bosonic polarons. We shall
highlight some universal properties of the polaron con-
densate.

Before proceeding, we shall mention some previous rel-
evant works. Firstly, the highly polarized fermion mix-
ture is found to be a polaron Fermi liquid [9, 10]. Various
theoretical approaches have been used to study its Fermi
liquid properties [11, 12], and the results are consistent
with each other and also agree with the experiments.
In contrast, in our case, the polaron are bosonic, and
will Bose condense at low temperature. Secondly, het-
eronuclear Feshbach resonance between various boson-
fermion species have been observed [13]. Many theoreti-
cal works on resonant mixture have also been done [14],
most of which either stay away from resonance or ad-
dress resonance physics with a mean-field treatment of a
two-channel model. Two very recent works studied pair-
ing fluctuation effect within a single-channel model for
a broad resonance [15, 16]. They find that even at res-
onance, the ground state [15] and condensation temper-
ature [16] are not significantly modified by pairing fluc-
tuations. However, the condensate properties in strong
interacting regime, such as condensate fraction and sound
velocity, are rarely discussed. These will be the focus of
the present work.

Model. The single-channel Hamiltonian for boson-
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Feshbach resonance is an important route to achieve
strong interactions in degenerate quantum gases. The
many-body system at resonance, if stable, is of great in-
terest since the s-wave scattering length as diverges and
the system cannot be treated by conventional perturba-
tive means. On the other hand, universal properties arise
at resonance and greatly simplifies the problem. In gen-
eral, the stability of a degenerate atomic gas requires at
least two conditions. Firstly, the atom loss rate should
be small to ensure long enough lifetime and, Secondly,
the system should have a positive compressibility against
mechanical collapse.

So far, two-component Fermi gas is the only case whose
stability at resonance has been established both exper-
imentally [1] and theoretically [2, 3]. In the last a few
years, enormous amount of work on fermion mixture at
resonance has revealed many interesting physics, among
which the most profound one is perhaps that the system
exhibits universal behavior [3, 4]. In contrast, bosons
at resonance suffer from rapid atom loss [5] and collapse
instability [6], and are not stable.

For a boson-fermion mixture, the atom loss rate (dom-
inated by the three-body recombination) depends on the
concentration of both species. In the typical situation
of current experiments [7], the boson density at the trap
center nB is much larger than the fermion density nF,
thus atom loss is also significant at resonance. However,
in the limit of low boson concentration, most three-body
process involves two identical fermions and one boson,
and the loss rate can be greatly suppressed. As for the
stability condition against collapse, the weak coupling
mean-filed theory for a uniform mixture gives [8],
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where kF = (6π2nF)1/3, γ = mB/mF, aBB and aBF are
the scattering lengthes between bosons, and between bo-
son and fermion, respectively. The question is how to
generalize this stability condition to strongly interacting
regime where aBF → ±∞.

In this letter we consider the system with nB/nF # 1

and show that the stability condition becomes
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at resonance, where ζc is a universal positive constant of
the order of unity. Since nB/nF # 1, the diluteness con-
dition n1/3

B aBB # 1 can still be satisfied so that the in-
teraction between bosons will not cause significant atom
loss. With these conditions satisfied, we will have a new
mixture of atomic gases that is stable in the strongly
interacting regime. In this case, the ground state is ex-
pected to be a condensate of bosonic polarons. We shall
highlight some universal properties of the polaron con-
densate.

Before proceeding, we shall mention some previous rel-
evant works. Firstly, the highly polarized fermion mix-
ture is found to be a polaron Fermi liquid [9, 10]. Various
theoretical approaches have been used to study its Fermi
liquid properties [11, 12], and the results are consistent
with each other and also agree with the experiments.
In contrast, in our case, the polaron are bosonic, and
will Bose condense at low temperature. Secondly, het-
eronuclear Feshbach resonance between various boson-
fermion species have been observed [13]. Many theoreti-
cal works on resonant mixture have also been done [14],
most of which either stay away from resonance or ad-
dress resonance physics with a mean-field treatment of a
two-channel model. Two very recent works studied pair-
ing fluctuation effect within a single-channel model for
a broad resonance [15, 16]. They find that even at res-
onance, the ground state [15] and condensation temper-
ature [16] are not significantly modified by pairing fluc-
tuations. However, the condensate properties in strong
interacting regime, such as condensate fraction and sound
velocity, are rarely discussed. These will be the focus of
the present work.
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where UBF and UBB are the zero-range pseudo-potentials
that produce the scattering lengths aBF and aBB. We
consider the situation where aBF can be tuned by a
broad Feshbach resonance while n1/3

B aBB is small and
positive. In the “negative side” of resonance where
η = 1/(kFaBF) # 0 and around resonance where η ≈ 0,
attraction between bosons and fermions leads to the
binding of fermion polarization cloud (i.e. particle-hole
excitation of the free Fermi sea) to each boson, result-
ing in bosonic polarons. In the “positive side” of reso-
nance where η % 0, strong pairing fluctuation will lead
to the formation of fermionic molecules, and transition
from polaron condensate to molecular Fermi liquid is ex-
pected [15, 16]. Most part of this work is restricted to the
regime before the transition takes place. An estimation
of the phase boundary will be given at the end of this
paper.

Universal Hypothesis for Equation-of-State (EoS). We
separate the ground state energy density of the system
into two parts: the energy of the free Fermion system
E0

F ≡ 3nFεF/5 where εF = k2
F/(2mF) and the energy

of the polarons Ep as: E/V = E0
F + Ep. When x ≡

nB/nF # 1 we can expand Ep in power of x as

Ep = E0
F

[
5
3
Ax +

1
2
Fx2 + · · ·

]
. (4)

Note that except x, other dimensionless parameters in
the system are η ≡ 1/(kFaBF), γ ≡ mB/mF and ζ ≡
kFaBB. The basic assumptions of this work are: (i) AεF
is the polaron binding energy and furthermore can be
assumed to be independent of kFaBB. Hence, A(η, γ)
is a universal function. We shall compute A(η, γ) using
the lowest order constrained variational (LOCV) method;
(ii) We assume that F is a sum of two parts F0 + F1.
The first part comes from the mean-field energy of bare
boson-boson interaction 2πaBBn2

B/mB, which gives F0 =
20ζ/(9πγ); (iii) F1 comes from the induced interaction by
exchanging fermion density fluctuations and we assume
it to be independent of kFaBB also, and hence F1(η, γ)
is another universal function. Physically, these assump-
tions are reasonable in low nB limit.

LOCV Estimation of A. LOCV was first proposed in
studying Helium-4 [17], and recently has also been ap-
plied to study bosons with large scattering length [18]
and Fermi gas at resonance [19]. The calculation is much
simpler and transparent compared to Monte Carlo sim-
ulation, while it provides a fair approximation to Monte
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FIG. 1: Solid line: Universal function A(η, γ = mB/mF =
1) as a function of coupling constant η = 1/(kFaBF). The
dashed and dash-dotted line are fit to mean-field results and
molecular binding energy in two limits, respectively.

Carlo results. It starts from a variational wave-function

|Ψ〉 = V −NB/2
∏

i,j

f(rb
i − rf

j )|ΦFS〉, (5)

where |ΦFS〉 represents a Fermi sea with NF fermion par-
ticles, and f(r) is the Jastrow function describing the
two-body correlations between a boson and a fermion.
f(r) deviates from unity only within the so-called heal-
ing length d, i.e. f(r > d) = 1.

The LOCV approximation keeps the correlations to the
first order in h(r) ≡ f2(r)− 1. With this approximation,
it is easy to show that the energy of polaron is

Ep = nBnF

∫
d3r f(r)

[
− ∇

2
r

2mr
+ UBF(r)

]
f(r), (6)

with mr = mBmF/(mB+mF). Within LOCV, the energy
of the system can be written as: E/V = E0

F + λnB =
E0

F(1 + 5Ax/3), where λ is given by solving the LOCV
equation (− 1

2mr

d2

dr2 + UBF(r))rf(r) = λrf(r), subject to
the constraint 4πnF

∫ d
0 dr r2|f(r)|2 = 1 and the boundary

condition (rf)′

rf

∣∣∣
r=0

= − 1
aBF

, f(d) = 1 and f(r)′|r=d = 0.
The universal function A reads

A(η, γ) =
λ(η, γ)

εF
=

(1 + γ)
2γ

λ(η, γ = 1)
εF

(7)

Given η, there is only a change of prefactor for different
mass ratio γ.

For γ = 1, the numeric solution of A is shown in Fig.
1. In the limit η → −∞, we find A = 2(1 + γ)/(3πγη),
so the interaction energy reduces to the mean-field re-
sults 2πaBFnFnB/mr. In the opposite limit η → +∞,
A = −(1 + γ)η2/γ. λ becomes the binding energy of
the molecule −1/(2mra2

BF). At resonance, A is a univer-
sal constant and, for equal mass we obtain A = −0.64,
which can be compared to the Monte Carlo results for
single fermionic impurity in a Fermi sea A = −0.618 [12]
and the experimental value A = −0.64(7) [9].

Expand EoS in terms of x:



Universal Hypothesis for EoS of polaron condensate
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UBB(rb
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where UBF and UBB are the zero-range pseudo-potentials
that produce the scattering lengths aBF and aBB. We
consider the situation where aBF can be tuned by a
broad Feshbach resonance while n1/3

B aBB is small and
positive. In the “negative side” of resonance where
η = 1/(kFaBF) # 0 and around resonance where η ≈ 0,
attraction between bosons and fermions leads to the
binding of fermion polarization cloud (i.e. particle-hole
excitation of the free Fermi sea) to each boson, result-
ing in bosonic polarons. In the “positive side” of reso-
nance where η % 0, strong pairing fluctuation will lead
to the formation of fermionic molecules, and transition
from polaron condensate to molecular Fermi liquid is ex-
pected [15, 16]. Most part of this work is restricted to the
regime before the transition takes place. An estimation
of the phase boundary will be given at the end of this
paper.

Universal Hypothesis for Equation-of-State (EoS). We
separate the ground state energy density of the system
into two parts: the energy of the free Fermion system
E0

F ≡ 3nFεF/5 where εF = k2
F/(2mF) and the energy

of the polarons Ep as: E/V = E0
F + Ep. When x ≡

nB/nF # 1 we can expand Ep in power of x as

Ep = E0
F

[
5
3
Ax +

1
2
Fx2 + · · ·

]
. (4)

Note that except x, other dimensionless parameters in
the system are η ≡ 1/(kFaBF), γ ≡ mB/mF and ζ ≡
kFaBB. The basic assumptions of this work are: (i) AεF
is the polaron binding energy and furthermore can be
assumed to be independent of kFaBB. Hence, A(η, γ)
is a universal function. We shall compute A(η, γ) using
the lowest order constrained variational (LOCV) method;
(ii) We assume that F is a sum of two parts F0 + F1.
The first part comes from the mean-field energy of bare
boson-boson interaction 2πaBBn2

B/mB, which gives F0 =
20ζ/(9πγ); (iii) F1 comes from the induced interaction by
exchanging fermion density fluctuations and we assume
it to be independent of kFaBB also, and hence F1(η, γ)
is another universal function. Physically, these assump-
tions are reasonable in low nB limit.

LOCV Estimation of A. LOCV was first proposed in
studying Helium-4 [17], and recently has also been ap-
plied to study bosons with large scattering length [18]
and Fermi gas at resonance [19]. The calculation is much
simpler and transparent compared to Monte Carlo sim-
ulation, while it provides a fair approximation to Monte
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FIG. 1: Solid line: Universal function A(η, γ = mB/mF =
1) as a function of coupling constant η = 1/(kFaBF). The
dashed and dash-dotted line are fit to mean-field results and
molecular binding energy in two limits, respectively.

Carlo results. It starts from a variational wave-function

|Ψ〉 = V −NB/2
∏

i,j

f(rb
i − rf

j )|ΦFS〉, (5)

where |ΦFS〉 represents a Fermi sea with NF fermion par-
ticles, and f(r) is the Jastrow function describing the
two-body correlations between a boson and a fermion.
f(r) deviates from unity only within the so-called heal-
ing length d, i.e. f(r > d) = 1.

The LOCV approximation keeps the correlations to the
first order in h(r) ≡ f2(r)− 1. With this approximation,
it is easy to show that the energy of polaron is

Ep = nBnF

∫
d3r f(r)

[
− ∇

2
r

2mr
+ UBF(r)

]
f(r), (6)

with mr = mBmF/(mB+mF). Within LOCV, the energy
of the system can be written as: E/V = E0

F + λnB =
E0

F(1 + 5Ax/3), where λ is given by solving the LOCV
equation (− 1

2mr

d2

dr2 + UBF(r))rf(r) = λrf(r), subject to
the constraint 4πnF

∫ d
0 dr r2|f(r)|2 = 1 and the boundary

condition (rf)′

rf

∣∣∣
r=0

= − 1
aBF

, f(d) = 1 and f(r)′|r=d = 0.
The universal function A reads

A(η, γ) =
λ(η, γ)

εF
=

(1 + γ)
2γ

λ(η, γ = 1)
εF

(7)

Given η, there is only a change of prefactor for different
mass ratio γ.

For γ = 1, the numeric solution of A is shown in Fig.
1. In the limit η → −∞, we find A = 2(1 + γ)/(3πγη),
so the interaction energy reduces to the mean-field re-
sults 2πaBFnFnB/mr. In the opposite limit η → +∞,
A = −(1 + γ)η2/γ. λ becomes the binding energy of
the molecule −1/(2mra2

BF). At resonance, A is a univer-
sal constant and, for equal mass we obtain A = −0.64,
which can be compared to the Monte Carlo results for
single fermionic impurity in a Fermi sea A = −0.618 [12]
and the experimental value A = −0.64(7) [9].

Expand EoS in terms of x:

(i)  A is independent of 

η =
1

kF aBF
(17)

x =
nB

nF
(18)

kF aBB (19)

γ =
mB

mF
(20)
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fermion mixture is given by (! = 1)

H = −
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−
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where UBF and UBB are the zero-range pseudo-potentials
that produce the scattering lengths aBF and aBB. We
consider the situation where aBF can be tuned by a
broad Feshbach resonance while n1/3

B aBB is small and
positive. In the “negative side” of resonance where
η = 1/(kFaBF) # 0 and around resonance where η ≈ 0,
attraction between bosons and fermions leads to the
binding of fermion polarization cloud (i.e. particle-hole
excitation of the free Fermi sea) to each boson, result-
ing in bosonic polarons. In the “positive side” of reso-
nance where η % 0, strong pairing fluctuation will lead
to the formation of fermionic molecules, and transition
from polaron condensate to molecular Fermi liquid is ex-
pected [15, 16]. Most part of this work is restricted to the
regime before the transition takes place. An estimation
of the phase boundary will be given at the end of this
paper.

Universal Hypothesis for Equation-of-State (EoS). We
separate the ground state energy density of the system
into two parts: the energy of the free Fermion system
E0

F ≡ 3nFεF/5 where εF = k2
F/(2mF) and the energy

of the polarons Ep as: E/V = E0
F + Ep. When x ≡

nB/nF # 1 we can expand Ep in power of x as

Ep = E0
F

[
5
3
Ax +

1
2
Fx2 + · · ·

]
. (4)

Note that except x, other dimensionless parameters in
the system are η ≡ 1/(kFaBF), γ ≡ mB/mF and ζ ≡
kFaBB. The basic assumptions of this work are: (i) AεF
is the polaron binding energy and furthermore can be
assumed to be independent of kFaBB. Hence, A(η, γ)
is a universal function. We shall compute A(η, γ) using
the lowest order constrained variational (LOCV) method;
(ii) We assume that F is a sum of two parts F0 + F1.
The first part comes from the mean-field energy of bare
boson-boson interaction 2πaBBn2

B/mB, which gives F0 =
20ζ/(9πγ); (iii) F1 comes from the induced interaction by
exchanging fermion density fluctuations and we assume
it to be independent of kFaBB also, and hence F1(η, γ)
is another universal function. Physically, these assump-
tions are reasonable in low nB limit.

LOCV Estimation of A. LOCV was first proposed in
studying Helium-4 [17], and recently has also been ap-
plied to study bosons with large scattering length [18]
and Fermi gas at resonance [19]. The calculation is much
simpler and transparent compared to Monte Carlo sim-
ulation, while it provides a fair approximation to Monte
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FIG. 1: Solid line: Universal function A(η, γ = mB/mF =
1) as a function of coupling constant η = 1/(kFaBF). The
dashed and dash-dotted line are fit to mean-field results and
molecular binding energy in two limits, respectively.

Carlo results. It starts from a variational wave-function

|Ψ〉 = V −NB/2
∏

i,j

f(rb
i − rf

j )|ΦFS〉, (5)

where |ΦFS〉 represents a Fermi sea with NF fermion par-
ticles, and f(r) is the Jastrow function describing the
two-body correlations between a boson and a fermion.
f(r) deviates from unity only within the so-called heal-
ing length d, i.e. f(r > d) = 1.

The LOCV approximation keeps the correlations to the
first order in h(r) ≡ f2(r)− 1. With this approximation,
it is easy to show that the energy of polaron is

Ep = nBnF

∫
d3r f(r)

[
− ∇

2
r

2mr
+ UBF(r)

]
f(r), (6)

with mr = mBmF/(mB+mF). Within LOCV, the energy
of the system can be written as: E/V = E0

F + λnB =
E0

F(1 + 5Ax/3), where λ is given by solving the LOCV
equation (− 1

2mr

d2

dr2 + UBF(r))rf(r) = λrf(r), subject to
the constraint 4πnF

∫ d
0 dr r2|f(r)|2 = 1 and the boundary

condition (rf)′

rf

∣∣∣
r=0

= − 1
aBF

, f(d) = 1 and f(r)′|r=d = 0.
The universal function A reads

A(η, γ) =
λ(η, γ)

εF
=

(1 + γ)
2γ

λ(η, γ = 1)
εF

(7)

Given η, there is only a change of prefactor for different
mass ratio γ.

For γ = 1, the numeric solution of A is shown in Fig.
1. In the limit η → −∞, we find A = 2(1 + γ)/(3πγη),
so the interaction energy reduces to the mean-field re-
sults 2πaBFnFnB/mr. In the opposite limit η → +∞,
A = −(1 + γ)η2/γ. λ becomes the binding energy of
the molecule −1/(2mra2

BF). At resonance, A is a univer-
sal constant and, for equal mass we obtain A = −0.64,
which can be compared to the Monte Carlo results for
single fermionic impurity in a Fermi sea A = −0.618 [12]
and the experimental value A = −0.64(7) [9].

is a universal function

(ii)  F is a sum of two parts. 
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fermion mixture is given by (! = 1)

H = −
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where UBF and UBB are the zero-range pseudo-potentials
that produce the scattering lengths aBF and aBB. We
consider the situation where aBF can be tuned by a
broad Feshbach resonance while n1/3

B aBB is small and
positive. In the “negative side” of resonance where
η = 1/(kFaBF) # 0 and around resonance where η ≈ 0,
attraction between bosons and fermions leads to the
binding of fermion polarization cloud (i.e. particle-hole
excitation of the free Fermi sea) to each boson, result-
ing in bosonic polarons. In the “positive side” of reso-
nance where η % 0, strong pairing fluctuation will lead
to the formation of fermionic molecules, and transition
from polaron condensate to molecular Fermi liquid is ex-
pected [15, 16]. Most part of this work is restricted to the
regime before the transition takes place. An estimation
of the phase boundary will be given at the end of this
paper.

Universal Hypothesis for Equation-of-State (EoS). We
separate the ground state energy density of the system
into two parts: the energy of the free Fermion system
E0

F ≡ 3nFεF/5 where εF = k2
F/(2mF) and the energy

of the polarons Ep as: E/V = E0
F + Ep. When x ≡

nB/nF # 1 we can expand Ep in power of x as

Ep = E0
F

[
5
3
Ax +

1
2
Fx2 + · · ·

]
. (4)

Note that except x, other dimensionless parameters in
the system are η ≡ 1/(kFaBF), γ ≡ mB/mF and ζ ≡
kFaBB. The basic assumptions of this work are: (i) AεF
is the polaron binding energy and furthermore can be
assumed to be independent of kFaBB. Hence, A(η, γ)
is a universal function. We shall compute A(η, γ) using
the lowest order constrained variational (LOCV) method;
(ii) We assume that F is a sum of two parts F0 + F1.
The first part comes from the mean-field energy of bare
boson-boson interaction 2πaBBn2

B/mB, which gives F0 =
20ζ/(9πγ); (iii) F1 comes from the induced interaction by
exchanging fermion density fluctuations and we assume
it to be independent of kFaBB also, and hence F1(η, γ)
is another universal function. Physically, these assump-
tions are reasonable in low nB limit.

LOCV Estimation of A. LOCV was first proposed in
studying Helium-4 [17], and recently has also been ap-
plied to study bosons with large scattering length [18]
and Fermi gas at resonance [19]. The calculation is much
simpler and transparent compared to Monte Carlo sim-
ulation, while it provides a fair approximation to Monte
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FIG. 1: Solid line: Universal function A(η, γ = mB/mF =
1) as a function of coupling constant η = 1/(kFaBF). The
dashed and dash-dotted line are fit to mean-field results and
molecular binding energy in two limits, respectively.

Carlo results. It starts from a variational wave-function

|Ψ〉 = V −NB/2
∏

i,j

f(rb
i − rf

j )|ΦFS〉, (5)

where |ΦFS〉 represents a Fermi sea with NF fermion par-
ticles, and f(r) is the Jastrow function describing the
two-body correlations between a boson and a fermion.
f(r) deviates from unity only within the so-called heal-
ing length d, i.e. f(r > d) = 1.

The LOCV approximation keeps the correlations to the
first order in h(r) ≡ f2(r)− 1. With this approximation,
it is easy to show that the energy of polaron is

Ep = nBnF

∫
d3r f(r)

[
− ∇

2
r

2mr
+ UBF(r)

]
f(r), (6)

with mr = mBmF/(mB+mF). Within LOCV, the energy
of the system can be written as: E/V = E0

F + λnB =
E0

F(1 + 5Ax/3), where λ is given by solving the LOCV
equation (− 1

2mr

d2

dr2 + UBF(r))rf(r) = λrf(r), subject to
the constraint 4πnF

∫ d
0 dr r2|f(r)|2 = 1 and the boundary

condition (rf)′

rf

∣∣∣
r=0

= − 1
aBF

, f(d) = 1 and f(r)′|r=d = 0.
The universal function A reads

A(η, γ) =
λ(η, γ)

εF
=

(1 + γ)
2γ

λ(η, γ = 1)
εF

(7)

Given η, there is only a change of prefactor for different
mass ratio γ.

For γ = 1, the numeric solution of A is shown in Fig.
1. In the limit η → −∞, we find A = 2(1 + γ)/(3πγη),
so the interaction energy reduces to the mean-field re-
sults 2πaBFnFnB/mr. In the opposite limit η → +∞,
A = −(1 + γ)η2/γ. λ becomes the binding energy of
the molecule −1/(2mra2

BF). At resonance, A is a univer-
sal constant and, for equal mass we obtain A = −0.64,
which can be compared to the Monte Carlo results for
single fermionic impurity in a Fermi sea A = −0.618 [12]
and the experimental value A = −0.64(7) [9].
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where UBF and UBB are the zero-range pseudo-potentials
that produce the scattering lengths aBF and aBB. We
consider the situation where aBF can be tuned by a
broad Feshbach resonance while n1/3

B aBB is small and
positive. In the “negative side” of resonance where
η = 1/(kFaBF) # 0 and around resonance where η ≈ 0,
attraction between bosons and fermions leads to the
binding of fermion polarization cloud (i.e. particle-hole
excitation of the free Fermi sea) to each boson, result-
ing in bosonic polarons. In the “positive side” of reso-
nance where η % 0, strong pairing fluctuation will lead
to the formation of fermionic molecules, and transition
from polaron condensate to molecular Fermi liquid is ex-
pected [15, 16]. Most part of this work is restricted to the
regime before the transition takes place. An estimation
of the phase boundary will be given at the end of this
paper.

Universal Hypothesis for Equation-of-State (EoS). We
separate the ground state energy density of the system
into two parts: the energy of the free Fermion system
E0

F ≡ 3nFεF/5 where εF = k2
F/(2mF) and the energy

of the polarons Ep as: E/V = E0
F + Ep. When x ≡

nB/nF # 1 we can expand Ep in power of x as

Ep = E0
F

[
5
3
Ax +

1
2
Fx2 + · · ·

]
. (4)

Note that except x, other dimensionless parameters in
the system are η ≡ 1/(kFaBF), γ ≡ mB/mF and ζ ≡
kFaBB. The basic assumptions of this work are: (i) AεF
is the polaron binding energy and furthermore can be
assumed to be independent of kFaBB. Hence, A(η, γ)
is a universal function. We shall compute A(η, γ) using
the lowest order constrained variational (LOCV) method;
(ii) We assume that F is a sum of two parts F0 + F1.
The first part comes from the mean-field energy of bare
boson-boson interaction 2πaBBn2

B/mB, which gives F0 =
20ζ/(9πγ); (iii) F1 comes from the induced interaction by
exchanging fermion density fluctuations and we assume
it to be independent of kFaBB also, and hence F1(η, γ)
is another universal function. Physically, these assump-
tions are reasonable in low nB limit.

LOCV Estimation of A. LOCV was first proposed in
studying Helium-4 [17], and recently has also been ap-
plied to study bosons with large scattering length [18]
and Fermi gas at resonance [19]. The calculation is much
simpler and transparent compared to Monte Carlo sim-
ulation, while it provides a fair approximation to Monte
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FIG. 1: Solid line: Universal function A(η, γ = mB/mF =
1) as a function of coupling constant η = 1/(kFaBF). The
dashed and dash-dotted line are fit to mean-field results and
molecular binding energy in two limits, respectively.

Carlo results. It starts from a variational wave-function

|Ψ〉 = V −NB/2
∏

i,j

f(rb
i − rf

j )|ΦFS〉, (5)

where |ΦFS〉 represents a Fermi sea with NF fermion par-
ticles, and f(r) is the Jastrow function describing the
two-body correlations between a boson and a fermion.
f(r) deviates from unity only within the so-called heal-
ing length d, i.e. f(r > d) = 1.

The LOCV approximation keeps the correlations to the
first order in h(r) ≡ f2(r)− 1. With this approximation,
it is easy to show that the energy of polaron is

Ep = nBnF

∫
d3r f(r)

[
− ∇

2
r

2mr
+ UBF(r)

]
f(r), (6)

with mr = mBmF/(mB+mF). Within LOCV, the energy
of the system can be written as: E/V = E0

F + λnB =
E0

F(1 + 5Ax/3), where λ is given by solving the LOCV
equation (− 1

2mr

d2

dr2 + UBF(r))rf(r) = λrf(r), subject to
the constraint 4πnF

∫ d
0 dr r2|f(r)|2 = 1 and the boundary

condition (rf)′

rf

∣∣∣
r=0

= − 1
aBF

, f(d) = 1 and f(r)′|r=d = 0.
The universal function A reads

A(η, γ) =
λ(η, γ)

εF
=

(1 + γ)
2γ

λ(η, γ = 1)
εF

(7)

Given η, there is only a change of prefactor for different
mass ratio γ.

For γ = 1, the numeric solution of A is shown in Fig.
1. In the limit η → −∞, we find A = 2(1 + γ)/(3πγη),
so the interaction energy reduces to the mean-field re-
sults 2πaBFnFnB/mr. In the opposite limit η → +∞,
A = −(1 + γ)η2/γ. λ becomes the binding energy of
the molecule −1/(2mra2

BF). At resonance, A is a univer-
sal constant and, for equal mass we obtain A = −0.64,
which can be compared to the Monte Carlo results for
single fermionic impurity in a Fermi sea A = −0.618 [12]
and the experimental value A = −0.64(7) [9].

is another universal function



Estimation of A with the lowest order constrained variational method

LOCV approximation: 
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where UBF and UBB are the zero-range pseudo-potentials
that produce the scattering lengths aBF and aBB. We
consider the situation where aBF can be tuned by a
broad Feshbach resonance while n1/3

B aBB is small and
positive. In the “negative side” of resonance where
η = 1/(kFaBF) # 0 and around resonance where η ≈ 0,
attraction between bosons and fermions leads to the
binding of fermion polarization cloud (i.e. particle-hole
excitation of the free Fermi sea) to each boson, result-
ing in bosonic polarons. In the “positive side” of reso-
nance where η % 0, strong pairing fluctuation will lead
to the formation of fermionic molecules, and transition
from polaron condensate to molecular Fermi liquid is ex-
pected [15, 16]. Most part of this work is restricted to the
regime before the transition takes place. An estimation
of the phase boundary will be given at the end of this
paper.

Universal Hypothesis for Equation-of-State (EoS). We
separate the ground state energy density of the system
into two parts: the energy of the free Fermion system
E0

F ≡ 3nFεF/5 where εF = k2
F/(2mF) and the energy

of the polarons Ep as: E/V = E0
F + Ep. When x ≡

nB/nF # 1 we can expand Ep in power of x as

Ep = E0
F

[
5
3
Ax +

1
2
Fx2 + · · ·

]
. (4)

Note that except x, other dimensionless parameters in
the system are η ≡ 1/(kFaBF), γ ≡ mB/mF and ζ ≡
kFaBB. The basic assumptions of this work are: (i) AεF
is the polaron binding energy and furthermore can be
assumed to be independent of kFaBB. Hence, A(η, γ)
is a universal function. We shall compute A(η, γ) using
the lowest order constrained variational (LOCV) method;
(ii) We assume that F is a sum of two parts F0 + F1.
The first part comes from the mean-field energy of bare
boson-boson interaction 2πaBBn2

B/mB, which gives F0 =
20ζ/(9πγ); (iii) F1 comes from the induced interaction by
exchanging fermion density fluctuations and we assume
it to be independent of kFaBB also, and hence F1(η, γ)
is another universal function. Physically, these assump-
tions are reasonable in low nB limit.

LOCV Estimation of A. LOCV was first proposed in
studying Helium-4 [17], and recently has also been ap-
plied to study bosons with large scattering length [18]
and Fermi gas at resonance [19]. The calculation is much
simpler and transparent compared to Monte Carlo sim-
ulation, while it provides a fair approximation to Monte
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FIG. 1: Solid line: Universal function A(η, γ = mB/mF =
1) as a function of coupling constant η = 1/(kFaBF). The
dashed and dash-dotted line are fit to mean-field results and
molecular binding energy in two limits, respectively.

Carlo results. It starts from a variational wave-function

|Ψ〉 = V −NB/2
∏

i,j

f(rb
i − rf

j )|ΦFS〉, (5)

where |ΦFS〉 represents a Fermi sea with NF fermion par-
ticles, and f(r) is the Jastrow function describing the
two-body correlations between a boson and a fermion.
f(r) deviates from unity only within the so-called heal-
ing length d, i.e. f(r > d) = 1.

The LOCV approximation keeps the correlations to the
first order in h(r) ≡ f2(r)− 1. With this approximation,
it is easy to show that the energy of polaron is

Ep = nBnF

∫
d3r f(r)

[
− ∇

2
r

2mr
+ UBF(r)

]
f(r), (6)

with mr = mBmF/(mB+mF). Within LOCV, the energy
of the system can be written as: E/V = E0

F + λnB =
E0

F(1 + 5Ax/3), where λ is given by solving the LOCV
equation (− 1

2mr

d2

dr2 + UBF(r))rf(r) = λrf(r), subject to
the constraint 4πnF

∫ d
0 dr r2|f(r)|2 = 1 and the boundary

condition (rf)′

rf

∣∣∣
r=0

= − 1
aBF

, f(d) = 1 and f(r)′|r=d = 0.
The universal function A reads

A(η, γ) =
λ(η, γ)

εF
=

(1 + γ)
2γ

λ(η, γ = 1)
εF

(7)

Given η, there is only a change of prefactor for different
mass ratio γ.

For γ = 1, the numeric solution of A is shown in Fig.
1. In the limit η → −∞, we find A = 2(1 + γ)/(3πγη),
so the interaction energy reduces to the mean-field re-
sults 2πaBFnFnB/mr. In the opposite limit η → +∞,
A = −(1 + γ)η2/γ. λ becomes the binding energy of
the molecule −1/(2mra2

BF). At resonance, A is a univer-
sal constant and, for equal mass we obtain A = −0.64,
which can be compared to the Monte Carlo results for
single fermionic impurity in a Fermi sea A = −0.618 [12]
and the experimental value A = −0.64(7) [9].
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where UBF and UBB are the zero-range pseudo-potentials
that produce the scattering lengths aBF and aBB. We
consider the situation where aBF can be tuned by a
broad Feshbach resonance while n1/3

B aBB is small and
positive. In the “negative side” of resonance where
η = 1/(kFaBF) # 0 and around resonance where η ≈ 0,
attraction between bosons and fermions leads to the
binding of fermion polarization cloud (i.e. particle-hole
excitation of the free Fermi sea) to each boson, result-
ing in bosonic polarons. In the “positive side” of reso-
nance where η % 0, strong pairing fluctuation will lead
to the formation of fermionic molecules, and transition
from polaron condensate to molecular Fermi liquid is ex-
pected [15, 16]. Most part of this work is restricted to the
regime before the transition takes place. An estimation
of the phase boundary will be given at the end of this
paper.

Universal Hypothesis for Equation-of-State (EoS). We
separate the ground state energy density of the system
into two parts: the energy of the free Fermion system
E0

F ≡ 3nFεF/5 where εF = k2
F/(2mF) and the energy

of the polarons Ep as: E/V = E0
F + Ep. When x ≡

nB/nF # 1 we can expand Ep in power of x as

Ep = E0
F

[
5
3
Ax +

1
2
Fx2 + · · ·

]
. (4)

Note that except x, other dimensionless parameters in
the system are η ≡ 1/(kFaBF), γ ≡ mB/mF and ζ ≡
kFaBB. The basic assumptions of this work are: (i) AεF
is the polaron binding energy and furthermore can be
assumed to be independent of kFaBB. Hence, A(η, γ)
is a universal function. We shall compute A(η, γ) using
the lowest order constrained variational (LOCV) method;
(ii) We assume that F is a sum of two parts F0 + F1.
The first part comes from the mean-field energy of bare
boson-boson interaction 2πaBBn2

B/mB, which gives F0 =
20ζ/(9πγ); (iii) F1 comes from the induced interaction by
exchanging fermion density fluctuations and we assume
it to be independent of kFaBB also, and hence F1(η, γ)
is another universal function. Physically, these assump-
tions are reasonable in low nB limit.

LOCV Estimation of A. LOCV was first proposed in
studying Helium-4 [17], and recently has also been ap-
plied to study bosons with large scattering length [18]
and Fermi gas at resonance [19]. The calculation is much
simpler and transparent compared to Monte Carlo sim-
ulation, while it provides a fair approximation to Monte
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FIG. 1: Solid line: Universal function A(η, γ = mB/mF =
1) as a function of coupling constant η = 1/(kFaBF). The
dashed and dash-dotted line are fit to mean-field results and
molecular binding energy in two limits, respectively.

Carlo results. It starts from a variational wave-function

|Ψ〉 = V −NB/2
∏

i,j

f(rb
i − rf

j )|ΦFS〉, (5)

where |ΦFS〉 represents a Fermi sea with NF fermion par-
ticles, and f(r) is the Jastrow function describing the
two-body correlations between a boson and a fermion.
f(r) deviates from unity only within the so-called heal-
ing length d, i.e. f(r > d) = 1.

The LOCV approximation keeps the correlations to the
first order in h(r) ≡ f2(r)− 1. With this approximation,
it is easy to show that the energy of polaron is

Ep = nBnF

∫
d3r f(r)

[
− ∇

2
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2mr
+ UBF(r)

]
f(r), (6)

with mr = mBmF/(mB+mF). Within LOCV, the energy
of the system can be written as: E/V = E0

F + λnB =
E0

F(1 + 5Ax/3), where λ is given by solving the LOCV
equation (− 1

2mr

d2

dr2 + UBF(r))rf(r) = λrf(r), subject to
the constraint 4πnF

∫ d
0 dr r2|f(r)|2 = 1 and the boundary

condition (rf)′

rf
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r=0

= − 1
aBF

, f(d) = 1 and f(r)′|r=d = 0.
The universal function A reads

A(η, γ) =
λ(η, γ)

εF
=

(1 + γ)
2γ

λ(η, γ = 1)
εF

(7)

Given η, there is only a change of prefactor for different
mass ratio γ.

For γ = 1, the numeric solution of A is shown in Fig.
1. In the limit η → −∞, we find A = 2(1 + γ)/(3πγη),
so the interaction energy reduces to the mean-field re-
sults 2πaBFnFnB/mr. In the opposite limit η → +∞,
A = −(1 + γ)η2/γ. λ becomes the binding energy of
the molecule −1/(2mra2

BF). At resonance, A is a univer-
sal constant and, for equal mass we obtain A = −0.64,
which can be compared to the Monte Carlo results for
single fermionic impurity in a Fermi sea A = −0.618 [12]
and the experimental value A = −0.64(7) [9].
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where UBF and UBB are the zero-range pseudo-potentials
that produce the scattering lengths aBF and aBB. We
consider the situation where aBF can be tuned by a
broad Feshbach resonance while n1/3

B aBB is small and
positive. In the “negative side” of resonance where
η = 1/(kFaBF) # 0 and around resonance where η ≈ 0,
attraction between bosons and fermions leads to the
binding of fermion polarization cloud (i.e. particle-hole
excitation of the free Fermi sea) to each boson, result-
ing in bosonic polarons. In the “positive side” of reso-
nance where η % 0, strong pairing fluctuation will lead
to the formation of fermionic molecules, and transition
from polaron condensate to molecular Fermi liquid is ex-
pected [15, 16]. Most part of this work is restricted to the
regime before the transition takes place. An estimation
of the phase boundary will be given at the end of this
paper.

Universal Hypothesis for Equation-of-State (EoS). We
separate the ground state energy density of the system
into two parts: the energy of the free Fermion system
E0

F ≡ 3nFεF/5 where εF = k2
F/(2mF) and the energy

of the polarons Ep as: E/V = E0
F + Ep. When x ≡

nB/nF # 1 we can expand Ep in power of x as

Ep = E0
F

[
5
3
Ax +

1
2
Fx2 + · · ·

]
. (4)

Note that except x, other dimensionless parameters in
the system are η ≡ 1/(kFaBF), γ ≡ mB/mF and ζ ≡
kFaBB. The basic assumptions of this work are: (i) AεF
is the polaron binding energy and furthermore can be
assumed to be independent of kFaBB. Hence, A(η, γ)
is a universal function. We shall compute A(η, γ) using
the lowest order constrained variational (LOCV) method;
(ii) We assume that F is a sum of two parts F0 + F1.
The first part comes from the mean-field energy of bare
boson-boson interaction 2πaBBn2

B/mB, which gives F0 =
20ζ/(9πγ); (iii) F1 comes from the induced interaction by
exchanging fermion density fluctuations and we assume
it to be independent of kFaBB also, and hence F1(η, γ)
is another universal function. Physically, these assump-
tions are reasonable in low nB limit.

LOCV Estimation of A. LOCV was first proposed in
studying Helium-4 [17], and recently has also been ap-
plied to study bosons with large scattering length [18]
and Fermi gas at resonance [19]. The calculation is much
simpler and transparent compared to Monte Carlo sim-
ulation, while it provides a fair approximation to Monte
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FIG. 1: Solid line: Universal function A(η, γ = mB/mF =
1) as a function of coupling constant η = 1/(kFaBF). The
dashed and dash-dotted line are fit to mean-field results and
molecular binding energy in two limits, respectively.

Carlo results. It starts from a variational wave-function

|Ψ〉 = V −NB/2
∏

i,j

f(rb
i − rf

j )|ΦFS〉, (5)

where |ΦFS〉 represents a Fermi sea with NF fermion par-
ticles, and f(r) is the Jastrow function describing the
two-body correlations between a boson and a fermion.
f(r) deviates from unity only within the so-called heal-
ing length d, i.e. f(r > d) = 1.

The LOCV approximation keeps the correlations to the
first order in h(r) ≡ f2(r)− 1. With this approximation,
it is easy to show that the energy of polaron is

Ep = nBnF

∫
d3r f(r)

[
− ∇

2
r

2mr
+ UBF(r)

]
f(r), (6)

with mr = mBmF/(mB+mF). Within LOCV, the energy
of the system can be written as: E/V = E0

F + λnB =
E0

F(1 + 5Ax/3), where λ is given by solving the LOCV
equation (− 1
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d2

dr2 + UBF(r))rf(r) = λrf(r), subject to
the constraint 4πnF

∫ d
0 dr r2|f(r)|2 = 1 and the boundary

condition (rf)′

rf
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r=0

= − 1
aBF

, f(d) = 1 and f(r)′|r=d = 0.
The universal function A reads

A(η, γ) =
λ(η, γ)

εF
=

(1 + γ)
2γ

λ(η, γ = 1)
εF

(7)

Given η, there is only a change of prefactor for different
mass ratio γ.

For γ = 1, the numeric solution of A is shown in Fig.
1. In the limit η → −∞, we find A = 2(1 + γ)/(3πγη),
so the interaction energy reduces to the mean-field re-
sults 2πaBFnFnB/mr. In the opposite limit η → +∞,
A = −(1 + γ)η2/γ. λ becomes the binding energy of
the molecule −1/(2mra2

BF). At resonance, A is a univer-
sal constant and, for equal mass we obtain A = −0.64,
which can be compared to the Monte Carlo results for
single fermionic impurity in a Fermi sea A = −0.618 [12]
and the experimental value A = −0.64(7) [9].
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where UBF and UBB are the zero-range pseudo-potentials
that produce the scattering lengths aBF and aBB. We
consider the situation where aBF can be tuned by a
broad Feshbach resonance while n1/3

B aBB is small and
positive. In the “negative side” of resonance where
η = 1/(kFaBF) # 0 and around resonance where η ≈ 0,
attraction between bosons and fermions leads to the
binding of fermion polarization cloud (i.e. particle-hole
excitation of the free Fermi sea) to each boson, result-
ing in bosonic polarons. In the “positive side” of reso-
nance where η % 0, strong pairing fluctuation will lead
to the formation of fermionic molecules, and transition
from polaron condensate to molecular Fermi liquid is ex-
pected [15, 16]. Most part of this work is restricted to the
regime before the transition takes place. An estimation
of the phase boundary will be given at the end of this
paper.

Universal Hypothesis for Equation-of-State (EoS). We
separate the ground state energy density of the system
into two parts: the energy of the free Fermion system
E0

F ≡ 3nFεF/5 where εF = k2
F/(2mF) and the energy

of the polarons Ep as: E/V = E0
F + Ep. When x ≡

nB/nF # 1 we can expand Ep in power of x as

Ep = E0
F

[
5
3
Ax +

1
2
Fx2 + · · ·

]
. (4)

Note that except x, other dimensionless parameters in
the system are η ≡ 1/(kFaBF), γ ≡ mB/mF and ζ ≡
kFaBB. The basic assumptions of this work are: (i) AεF
is the polaron binding energy and furthermore can be
assumed to be independent of kFaBB. Hence, A(η, γ)
is a universal function. We shall compute A(η, γ) using
the lowest order constrained variational (LOCV) method;
(ii) We assume that F is a sum of two parts F0 + F1.
The first part comes from the mean-field energy of bare
boson-boson interaction 2πaBBn2

B/mB, which gives F0 =
20ζ/(9πγ); (iii) F1 comes from the induced interaction by
exchanging fermion density fluctuations and we assume
it to be independent of kFaBB also, and hence F1(η, γ)
is another universal function. Physically, these assump-
tions are reasonable in low nB limit.

LOCV Estimation of A. LOCV was first proposed in
studying Helium-4 [17], and recently has also been ap-
plied to study bosons with large scattering length [18]
and Fermi gas at resonance [19]. The calculation is much
simpler and transparent compared to Monte Carlo sim-
ulation, while it provides a fair approximation to Monte
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FIG. 1: Solid line: Universal function A(η, γ = mB/mF =
1) as a function of coupling constant η = 1/(kFaBF). The
dashed and dash-dotted line are fit to mean-field results and
molecular binding energy in two limits, respectively.

Carlo results. It starts from a variational wave-function

|Ψ〉 = V −NB/2
∏

i,j

f(rb
i − rf

j )|ΦFS〉, (5)

where |ΦFS〉 represents a Fermi sea with NF fermion par-
ticles, and f(r) is the Jastrow function describing the
two-body correlations between a boson and a fermion.
f(r) deviates from unity only within the so-called heal-
ing length d, i.e. f(r > d) = 1.

The LOCV approximation keeps the correlations to the
first order in h(r) ≡ f2(r)− 1. With this approximation,
it is easy to show that the energy of polaron is

Ep = nBnF

∫
d3r f(r)

[
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2
r

2mr
+ UBF(r)

]
f(r), (6)

with mr = mBmF/(mB+mF). Within LOCV, the energy
of the system can be written as: E/V = E0

F + λnB =
E0

F(1 + 5Ax/3), where λ is given by solving the LOCV
equation (− 1
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d2

dr2 + UBF(r))rf(r) = λrf(r), subject to
the constraint 4πnF

∫ d
0 dr r2|f(r)|2 = 1 and the boundary

condition (rf)′

rf
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r=0

= − 1
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, f(d) = 1 and f(r)′|r=d = 0.
The universal function A reads

A(η, γ) =
λ(η, γ)

εF
=

(1 + γ)
2γ

λ(η, γ = 1)
εF

(7)

Given η, there is only a change of prefactor for different
mass ratio γ.

For γ = 1, the numeric solution of A is shown in Fig.
1. In the limit η → −∞, we find A = 2(1 + γ)/(3πγη),
so the interaction energy reduces to the mean-field re-
sults 2πaBFnFnB/mr. In the opposite limit η → +∞,
A = −(1 + γ)η2/γ. λ becomes the binding energy of
the molecule −1/(2mra2

BF). At resonance, A is a univer-
sal constant and, for equal mass we obtain A = −0.64,
which can be compared to the Monte Carlo results for
single fermionic impurity in a Fermi sea A = −0.618 [12]
and the experimental value A = −0.64(7) [9].
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where UBF and UBB are the zero-range pseudo-potentials
that produce the scattering lengths aBF and aBB. We
consider the situation where aBF can be tuned by a
broad Feshbach resonance while n1/3

B aBB is small and
positive. In the “negative side” of resonance where
η = 1/(kFaBF) # 0 and around resonance where η ≈ 0,
attraction between bosons and fermions leads to the
binding of fermion polarization cloud (i.e. particle-hole
excitation of the free Fermi sea) to each boson, result-
ing in bosonic polarons. In the “positive side” of reso-
nance where η % 0, strong pairing fluctuation will lead
to the formation of fermionic molecules, and transition
from polaron condensate to molecular Fermi liquid is ex-
pected [15, 16]. Most part of this work is restricted to the
regime before the transition takes place. An estimation
of the phase boundary will be given at the end of this
paper.

Universal Hypothesis for Equation-of-State (EoS). We
separate the ground state energy density of the system
into two parts: the energy of the free Fermion system
E0

F ≡ 3nFεF/5 where εF = k2
F/(2mF) and the energy

of the polarons Ep as: E/V = E0
F + Ep. When x ≡

nB/nF # 1 we can expand Ep in power of x as

Ep = E0
F

[
5
3
Ax +
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2
Fx2 + · · ·

]
. (4)

Note that except x, other dimensionless parameters in
the system are η ≡ 1/(kFaBF), γ ≡ mB/mF and ζ ≡
kFaBB. The basic assumptions of this work are: (i) AεF
is the polaron binding energy and furthermore can be
assumed to be independent of kFaBB. Hence, A(η, γ)
is a universal function. We shall compute A(η, γ) using
the lowest order constrained variational (LOCV) method;
(ii) We assume that F is a sum of two parts F0 + F1.
The first part comes from the mean-field energy of bare
boson-boson interaction 2πaBBn2

B/mB, which gives F0 =
20ζ/(9πγ); (iii) F1 comes from the induced interaction by
exchanging fermion density fluctuations and we assume
it to be independent of kFaBB also, and hence F1(η, γ)
is another universal function. Physically, these assump-
tions are reasonable in low nB limit.

LOCV Estimation of A. LOCV was first proposed in
studying Helium-4 [17], and recently has also been ap-
plied to study bosons with large scattering length [18]
and Fermi gas at resonance [19]. The calculation is much
simpler and transparent compared to Monte Carlo sim-
ulation, while it provides a fair approximation to Monte
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FIG. 1: Solid line: Universal function A(η, γ = mB/mF =
1) as a function of coupling constant η = 1/(kFaBF). The
dashed and dash-dotted line are fit to mean-field results and
molecular binding energy in two limits, respectively.

Carlo results. It starts from a variational wave-function

|Ψ〉 = V −NB/2
∏

i,j

f(rb
i − rf

j )|ΦFS〉, (5)

where |ΦFS〉 represents a Fermi sea with NF fermion par-
ticles, and f(r) is the Jastrow function describing the
two-body correlations between a boson and a fermion.
f(r) deviates from unity only within the so-called heal-
ing length d, i.e. f(r > d) = 1.

The LOCV approximation keeps the correlations to the
first order in h(r) ≡ f2(r)− 1. With this approximation,
it is easy to show that the energy of polaron is

Ep = nBnF

∫
d3r f(r)

[
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2
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2mr
+ UBF(r)

]
f(r), (6)

with mr = mBmF/(mB+mF). Within LOCV, the energy
of the system can be written as: E/V = E0

F + λnB =
E0

F(1 + 5Ax/3), where λ is given by solving the LOCV
equation (− 1
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dr2 + UBF(r))rf(r) = λrf(r), subject to
the constraint 4πnF

∫ d
0 dr r2|f(r)|2 = 1 and the boundary

condition (rf)′
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= − 1
aBF

, f(d) = 1 and f(r)′|r=d = 0.
The universal function A reads

A(η, γ) =
λ(η, γ)

εF
=

(1 + γ)
2γ

λ(η, γ = 1)
εF

(7)

Given η, there is only a change of prefactor for different
mass ratio γ.

For γ = 1, the numeric solution of A is shown in Fig.
1. In the limit η → −∞, we find A = 2(1 + γ)/(3πγη),
so the interaction energy reduces to the mean-field re-
sults 2πaBFnFnB/mr. In the opposite limit η → +∞,
A = −(1 + γ)η2/γ. λ becomes the binding energy of
the molecule −1/(2mra2

BF). At resonance, A is a univer-
sal constant and, for equal mass we obtain A = −0.64,
which can be compared to the Monte Carlo results for
single fermionic impurity in a Fermi sea A = −0.618 [12]
and the experimental value A = −0.64(7) [9].
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i′), (3)

where UBF and UBB are the zero-range pseudo-potentials
that produce the scattering lengths aBF and aBB. We
consider the situation where aBF can be tuned by a
broad Feshbach resonance while n1/3

B aBB is small and
positive. In the “negative side” of resonance where
η = 1/(kFaBF) # 0 and around resonance where η ≈ 0,
attraction between bosons and fermions leads to the
binding of fermion polarization cloud (i.e. particle-hole
excitation of the free Fermi sea) to each boson, result-
ing in bosonic polarons. In the “positive side” of reso-
nance where η % 0, strong pairing fluctuation will lead
to the formation of fermionic molecules, and transition
from polaron condensate to molecular Fermi liquid is ex-
pected [15, 16]. Most part of this work is restricted to the
regime before the transition takes place. An estimation
of the phase boundary will be given at the end of this
paper.

Universal Hypothesis for Equation-of-State (EoS). We
separate the ground state energy density of the system
into two parts: the energy of the free Fermion system
E0

F ≡ 3nFεF/5 where εF = k2
F/(2mF) and the energy

of the polarons Ep as: E/V = E0
F + Ep. When x ≡

nB/nF # 1 we can expand Ep in power of x as

Ep = E0
F

[
5
3
Ax +

1
2
Fx2 + · · ·

]
. (4)

Note that except x, other dimensionless parameters in
the system are η ≡ 1/(kFaBF), γ ≡ mB/mF and ζ ≡
kFaBB. The basic assumptions of this work are: (i) AεF
is the polaron binding energy and furthermore can be
assumed to be independent of kFaBB. Hence, A(η, γ)
is a universal function. We shall compute A(η, γ) using
the lowest order constrained variational (LOCV) method;
(ii) We assume that F is a sum of two parts F0 + F1.
The first part comes from the mean-field energy of bare
boson-boson interaction 2πaBBn2

B/mB, which gives F0 =
20ζ/(9πγ); (iii) F1 comes from the induced interaction by
exchanging fermion density fluctuations and we assume
it to be independent of kFaBB also, and hence F1(η, γ)
is another universal function. Physically, these assump-
tions are reasonable in low nB limit.

LOCV Estimation of A. LOCV was first proposed in
studying Helium-4 [17], and recently has also been ap-
plied to study bosons with large scattering length [18]
and Fermi gas at resonance [19]. The calculation is much
simpler and transparent compared to Monte Carlo sim-
ulation, while it provides a fair approximation to Monte
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FIG. 1: Solid line: Universal function A(η, γ = mB/mF =
1) as a function of coupling constant η = 1/(kFaBF). The
dashed and dash-dotted line are fit to mean-field results and
molecular binding energy in two limits, respectively.

Carlo results. It starts from a variational wave-function

|Ψ〉 = V −NB/2
∏

i,j

f(rb
i − rf

j )|ΦFS〉, (5)

where |ΦFS〉 represents a Fermi sea with NF fermion par-
ticles, and f(r) is the Jastrow function describing the
two-body correlations between a boson and a fermion.
f(r) deviates from unity only within the so-called heal-
ing length d, i.e. f(r > d) = 1.

The LOCV approximation keeps the correlations to the
first order in h(r) ≡ f2(r)− 1. With this approximation,
it is easy to show that the energy of polaron is

Ep = nBnF

∫
d3r f(r)

[
− ∇

2
r

2mr
+ UBF(r)

]
f(r), (6)

with mr = mBmF/(mB+mF). Within LOCV, the energy
of the system can be written as: E/V = E0

F + λnB =
E0

F(1 + 5Ax/3), where λ is given by solving the LOCV
equation (− 1

2mr

d2

dr2 + UBF(r))rf(r) = λrf(r), subject to
the constraint 4πnF

∫ d
0 dr r2|f(r)|2 = 1 and the boundary

condition (rf)′

rf

∣∣∣
r=0

= − 1
aBF

, f(d) = 1 and f(r)′|r=d = 0.
The universal function A reads

A(η, γ) =
λ(η, γ)

εF
=

(1 + γ)
2γ

λ(η, γ = 1)
εF

(7)

Given η, there is only a change of prefactor for different
mass ratio γ.

For γ = 1, the numeric solution of A is shown in Fig.
1. In the limit η → −∞, we find A = 2(1 + γ)/(3πγη),
so the interaction energy reduces to the mean-field re-
sults 2πaBFnFnB/mr. In the opposite limit η → +∞,
A = −(1 + γ)η2/γ. λ becomes the binding energy of
the molecule −1/(2mra2

BF). At resonance, A is a univer-
sal constant and, for equal mass we obtain A = −0.64,
which can be compared to the Monte Carlo results for
single fermionic impurity in a Fermi sea A = −0.618 [12]
and the experimental value A = −0.64(7) [9].
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where UBF and UBB are the zero-range pseudo-potentials
that produce the scattering lengths aBF and aBB. We
consider the situation where aBF can be tuned by a
broad Feshbach resonance while n1/3

B aBB is small and
positive. In the “negative side” of resonance where
η = 1/(kFaBF) # 0 and around resonance where η ≈ 0,
attraction between bosons and fermions leads to the
binding of fermion polarization cloud (i.e. particle-hole
excitation of the free Fermi sea) to each boson, result-
ing in bosonic polarons. In the “positive side” of reso-
nance where η % 0, strong pairing fluctuation will lead
to the formation of fermionic molecules, and transition
from polaron condensate to molecular Fermi liquid is ex-
pected [15, 16]. Most part of this work is restricted to the
regime before the transition takes place. An estimation
of the phase boundary will be given at the end of this
paper.

Universal Hypothesis for Equation-of-State (EoS). We
separate the ground state energy density of the system
into two parts: the energy of the free Fermion system
E0

F ≡ 3nFεF/5 where εF = k2
F/(2mF) and the energy

of the polarons Ep as: E/V = E0
F + Ep. When x ≡

nB/nF # 1 we can expand Ep in power of x as

Ep = E0
F

[
5
3
Ax +

1
2
Fx2 + · · ·

]
. (4)

Note that except x, other dimensionless parameters in
the system are η ≡ 1/(kFaBF), γ ≡ mB/mF and ζ ≡
kFaBB. The basic assumptions of this work are: (i) AεF
is the polaron binding energy and furthermore can be
assumed to be independent of kFaBB. Hence, A(η, γ)
is a universal function. We shall compute A(η, γ) using
the lowest order constrained variational (LOCV) method;
(ii) We assume that F is a sum of two parts F0 + F1.
The first part comes from the mean-field energy of bare
boson-boson interaction 2πaBBn2

B/mB, which gives F0 =
20ζ/(9πγ); (iii) F1 comes from the induced interaction by
exchanging fermion density fluctuations and we assume
it to be independent of kFaBB also, and hence F1(η, γ)
is another universal function. Physically, these assump-
tions are reasonable in low nB limit.

LOCV Estimation of A. LOCV was first proposed in
studying Helium-4 [17], and recently has also been ap-
plied to study bosons with large scattering length [18]
and Fermi gas at resonance [19]. The calculation is much
simpler and transparent compared to Monte Carlo sim-
ulation, while it provides a fair approximation to Monte
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FIG. 1: Solid line: Universal function A(η, γ = mB/mF =
1) as a function of coupling constant η = 1/(kFaBF). The
dashed and dash-dotted line are fit to mean-field results and
molecular binding energy in two limits, respectively.

Carlo results. It starts from a variational wave-function

|Ψ〉 = V −NB/2
∏

i,j

f(rb
i − rf

j )|ΦFS〉, (5)

where |ΦFS〉 represents a Fermi sea with NF fermion par-
ticles, and f(r) is the Jastrow function describing the
two-body correlations between a boson and a fermion.
f(r) deviates from unity only within the so-called heal-
ing length d, i.e. f(r > d) = 1.

The LOCV approximation keeps the correlations to the
first order in h(r) ≡ f2(r)− 1. With this approximation,
it is easy to show that the energy of polaron is

Ep = nBnF

∫
d3r f(r)

[
− ∇

2
r

2mr
+ UBF(r)

]
f(r), (6)

with mr = mBmF/(mB+mF). Within LOCV, the energy
of the system can be written as: E/V = E0

F + λnB =
E0

F(1 + 5Ax/3), where λ is given by solving the LOCV
equation (− 1

2mr

d2

dr2 + UBF(r))rf(r) = λrf(r), subject to
the constraint 4πnF

∫ d
0 dr r2|f(r)|2 = 1 and the boundary

condition (rf)′

rf

∣∣∣
r=0

= − 1
aBF

, f(d) = 1 and f(r)′|r=d = 0.
The universal function A reads

A(η, γ) =
λ(η, γ)

εF
=

(1 + γ)
2γ

λ(η, γ = 1)
εF

(7)

Given η, there is only a change of prefactor for different
mass ratio γ.

For γ = 1, the numeric solution of A is shown in Fig.
1. In the limit η → −∞, we find A = 2(1 + γ)/(3πγη),
so the interaction energy reduces to the mean-field re-
sults 2πaBFnFnB/mr. In the opposite limit η → +∞,
A = −(1 + γ)η2/γ. λ becomes the binding energy of
the molecule −1/(2mra2

BF). At resonance, A is a univer-
sal constant and, for equal mass we obtain A = −0.64,
which can be compared to the Monte Carlo results for
single fermionic impurity in a Fermi sea A = −0.618 [12]
and the experimental value A = −0.64(7) [9].
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1

kF aBF
(17)
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(18)

ζ = kF aBB (19)

γ =
mB

mF
(20)

A(η, γ) =
1 + γ
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A(η, γ = 1) (21)

A(η = 0, γ = 1) = −0.64 (22)
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where UBF and UBB are the zero-range pseudo-potentials
that produce the scattering lengths aBF and aBB. We
consider the situation where aBF can be tuned by a
broad Feshbach resonance while n1/3

B aBB is small and
positive. In the “negative side” of resonance where
η = 1/(kFaBF) # 0 and around resonance where η ≈ 0,
attraction between bosons and fermions leads to the
binding of fermion polarization cloud (i.e. particle-hole
excitation of the free Fermi sea) to each boson, result-
ing in bosonic polarons. In the “positive side” of reso-
nance where η % 0, strong pairing fluctuation will lead
to the formation of fermionic molecules, and transition
from polaron condensate to molecular Fermi liquid is ex-
pected [15, 16]. Most part of this work is restricted to the
regime before the transition takes place. An estimation
of the phase boundary will be given at the end of this
paper.

Universal Hypothesis for Equation-of-State (EoS). We
separate the ground state energy density of the system
into two parts: the energy of the free Fermion system
E0

F ≡ 3nFεF/5 where εF = k2
F/(2mF) and the energy

of the polarons Ep as: E/V = E0
F + Ep. When x ≡

nB/nF # 1 we can expand Ep in power of x as

Ep = E0
F

[
5
3
Ax +

1
2
Fx2 + · · ·

]
. (4)

Note that except x, other dimensionless parameters in
the system are η ≡ 1/(kFaBF), γ ≡ mB/mF and ζ ≡
kFaBB. The basic assumptions of this work are: (i) AεF
is the polaron binding energy and furthermore can be
assumed to be independent of kFaBB. Hence, A(η, γ)
is a universal function. We shall compute A(η, γ) using
the lowest order constrained variational (LOCV) method;
(ii) We assume that F is a sum of two parts F0 + F1.
The first part comes from the mean-field energy of bare
boson-boson interaction 2πaBBn2

B/mB, which gives F0 =
20ζ/(9πγ); (iii) F1 comes from the induced interaction by
exchanging fermion density fluctuations and we assume
it to be independent of kFaBB also, and hence F1(η, γ)
is another universal function. Physically, these assump-
tions are reasonable in low nB limit.

LOCV Estimation of A. LOCV was first proposed in
studying Helium-4 [17], and recently has also been ap-
plied to study bosons with large scattering length [18]
and Fermi gas at resonance [19]. The calculation is much
simpler and transparent compared to Monte Carlo sim-
ulation, while it provides a fair approximation to Monte

!! !" # " !
!$

!%

!&

!!

#

!

'

(

(

()*+,

(-./0!12.34

(5204206(.0.768

FIG. 1: Solid line: Universal function A(η, γ = mB/mF =
1) as a function of coupling constant η = 1/(kFaBF). The
dashed and dash-dotted line are fit to mean-field results and
molecular binding energy in two limits, respectively.

Carlo results. It starts from a variational wave-function

|Ψ〉 = V −NB/2
∏

i,j

f(rb
i − rf

j )|ΦFS〉, (5)

where |ΦFS〉 represents a Fermi sea with NF fermion par-
ticles, and f(r) is the Jastrow function describing the
two-body correlations between a boson and a fermion.
f(r) deviates from unity only within the so-called heal-
ing length d, i.e. f(r > d) = 1.

The LOCV approximation keeps the correlations to the
first order in h(r) ≡ f2(r)− 1. With this approximation,
it is easy to show that the energy of polaron is

Ep = nBnF

∫
d3r f(r)

[
− ∇

2
r

2mr
+ UBF(r)

]
f(r), (6)

with mr = mBmF/(mB+mF). Within LOCV, the energy
of the system can be written as: E/V = E0

F + λnB =
E0

F(1 + 5Ax/3), where λ is given by solving the LOCV
equation (− 1

2mr

d2

dr2 + UBF(r))rf(r) = λrf(r), subject to
the constraint 4πnF

∫ d
0 dr r2|f(r)|2 = 1 and the boundary

condition (rf)′

rf

∣∣∣
r=0

= − 1
aBF

, f(d) = 1 and f(r)′|r=d = 0.
The universal function A reads

A(η, γ) =
λ(η, γ)

εF
=

(1 + γ)
2γ

λ(η, γ = 1)
εF

(7)

Given η, there is only a change of prefactor for different
mass ratio γ.

For γ = 1, the numeric solution of A is shown in Fig.
1. In the limit η → −∞, we find A = 2(1 + γ)/(3πγη),
so the interaction energy reduces to the mean-field re-
sults 2πaBFnFnB/mr. In the opposite limit η → +∞,
A = −(1 + γ)η2/γ. λ becomes the binding energy of
the molecule −1/(2mra2

BF). At resonance, A is a univer-
sal constant and, for equal mass we obtain A = −0.64,
which can be compared to the Monte Carlo results for
single fermionic impurity in a Fermi sea A = −0.618 [12]
and the experimental value A = −0.64(7) [9].

to the first order of 
Pandharipande and Bethe, PRC, 7, 1212 (1973)
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At resonance:

Estimation of A with the lowest order constrained variational method



The Fermi liquid parameter A, m* can be obtained from 
single impurity atom problem

|Ψ〉 =

(
φ0c

†
q0↓ +

∑

k>kF,q<kF

φkqc
†
q0+q−k↑c

†
k↑cq↑ + . . .

)
|N〉 (15)

|Ψ〉 =

(
φ0c

†
q0↓ +

∑

k>kF,q<kF

φkqc
†
q0+q−k↓c

†
k↑uq↑

)
|N〉, (16)

Ĥ = Ĥt + Ĥint, Ĥt = −t
∑

〈ij〉,σ c†iσcjσ + h.c.,

Hint = U
∑

i ni↑ni↓

φkq ≡ φk

φ0 = −
∑

k>kF
φk

Ĥint|Ψ〉 = 0

ρ = N/Ns

(
φ0√
Ns

∑

m

c†m↓Pm +
∑

n&=m

φmnc†m↓c
†
n↑cm↑

)
eiq0m|N〉.

Pm = 1− c†m↑cm↑

3

Variational wave function approach: 
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Induced Interactions
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FIG. 1: Universal energy A as a function of coupling constant η = 1/kF abf with equal mass mb = mf .

INDUCED INTERACTIONS AND STABILITY CONDITION

Assuming the induced interaction are mainly from exchanging density fluctuation of fermions, the induced interac-
tion is given by

−1
2

(
∂µb

∂nf

)2

×
(

∂nf

∂µf

)
n2

b (17)

To zero-order of nb, we have

∂µb

∂nf
=

2π2

mfkF

(
A(η, γ)− 1

2
η
∂A(η, γ)

∂η

)

∂nf

∂µf
=

mfkF

2π2
(18)

Hence we have

F1(η, γ) = −5(1 + γ)2

18γ2

(
A(η)− 1

2
η
∂A(η)

∂η

)2

(19)

where A(η) is the universal function for the case of equal mass (γ = 1).
The stability condition is given as the interaction between polarons to be positive, namely F0 + F1 > 0, i.e.

ζ > ζc ≡
9πγ

20
|F1| (20)

In the weak-coupling limit, η → −∞, Eq. (15) yields ∂A/∂η = −A/η, F1 = −10(1 + γ)2/(9π2γ2η2),

ζc =
(1 + γ)2

2πγη2
→ 0 (21)

This agrees with what obtained in weak coupling limit before.
In the opposite dimer limit, η → +∞, substituting (16) in (19) and (20), one finds ζc = 0 again, Therefore, a

maximum of ζc is expected around the unitary region. For the case of equal mass, the numeric solution of ζc is plotted
in Fig. 2. One can see that our stability condition is consistent with the weak-coupling mean-field result only for
η ! −5. At resonance, we obtain ζc = 0.65.
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FIG. 1: Universal energy A as a function of coupling constant η = 1/kF abf with equal mass mb = mf .

INDUCED INTERACTIONS AND STABILITY CONDITION

Assuming the induced interaction are mainly from exchanging density fluctuation of fermions, the induced interac-
tion is given by

−1
2

(
∂µb

∂nf

)2

×
(

∂nf

∂µf

)
n2

b (17)

To zero-order of nb, we have

∂µb

∂nf
=

2π2

mfkF

(
A(η, γ)− 1

2
η
∂A(η, γ)

∂η

)

∂nf

∂µf
=

mfkF

2π2
(18)

Hence we have

F1(η, γ) = −5(1 + γ)2

18γ2

(
A(η)− 1

2
η
∂A(η)

∂η

)2

(19)

where A(η) is the universal function for the case of equal mass (γ = 1).
The stability condition is given as the interaction between polarons to be positive, namely F0 + F1 > 0, i.e.

ζ > ζc ≡
9πγ

20
|F1| (20)

In the weak-coupling limit, η → −∞, Eq. (15) yields ∂A/∂η = −A/η, F1 = −10(1 + γ)2/(9π2γ2η2),

ζc =
(1 + γ)2

2πγη2
→ 0 (21)

This agrees with what obtained in weak coupling limit before.
In the opposite dimer limit, η → +∞, substituting (16) in (19) and (20), one finds ζc = 0 again, Therefore, a

maximum of ζc is expected around the unitary region. For the case of equal mass, the numeric solution of ζc is plotted
in Fig. 2. One can see that our stability condition is consistent with the weak-coupling mean-field result only for
η ! −5. At resonance, we obtain ζc = 0.65.
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FIG. 2: (a) Phase diagram in terms of η = 1/(kFaBF) and
ζ = kFaBB. The dashed line is a fit to mean-field result
in weak coupling limit. (b) Phase diagram for nFa3

BB and
aBB/aBF. For both cases we set the mass ratio γ = 1.

Induced Interactions and Stability Condition. Since
the induced interaction are caused by exchanging den-
sity fluctuation of the fermions, we have

1
2
F1x

2E0
F = −1

2

(
∂µB

∂nF

)2 (
∂nF

∂µF

)
n2

B. (8)

To zeroth order in nB, ∂µB/∂nF = 2π2(A(η, γ) −
1
2η∂A(η, γ)/∂η)/(mFkF) and ∂nF/∂µF = mFkF/(2π2).
Hence one finds

F1(η, γ) = −5(1 + γ)2

18γ2

(
A(η, 1)− 1

2
η
∂A(η, 1)

∂η

)2

. (9)

The stability of the system requires that the total effec-
tive interaction between polarons to be positive, namely,
F0 + F1 ! 0, i.e.

ζ ! ζc = −9πγ

20
F1(η, 1). (10)

The phase diagram based on this condition is shown in
Fig. 2. In the η− ζ diagram Fig. 2(a), the phase bound-
ary is proportional to the universal function F1(η, 1). At
resonance, ζc is a universal constant which is 0.65 for γ =
1 within our approximation. In the limit η → −∞, one
finds ∂A/∂η = −A/η and F1 = −10(1 + γ)2/(9π2γ2η2),
ζc = (1 + γ)2/(2πγη2) which agrees with that obtained
in weak coupling limit before [8] and ζc → 0 in the limit.
In the opposite limit, η → +∞, one also finds ζc → 0.
Therefore, a maximum of ζc is expected around the uni-
tary region. For equal mass, we obtain the maximum of
ζc is 1.1, above which the system is stable for all values
of η. Physically, the non-monotonic behavior of ζc arises
because it is determined by the strength of the induced
interaction, which is proportional to (∂µB/∂nF)2. For
η $ −1, |∂µB/∂nF| increases linearly with |aBF|, while
for η % 1, the attraction becomes so strong that only
short-range physics matters, therefore µB eventually ap-
proaches−1/(4mra2

BF) independent of nF and |∂µB/∂nF|
vanishes. Hence |∂µB/∂nF| must exhibit a maximum in
between which gives rise to the maximum of ζc.
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FIG. 3: (a) Condensate fraction n0/nB as a function of η =
1/(kFaBF). (b) sound velocity v/v0 as a function of η for
various ζ = kFaBB, where v0 is the sound velocity in absence
of boson-fermion interaction (mass ratio γ = 1).

Another notable feature is that, for a given scat-
tering length aBB, the stability requirement for nF

is opposite in the weakly interacting and resonance
regime. In weakly interacting regime, it requires nF "
(2πaBBγ/(a2

BF(1+γ)2))3/(6π2); while at resonance it re-
quires nF ! (ζc/aBB)3/(6π2). In Fig. 2 (b), the phase
diagram is plotted in terms of nFa3

BB and aBB/aBF. It
shows that for aBB/aBF < −0.2, the system is stable
for all values of nF; and for −0.2 < aBB/aBF < 0, as
nF increases, the system first becomes unstable and then
becomes stable again.

Condensate Properties. In the stable regime, the con-
densate fraction of the bosons n0/nB within LOCV ap-
proximation is given by

n0

nB
= 1− nF

∫
d3r [f(r)− 1]2. (11)

The condensate fraction is plotted in Fig. 3(a), which is
a monotonic decreasing function of η. At resonance, we
obtain n0/nB = 86.8%. The depletion is purely caused
by the boson-fermion interaction. Since n1/3

B aBB $ 1,
the depletion caused by the boson-boson interaction is
only a negligible correction in the unitary region. We
note that our result contrasts to the resonant Bose gas
studied by Cowell et al. using LOCV method [18], where
the condensate fraction becomes very small near the res-
onance.

The sound velocity of the bosons is given by v =√
3εF(F0 + F1)x/(5mB). When F0 + F1 < 0, v becomes

pure imaginary which is consistent with stability analy-
sis. For equal mass, the sound velocity is shown in Fig.
3(b), which also displays a non-monotonic behavior as a
function of η.

Polaron-Molecule Transition and the Applicable
Regime of Our Theory. Finally we address the issue of
applicable regime of our theory for polaron condensate.
For η % 1, the ground state is a mixture of atomic and
molecular Fermi gas, and its mean-field energy is given
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FIG. 2: (a) Phase diagram in terms of η = 1/(kFaBF) and
ζ = kFaBB. The dashed line is a fit to mean-field result
in weak coupling limit. (b) Phase diagram for nFa3

BB and
aBB/aBF. For both cases we set the mass ratio γ = 1.

Induced Interactions and Stability Condition. Since
the induced interaction are caused by exchanging den-
sity fluctuation of the fermions, we have

1
2
F1x

2E0
F = −1

2

(
∂µB

∂nF

)2 (
∂nF

∂µF

)
n2

B. (8)

To zeroth order in nB, ∂µB/∂nF = 2π2(A(η, γ) −
1
2η∂A(η, γ)/∂η)/(mFkF) and ∂nF/∂µF = mFkF/(2π2).
Hence one finds

F1(η, γ) = −5(1 + γ)2

18γ2

(
A(η, 1)− 1

2
η
∂A(η, 1)

∂η

)2

. (9)

The stability of the system requires that the total effec-
tive interaction between polarons to be positive, namely,
F0 + F1 ! 0, i.e.

ζ ! ζc = −9πγ

20
F1(η, 1). (10)

The phase diagram based on this condition is shown in
Fig. 2. In the η− ζ diagram Fig. 2(a), the phase bound-
ary is proportional to the universal function F1(η, 1). At
resonance, ζc is a universal constant which is 0.65 for γ =
1 within our approximation. In the limit η → −∞, one
finds ∂A/∂η = −A/η and F1 = −10(1 + γ)2/(9π2γ2η2),
ζc = (1 + γ)2/(2πγη2) which agrees with that obtained
in weak coupling limit before [8] and ζc → 0 in the limit.
In the opposite limit, η → +∞, one also finds ζc → 0.
Therefore, a maximum of ζc is expected around the uni-
tary region. For equal mass, we obtain the maximum of
ζc is 1.1, above which the system is stable for all values
of η. Physically, the non-monotonic behavior of ζc arises
because it is determined by the strength of the induced
interaction, which is proportional to (∂µB/∂nF)2. For
η $ −1, |∂µB/∂nF| increases linearly with |aBF|, while
for η % 1, the attraction becomes so strong that only
short-range physics matters, therefore µB eventually ap-
proaches−1/(4mra2

BF) independent of nF and |∂µB/∂nF|
vanishes. Hence |∂µB/∂nF| must exhibit a maximum in
between which gives rise to the maximum of ζc.
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FIG. 3: (a) Condensate fraction n0/nB as a function of η =
1/(kFaBF). (b) sound velocity v/v0 as a function of η for
various ζ = kFaBB, where v0 is the sound velocity in absence
of boson-fermion interaction (mass ratio γ = 1).

Another notable feature is that, for a given scat-
tering length aBB, the stability requirement for nF

is opposite in the weakly interacting and resonance
regime. In weakly interacting regime, it requires nF "
(2πaBBγ/(a2

BF(1+γ)2))3/(6π2); while at resonance it re-
quires nF ! (ζc/aBB)3/(6π2). In Fig. 2 (b), the phase
diagram is plotted in terms of nFa3

BB and aBB/aBF. It
shows that for aBB/aBF < −0.2, the system is stable
for all values of nF; and for −0.2 < aBB/aBF < 0, as
nF increases, the system first becomes unstable and then
becomes stable again.

Condensate Properties. In the stable regime, the con-
densate fraction of the bosons n0/nB within LOCV ap-
proximation is given by

n0

nB
= 1− nF

∫
d3r [f(r)− 1]2. (11)

The condensate fraction is plotted in Fig. 3(a), which is
a monotonic decreasing function of η. At resonance, we
obtain n0/nB = 86.8%. The depletion is purely caused
by the boson-fermion interaction. Since n1/3

B aBB $ 1,
the depletion caused by the boson-boson interaction is
only a negligible correction in the unitary region. We
note that our result contrasts to the resonant Bose gas
studied by Cowell et al. using LOCV method [18], where
the condensate fraction becomes very small near the res-
onance.

The sound velocity of the bosons is given by v =√
3εF(F0 + F1)x/(5mB). When F0 + F1 < 0, v becomes

pure imaginary which is consistent with stability analy-
sis. For equal mass, the sound velocity is shown in Fig.
3(b), which also displays a non-monotonic behavior as a
function of η.

Polaron-Molecule Transition and the Applicable
Regime of Our Theory. Finally we address the issue of
applicable regime of our theory for polaron condensate.
For η % 1, the ground state is a mixture of atomic and
molecular Fermi gas, and its mean-field energy is given
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FIG. 2: (a) Phase diagram in terms of η = 1/(kFaBF) and
ζ = kFaBB. The dashed line is a fit to mean-field result
in weak coupling limit. (b) Phase diagram for nFa3

BB and
aBB/aBF. For both cases we set the mass ratio γ = 1.

Induced Interactions and Stability Condition. Since
the induced interaction are caused by exchanging den-
sity fluctuation of the fermions, we have

1
2
F1x

2E0
F = −1

2

(
∂µB

∂nF

)2 (
∂nF

∂µF

)
n2

B. (8)

To zeroth order in nB, ∂µB/∂nF = 2π2(A(η, γ) −
1
2η∂A(η, γ)/∂η)/(mFkF) and ∂nF/∂µF = mFkF/(2π2).
Hence one finds

F1(η, γ) = −5(1 + γ)2

18γ2

(
A(η, 1)− 1

2
η
∂A(η, 1)

∂η

)2

. (9)

The stability of the system requires that the total effec-
tive interaction between polarons to be positive, namely,
F0 + F1 ! 0, i.e.

ζ ! ζc = −9πγ

20
F1(η, 1). (10)

The phase diagram based on this condition is shown in
Fig. 2. In the η− ζ diagram Fig. 2(a), the phase bound-
ary is proportional to the universal function F1(η, 1). At
resonance, ζc is a universal constant which is 0.65 for γ =
1 within our approximation. In the limit η → −∞, one
finds ∂A/∂η = −A/η and F1 = −10(1 + γ)2/(9π2γ2η2),
ζc = (1 + γ)2/(2πγη2) which agrees with that obtained
in weak coupling limit before [8] and ζc → 0 in the limit.
In the opposite limit, η → +∞, one also finds ζc → 0.
Therefore, a maximum of ζc is expected around the uni-
tary region. For equal mass, we obtain the maximum of
ζc is 1.1, above which the system is stable for all values
of η. Physically, the non-monotonic behavior of ζc arises
because it is determined by the strength of the induced
interaction, which is proportional to (∂µB/∂nF)2. For
η $ −1, |∂µB/∂nF| increases linearly with |aBF|, while
for η % 1, the attraction becomes so strong that only
short-range physics matters, therefore µB eventually ap-
proaches−1/(4mra2

BF) independent of nF and |∂µB/∂nF|
vanishes. Hence |∂µB/∂nF| must exhibit a maximum in
between which gives rise to the maximum of ζc.
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FIG. 3: (a) Condensate fraction n0/nB as a function of η =
1/(kFaBF). (b) sound velocity v/v0 as a function of η for
various ζ = kFaBB, where v0 is the sound velocity in absence
of boson-fermion interaction (mass ratio γ = 1).

Another notable feature is that, for a given scat-
tering length aBB, the stability requirement for nF

is opposite in the weakly interacting and resonance
regime. In weakly interacting regime, it requires nF "
(2πaBBγ/(a2

BF(1+γ)2))3/(6π2); while at resonance it re-
quires nF ! (ζc/aBB)3/(6π2). In Fig. 2 (b), the phase
diagram is plotted in terms of nFa3

BB and aBB/aBF. It
shows that for aBB/aBF < −0.2, the system is stable
for all values of nF; and for −0.2 < aBB/aBF < 0, as
nF increases, the system first becomes unstable and then
becomes stable again.

Condensate Properties. In the stable regime, the con-
densate fraction of the bosons n0/nB within LOCV ap-
proximation is given by

n0

nB
= 1− nF

∫
d3r [f(r)− 1]2. (11)

The condensate fraction is plotted in Fig. 3(a), which is
a monotonic decreasing function of η. At resonance, we
obtain n0/nB = 86.8%. The depletion is purely caused
by the boson-fermion interaction. Since n1/3

B aBB $ 1,
the depletion caused by the boson-boson interaction is
only a negligible correction in the unitary region. We
note that our result contrasts to the resonant Bose gas
studied by Cowell et al. using LOCV method [18], where
the condensate fraction becomes very small near the res-
onance.

The sound velocity of the bosons is given by v =√
3εF(F0 + F1)x/(5mB). When F0 + F1 < 0, v becomes

pure imaginary which is consistent with stability analy-
sis. For equal mass, the sound velocity is shown in Fig.
3(b), which also displays a non-monotonic behavior as a
function of η.

Polaron-Molecule Transition and the Applicable
Regime of Our Theory. Finally we address the issue of
applicable regime of our theory for polaron condensate.
For η % 1, the ground state is a mixture of atomic and
molecular Fermi gas, and its mean-field energy is given

2

fermion mixture is given by (! = 1)

H = −
NB∑

i=1

∇2
i

2mB
−

NF∑

j=1

∇2
j

2mF
+

NB∑

i=1

NF∑

j=1

UBF(rb
i − rf

j )

+
1
2

NB∑

i,i′=1

UBB(rb
i − rb

i′), (3)

where UBF and UBB are the zero-range pseudo-potentials
that produce the scattering lengths aBF and aBB. We
consider the situation where aBF can be tuned by a
broad Feshbach resonance while n1/3

B aBB is small and
positive. In the “negative side” of resonance where
η = 1/(kFaBF) # 0 and around resonance where η ≈ 0,
attraction between bosons and fermions leads to the
binding of fermion polarization cloud (i.e. particle-hole
excitation of the free Fermi sea) to each boson, result-
ing in bosonic polarons. In the “positive side” of reso-
nance where η % 0, strong pairing fluctuation will lead
to the formation of fermionic molecules, and transition
from polaron condensate to molecular Fermi liquid is ex-
pected [15, 16]. Most part of this work is restricted to the
regime before the transition takes place. An estimation
of the phase boundary will be given at the end of this
paper.

Universal Hypothesis for Equation-of-State (EoS). We
separate the ground state energy density of the system
into two parts: the energy of the free Fermion system
E0

F ≡ 3nFεF/5 where εF = k2
F/(2mF) and the energy

of the polarons Ep as: E/V = E0
F + Ep. When x ≡

nB/nF # 1 we can expand Ep in power of x as

Ep = E0
F

[
5
3
Ax +

1
2
Fx2 + · · ·

]
. (4)

Note that except x, other dimensionless parameters in
the system are η ≡ 1/(kFaBF), γ ≡ mB/mF and ζ ≡
kFaBB. The basic assumptions of this work are: (i) AεF
is the polaron binding energy and furthermore can be
assumed to be independent of kFaBB. Hence, A(η, γ)
is a universal function. We shall compute A(η, γ) using
the lowest order constrained variational (LOCV) method;
(ii) We assume that F is a sum of two parts F0 + F1.
The first part comes from the mean-field energy of bare
boson-boson interaction 2πaBBn2

B/mB, which gives F0 =
20ζ/(9πγ); (iii) F1 comes from the induced interaction by
exchanging fermion density fluctuations and we assume
it to be independent of kFaBB also, and hence F1(η, γ)
is another universal function. Physically, these assump-
tions are reasonable in low nB limit.

LOCV Estimation of A. LOCV was first proposed in
studying Helium-4 [17], and recently has also been ap-
plied to study bosons with large scattering length [18]
and Fermi gas at resonance [19]. The calculation is much
simpler and transparent compared to Monte Carlo sim-
ulation, while it provides a fair approximation to Monte
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FIG. 1: Solid line: Universal function A(η, γ = mB/mF =
1) as a function of coupling constant η = 1/(kFaBF). The
dashed and dash-dotted line are fit to mean-field results and
molecular binding energy in two limits, respectively.

Carlo results. It starts from a variational wave-function

|Ψ〉 = V −NB/2
∏

i,j

f(rb
i − rf

j )|ΦFS〉, (5)

where |ΦFS〉 represents a Fermi sea with NF fermion par-
ticles, and f(r) is the Jastrow function describing the
two-body correlations between a boson and a fermion.
f(r) deviates from unity only within the so-called heal-
ing length d, i.e. f(r > d) = 1.

The LOCV approximation keeps the correlations to the
first order in h(r) ≡ f2(r)− 1. With this approximation,
it is easy to show that the energy of polaron is

Ep = nBnF

∫
d3r f(r)

[
− ∇

2
r

2mr
+ UBF(r)

]
f(r), (6)

with mr = mBmF/(mB+mF). Within LOCV, the energy
of the system can be written as: E/V = E0

F + λnB =
E0

F(1 + 5Ax/3), where λ is given by solving the LOCV
equation (− 1

2mr

d2

dr2 + UBF(r))rf(r) = λrf(r), subject to
the constraint 4πnF

∫ d
0 dr r2|f(r)|2 = 1 and the boundary

condition (rf)′

rf

∣∣∣
r=0

= − 1
aBF

, f(d) = 1 and f(r)′|r=d = 0.
The universal function A reads

A(η, γ) =
λ(η, γ)

εF
=

(1 + γ)
2γ

λ(η, γ = 1)
εF

(7)

Given η, there is only a change of prefactor for different
mass ratio γ.

For γ = 1, the numeric solution of A is shown in Fig.
1. In the limit η → −∞, we find A = 2(1 + γ)/(3πγη),
so the interaction energy reduces to the mean-field re-
sults 2πaBFnFnB/mr. In the opposite limit η → +∞,
A = −(1 + γ)η2/γ. λ becomes the binding energy of
the molecule −1/(2mra2

BF). At resonance, A is a univer-
sal constant and, for equal mass we obtain A = −0.64,
which can be compared to the Monte Carlo results for
single fermionic impurity in a Fermi sea A = −0.618 [12]
and the experimental value A = −0.64(7) [9].

Reminder: 
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FIG. 2: (a) Phase diagram in terms of η = 1/(kFaBF) and
ζ = kFaBB. The dashed line is a fit to mean-field result
in weak coupling limit. (b) Phase diagram for nFa3

BB and
aBB/aBF. For both cases we set the mass ratio γ = 1.

Induced Interactions and Stability Condition. Since
the induced interaction are caused by exchanging den-
sity fluctuation of the fermions, we have

1
2
F1x

2E0
F = −1

2

(
∂µB

∂nF

)2 (
∂nF

∂µF

)
n2

B. (8)

To zeroth order in nB, ∂µB/∂nF = 2π2(A(η, γ) −
1
2η∂A(η, γ)/∂η)/(mFkF) and ∂nF/∂µF = mFkF/(2π2).
Hence one finds

F1(η, γ) = −5(1 + γ)2

18γ2

(
A(η, 1)− 1

2
η
∂A(η, 1)

∂η

)2

. (9)

The stability of the system requires that the total effec-
tive interaction between polarons to be positive, namely,
F0 + F1 ! 0, i.e.

ζ ! ζc = −9πγ

20
F1(η, 1). (10)

The phase diagram based on this condition is shown in
Fig. 2. In the η− ζ diagram Fig. 2(a), the phase bound-
ary is proportional to the universal function F1(η, 1). At
resonance, ζc is a universal constant which is 0.65 for γ =
1 within our approximation. In the limit η → −∞, one
finds ∂A/∂η = −A/η and F1 = −10(1 + γ)2/(9π2γ2η2),
ζc = (1 + γ)2/(2πγη2) which agrees with that obtained
in weak coupling limit before [8] and ζc → 0 in the limit.
In the opposite limit, η → +∞, one also finds ζc → 0.
Therefore, a maximum of ζc is expected around the uni-
tary region. For equal mass, we obtain the maximum of
ζc is 1.1, above which the system is stable for all values
of η. Physically, the non-monotonic behavior of ζc arises
because it is determined by the strength of the induced
interaction, which is proportional to (∂µB/∂nF)2. For
η $ −1, |∂µB/∂nF| increases linearly with |aBF|, while
for η % 1, the attraction becomes so strong that only
short-range physics matters, therefore µB eventually ap-
proaches−1/(4mra2

BF) independent of nF and |∂µB/∂nF|
vanishes. Hence |∂µB/∂nF| must exhibit a maximum in
between which gives rise to the maximum of ζc.
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FIG. 3: (a) Condensate fraction n0/nB as a function of η =
1/(kFaBF). (b) sound velocity v/v0 as a function of η for
various ζ = kFaBB, where v0 is the sound velocity in absence
of boson-fermion interaction (mass ratio γ = 1).

Another notable feature is that, for a given scat-
tering length aBB, the stability requirement for nF

is opposite in the weakly interacting and resonance
regime. In weakly interacting regime, it requires nF "
(2πaBBγ/(a2

BF(1+γ)2))3/(6π2); while at resonance it re-
quires nF ! (ζc/aBB)3/(6π2). In Fig. 2 (b), the phase
diagram is plotted in terms of nFa3

BB and aBB/aBF. It
shows that for aBB/aBF < −0.2, the system is stable
for all values of nF; and for −0.2 < aBB/aBF < 0, as
nF increases, the system first becomes unstable and then
becomes stable again.

Condensate Properties. In the stable regime, the con-
densate fraction of the bosons n0/nB within LOCV ap-
proximation is given by

n0

nB
= 1− nF

∫
d3r [f(r)− 1]2. (11)

The condensate fraction is plotted in Fig. 3(a), which is
a monotonic decreasing function of η. At resonance, we
obtain n0/nB = 86.8%. The depletion is purely caused
by the boson-fermion interaction. Since n1/3

B aBB $ 1,
the depletion caused by the boson-boson interaction is
only a negligible correction in the unitary region. We
note that our result contrasts to the resonant Bose gas
studied by Cowell et al. using LOCV method [18], where
the condensate fraction becomes very small near the res-
onance.

The sound velocity of the bosons is given by v =√
3εF(F0 + F1)x/(5mB). When F0 + F1 < 0, v becomes

pure imaginary which is consistent with stability analy-
sis. For equal mass, the sound velocity is shown in Fig.
3(b), which also displays a non-monotonic behavior as a
function of η.

Polaron-Molecule Transition and the Applicable
Regime of Our Theory. Finally we address the issue of
applicable regime of our theory for polaron condensate.
For η % 1, the ground state is a mixture of atomic and
molecular Fermi gas, and its mean-field energy is given
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FIG. 2: (a) Phase diagram in terms of η = 1/(kFaBF) and
ζ = kFaBB. The dashed line is a fit to mean-field result
in weak coupling limit. (b) Phase diagram for nFa3

BB and
aBB/aBF. For both cases we set the mass ratio γ = 1.

Induced Interactions and Stability Condition. Since
the induced interaction are caused by exchanging den-
sity fluctuation of the fermions, we have

1
2
F1x

2E0
F = −1

2

(
∂µB

∂nF

)2 (
∂nF

∂µF

)
n2

B. (8)

To zeroth order in nB, ∂µB/∂nF = 2π2(A(η, γ) −
1
2η∂A(η, γ)/∂η)/(mFkF) and ∂nF/∂µF = mFkF/(2π2).
Hence one finds

F1(η, γ) = −5(1 + γ)2

18γ2

(
A(η, 1)− 1

2
η
∂A(η, 1)

∂η

)2

. (9)

The stability of the system requires that the total effec-
tive interaction between polarons to be positive, namely,
F0 + F1 ! 0, i.e.

ζ ! ζc = −9πγ

20
F1(η, 1). (10)

The phase diagram based on this condition is shown in
Fig. 2. In the η− ζ diagram Fig. 2(a), the phase bound-
ary is proportional to the universal function F1(η, 1). At
resonance, ζc is a universal constant which is 0.65 for γ =
1 within our approximation. In the limit η → −∞, one
finds ∂A/∂η = −A/η and F1 = −10(1 + γ)2/(9π2γ2η2),
ζc = (1 + γ)2/(2πγη2) which agrees with that obtained
in weak coupling limit before [8] and ζc → 0 in the limit.
In the opposite limit, η → +∞, one also finds ζc → 0.
Therefore, a maximum of ζc is expected around the uni-
tary region. For equal mass, we obtain the maximum of
ζc is 1.1, above which the system is stable for all values
of η. Physically, the non-monotonic behavior of ζc arises
because it is determined by the strength of the induced
interaction, which is proportional to (∂µB/∂nF)2. For
η $ −1, |∂µB/∂nF| increases linearly with |aBF|, while
for η % 1, the attraction becomes so strong that only
short-range physics matters, therefore µB eventually ap-
proaches−1/(4mra2

BF) independent of nF and |∂µB/∂nF|
vanishes. Hence |∂µB/∂nF| must exhibit a maximum in
between which gives rise to the maximum of ζc.
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FIG. 3: (a) Condensate fraction n0/nB as a function of η =
1/(kFaBF). (b) sound velocity v/v0 as a function of η for
various ζ = kFaBB, where v0 is the sound velocity in absence
of boson-fermion interaction (mass ratio γ = 1).

Another notable feature is that, for a given scat-
tering length aBB, the stability requirement for nF

is opposite in the weakly interacting and resonance
regime. In weakly interacting regime, it requires nF "
(2πaBBγ/(a2

BF(1+γ)2))3/(6π2); while at resonance it re-
quires nF ! (ζc/aBB)3/(6π2). In Fig. 2 (b), the phase
diagram is plotted in terms of nFa3

BB and aBB/aBF. It
shows that for aBB/aBF < −0.2, the system is stable
for all values of nF; and for −0.2 < aBB/aBF < 0, as
nF increases, the system first becomes unstable and then
becomes stable again.

Condensate Properties. In the stable regime, the con-
densate fraction of the bosons n0/nB within LOCV ap-
proximation is given by

n0

nB
= 1− nF

∫
d3r [f(r)− 1]2. (11)

The condensate fraction is plotted in Fig. 3(a), which is
a monotonic decreasing function of η. At resonance, we
obtain n0/nB = 86.8%. The depletion is purely caused
by the boson-fermion interaction. Since n1/3

B aBB $ 1,
the depletion caused by the boson-boson interaction is
only a negligible correction in the unitary region. We
note that our result contrasts to the resonant Bose gas
studied by Cowell et al. using LOCV method [18], where
the condensate fraction becomes very small near the res-
onance.

The sound velocity of the bosons is given by v =√
3εF(F0 + F1)x/(5mB). When F0 + F1 < 0, v becomes

pure imaginary which is consistent with stability analy-
sis. For equal mass, the sound velocity is shown in Fig.
3(b), which also displays a non-monotonic behavior as a
function of η.

Polaron-Molecule Transition and the Applicable
Regime of Our Theory. Finally we address the issue of
applicable regime of our theory for polaron condensate.
For η % 1, the ground state is a mixture of atomic and
molecular Fermi gas, and its mean-field energy is given
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FIG. 2: (a) Phase diagram in terms of η = 1/(kFaBF) and
ζ = kFaBB. The dashed line is a fit to mean-field result
in weak coupling limit. (b) Phase diagram for nFa3

BB and
aBB/aBF. For both cases we set the mass ratio γ = 1.

Induced Interactions and Stability Condition. Since
the induced interaction are caused by exchanging den-
sity fluctuation of the fermions, we have

1
2
F1x

2E0
F = −1

2

(
∂µB

∂nF

)2 (
∂nF

∂µF

)
n2

B. (8)

To zeroth order in nB, ∂µB/∂nF = 2π2(A(η, γ) −
1
2η∂A(η, γ)/∂η)/(mFkF) and ∂nF/∂µF = mFkF/(2π2).
Hence one finds

F1(η, γ) = −5(1 + γ)2

18γ2

(
A(η, 1)− 1

2
η
∂A(η, 1)

∂η

)2

. (9)

The stability of the system requires that the total effec-
tive interaction between polarons to be positive, namely,
F0 + F1 ! 0, i.e.

ζ ! ζc = −9πγ

20
F1(η, 1). (10)

The phase diagram based on this condition is shown in
Fig. 2. In the η− ζ diagram Fig. 2(a), the phase bound-
ary is proportional to the universal function F1(η, 1). At
resonance, ζc is a universal constant which is 0.65 for γ =
1 within our approximation. In the limit η → −∞, one
finds ∂A/∂η = −A/η and F1 = −10(1 + γ)2/(9π2γ2η2),
ζc = (1 + γ)2/(2πγη2) which agrees with that obtained
in weak coupling limit before [8] and ζc → 0 in the limit.
In the opposite limit, η → +∞, one also finds ζc → 0.
Therefore, a maximum of ζc is expected around the uni-
tary region. For equal mass, we obtain the maximum of
ζc is 1.1, above which the system is stable for all values
of η. Physically, the non-monotonic behavior of ζc arises
because it is determined by the strength of the induced
interaction, which is proportional to (∂µB/∂nF)2. For
η $ −1, |∂µB/∂nF| increases linearly with |aBF|, while
for η % 1, the attraction becomes so strong that only
short-range physics matters, therefore µB eventually ap-
proaches−1/(4mra2

BF) independent of nF and |∂µB/∂nF|
vanishes. Hence |∂µB/∂nF| must exhibit a maximum in
between which gives rise to the maximum of ζc.
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FIG. 3: (a) Condensate fraction n0/nB as a function of η =
1/(kFaBF). (b) sound velocity v/v0 as a function of η for
various ζ = kFaBB, where v0 is the sound velocity in absence
of boson-fermion interaction (mass ratio γ = 1).

Another notable feature is that, for a given scat-
tering length aBB, the stability requirement for nF

is opposite in the weakly interacting and resonance
regime. In weakly interacting regime, it requires nF "
(2πaBBγ/(a2

BF(1+γ)2))3/(6π2); while at resonance it re-
quires nF ! (ζc/aBB)3/(6π2). In Fig. 2 (b), the phase
diagram is plotted in terms of nFa3

BB and aBB/aBF. It
shows that for aBB/aBF < −0.2, the system is stable
for all values of nF; and for −0.2 < aBB/aBF < 0, as
nF increases, the system first becomes unstable and then
becomes stable again.

Condensate Properties. In the stable regime, the con-
densate fraction of the bosons n0/nB within LOCV ap-
proximation is given by

n0

nB
= 1− nF

∫
d3r [f(r)− 1]2. (11)

The condensate fraction is plotted in Fig. 3(a), which is
a monotonic decreasing function of η. At resonance, we
obtain n0/nB = 86.8%. The depletion is purely caused
by the boson-fermion interaction. Since n1/3

B aBB $ 1,
the depletion caused by the boson-boson interaction is
only a negligible correction in the unitary region. We
note that our result contrasts to the resonant Bose gas
studied by Cowell et al. using LOCV method [18], where
the condensate fraction becomes very small near the res-
onance.

The sound velocity of the bosons is given by v =√
3εF(F0 + F1)x/(5mB). When F0 + F1 < 0, v becomes

pure imaginary which is consistent with stability analy-
sis. For equal mass, the sound velocity is shown in Fig.
3(b), which also displays a non-monotonic behavior as a
function of η.

Polaron-Molecule Transition and the Applicable
Regime of Our Theory. Finally we address the issue of
applicable regime of our theory for polaron condensate.
For η % 1, the ground state is a mixture of atomic and
molecular Fermi gas, and its mean-field energy is given
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FIG. 2: (a) Phase diagram in terms of η = 1/(kFaBF) and
ζ = kFaBB. The dashed line is a fit to mean-field result
in weak coupling limit. (b) Phase diagram for nFa3

BB and
aBB/aBF. For both cases we set the mass ratio γ = 1.

Induced Interactions and Stability Condition. Since
the induced interaction are caused by exchanging den-
sity fluctuation of the fermions, we have

1
2
F1x

2E0
F = −1

2

(
∂µB

∂nF

)2 (
∂nF

∂µF

)
n2

B. (8)

To zeroth order in nB, ∂µB/∂nF = 2π2(A(η, γ) −
1
2η∂A(η, γ)/∂η)/(mFkF) and ∂nF/∂µF = mFkF/(2π2).
Hence one finds

F1(η, γ) = −5(1 + γ)2

18γ2

(
A(η, 1)− 1

2
η
∂A(η, 1)

∂η

)2

. (9)

The stability of the system requires that the total effec-
tive interaction between polarons to be positive, namely,
F0 + F1 ! 0, i.e.

ζ ! ζc = −9πγ

20
F1(η, 1). (10)

The phase diagram based on this condition is shown in
Fig. 2. In the η− ζ diagram Fig. 2(a), the phase bound-
ary is proportional to the universal function F1(η, 1). At
resonance, ζc is a universal constant which is 0.65 for γ =
1 within our approximation. In the limit η → −∞, one
finds ∂A/∂η = −A/η and F1 = −10(1 + γ)2/(9π2γ2η2),
ζc = (1 + γ)2/(2πγη2) which agrees with that obtained
in weak coupling limit before [8] and ζc → 0 in the limit.
In the opposite limit, η → +∞, one also finds ζc → 0.
Therefore, a maximum of ζc is expected around the uni-
tary region. For equal mass, we obtain the maximum of
ζc is 1.1, above which the system is stable for all values
of η. Physically, the non-monotonic behavior of ζc arises
because it is determined by the strength of the induced
interaction, which is proportional to (∂µB/∂nF)2. For
η $ −1, |∂µB/∂nF| increases linearly with |aBF|, while
for η % 1, the attraction becomes so strong that only
short-range physics matters, therefore µB eventually ap-
proaches−1/(4mra2

BF) independent of nF and |∂µB/∂nF|
vanishes. Hence |∂µB/∂nF| must exhibit a maximum in
between which gives rise to the maximum of ζc.
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FIG. 3: (a) Condensate fraction n0/nB as a function of η =
1/(kFaBF). (b) sound velocity v/v0 as a function of η for
various ζ = kFaBB, where v0 is the sound velocity in absence
of boson-fermion interaction (mass ratio γ = 1).

Another notable feature is that, for a given scat-
tering length aBB, the stability requirement for nF

is opposite in the weakly interacting and resonance
regime. In weakly interacting regime, it requires nF "
(2πaBBγ/(a2

BF(1+γ)2))3/(6π2); while at resonance it re-
quires nF ! (ζc/aBB)3/(6π2). In Fig. 2 (b), the phase
diagram is plotted in terms of nFa3

BB and aBB/aBF. It
shows that for aBB/aBF < −0.2, the system is stable
for all values of nF; and for −0.2 < aBB/aBF < 0, as
nF increases, the system first becomes unstable and then
becomes stable again.

Condensate Properties. In the stable regime, the con-
densate fraction of the bosons n0/nB within LOCV ap-
proximation is given by

n0

nB
= 1− nF

∫
d3r [f(r)− 1]2. (11)

The condensate fraction is plotted in Fig. 3(a), which is
a monotonic decreasing function of η. At resonance, we
obtain n0/nB = 86.8%. The depletion is purely caused
by the boson-fermion interaction. Since n1/3

B aBB $ 1,
the depletion caused by the boson-boson interaction is
only a negligible correction in the unitary region. We
note that our result contrasts to the resonant Bose gas
studied by Cowell et al. using LOCV method [18], where
the condensate fraction becomes very small near the res-
onance.

The sound velocity of the bosons is given by v =√
3εF(F0 + F1)x/(5mB). When F0 + F1 < 0, v becomes

pure imaginary which is consistent with stability analy-
sis. For equal mass, the sound velocity is shown in Fig.
3(b), which also displays a non-monotonic behavior as a
function of η.

Polaron-Molecule Transition and the Applicable
Regime of Our Theory. Finally we address the issue of
applicable regime of our theory for polaron condensate.
For η % 1, the ground state is a mixture of atomic and
molecular Fermi gas, and its mean-field energy is given
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FIG. 2: (a) Critical parameter ζ as a function of coupling constant η. (b) Comparison with the mean-field result in the
weak-coupling limit. (mass ratio γ = 1.)

CONDENSATE PROPERTIES

In the regime when polaron BEC is stable, we shall study two fundamental properties of the condensate, namely,
the condensate fraction and the sound velocity. The condensate fraction is given by the matrix element ρ̂(rb, r′b) in
the long range limit, which is

n0

nb
=

∫
d3rbd3r′b 〈Ψ|ψ̂†(rb)ψ̂(r′b)|Ψ〉
V

∫
d3rb 〈Ψ|ψ̂†(rb)ψ̂(rb)|Ψ〉

=

∫
d3rbd3r′b ∏

ij d3rb
i d3rf

j 〈ΦFS |
∏

j f(rb − rf
j )f(r′b − rf

j )
∏

ij f2(rb
i − rf

j ) |ΦFS〉
V

∫
d3rb

∏
ij d3rb

i d3rf
j 〈ΦFS |

∏
j f2(rb − rf

j )
∏

ij f2(rb
i − rf

j ) |ΦFS〉

=
V + 2Nf

∫
d3r [f(r)− 1] + NfNb

∫
d3r h(r) + . . .

V + Nf (Nb + 1)
∫

d3r h(r) + . . .

$ 1− nf

∫
d3r [f(r)− 1]2 (22)

The condensate fraction near the resonance is plotted in Fig. 3, which is a monotone decreasing function as the
coupling constant η. At resonance, we obtain n0/nb = 86.8%. The depletion is purely caused by the boson-fermion
interaction. Since n1/3

b abb % 1, the depletion caused by the boson-boson interaction is only a small contribution in
the unitary region. We note that our result contrasts to the resonant Bose gas studied by Cowell et al. in LOCV
approximation, where the condensate fraction approaches to zero near the resonance. This is due to the difference
between the upper branch and lower branch. In the calculation of lower branch as we do, the Jastrow function is
always positive within the healing distance d. A strongly depleted condensation can be obtained for large positive η.
However, in that region a phase transition to the molecular Fermi gas is expected.

The sound velocity is given by

v =
√

3
5

εF

mb
(F0 + F1)x (23)

and

v

v0
=

√
F0 + F1

F0
(24)

with v0 =
√

4πabbnb/mb the sound velocity in absence of boson-fermion interaction. When F0 + F1 < 0, v becomes
pure imaginary which is consistent with our pervious stability analysis. For the case of equal mass, numeric solution
of the sound velocity is shown in Fig.



Polaron-to-molecule transition

4

by

EM

V
= E0

F

[
(1− x)5/3 +

1
1 + γ

x5/3 − 5(1 + γ)η2

3γ
x

+
10(2 + γ)
9π(1 + γ)η

aMF

aBF
x(1− x)

]
. (12)

where aMF is the molecule-fermion scattering length [20].
In the imbalanced fermion mixture, similar mean-field
energy has been found to be quite accurate compared
with Monte Carlo results when η > 1 [21]. Here we esti-
mate the critical value ηc of polaron-molecule transition
by comparing energy Eq. (12) with the energy of polaron
condensate discussed above. In the low boson concentra-
tion limit x→ 0, ηc is determined by

A(ηc, γ) = −1− 1 + γ

γ
η2
c +

2(2 + γ)
3π(1 + γ)ηc

aMF

aBF
. (13)

The energy comparison in the x → 0 limit is shown in
Fig. 4(a). For equal mass, we obtain ηc = 1.19, and ηc

moves toward resonance with increasing γ. With increas-
ing concentration of bosons, we show in Fig. 4(b) that
the transition is pushed to larger η. Very close to the
transition strong pairing fluctuations may invalidate our
theory of the polaron condensate.

Experimental Realization and Detection. In this work,
we analyzed the stability condition and determined the
phase diagram of a boson-fermion mixture across a Fes-
hbach resonance. Experimentally, at a given magnetic
field near the Boson-Fermion resonance, aBB is usually
fixed. However, if one combines other control tech-
niques, for instance, using optical Feshbach resonance or
microwave-induced resonance, one can also tune aBB in-
dependently as proposed recently in Refs. [22]. Thus
one can access the stable phase in the strongly interact-
ing regime and study various phase transitions.

We also work out the EoS for polaron condensate and
its universal behaviors. Knowing EoS, the density profile
inside a trap can be determined within local density ap-
proximation straightforwardly. On the other hand, the
universal constant A and F in EoS can be obtained from
in-situ measurement of the density profile and, similar
experiments have been performed in polarized Fermi gas
to extract Fermi liquid parameters of the polarons [10].
Extracting A and F from density profile is independent
of LOCV approximation used in this work and the ex-
perimental results can be compared with the theoretical
predictions.
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FIG. 4: (a) δE, defined as the energy difference between po-
laron condensate and molecule-fermion mixture, as a function
of η = 1/(kFaBF). We consider the case of equal mass as well
as the mixtures of 87Rb-40K and 87Rb-6Li. (b) The estimated
polaron-molecule transition point ηc as a function of boson
concentration x = nB/nF for equal mass.
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Summary for this part

1. Stability condition for a boson-fermion mixture across a FR

2. Properties of a polaron condensate, such as condensate fraction and 
critical velocity

From the single impurity atom problem, we determine: 
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Issues for this part:

1. details of the phase transition:
condensate + 1 FS ==> no condensate + 2 FS

2. finite temperature part of the phase diagram
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