The phase diagram of polar condensates

Taking the square root of a vortex

Austen Lamacraft [with Andrew James] arXiv:1009.0043

University of Virginia

September 23, 2010 KITP, UCSB

Outline

- Magnetism in Bose condensates
- Order parameters and topology in polar condensates
- 3 Domain walls, disclinations, and the phase diagram in 2D
- 4 Generalized XY model: view from field theory

Outline

- Magnetism in Bose condensates
- Order parameters and topology in polar condensates
- 3 Domain walls, disclinations, and the phase diagram in 2D
- 4 Generalized XY model: view from field theory

Magnetic Bose condensates

$\mathsf{BEC} \implies \mathsf{magnetism} \mathsf{ for bosons with spin!}$

Condensate wavefunction $\langle \phi(\mathbf{r}) \rangle \neq 0$ is a spinor and must choose a 'direction' in spin space.

Magnetic Bose condensates

$BEC \implies magnetism for bosons with spin!$

Condensate wavefunction $\langle \phi(\mathbf{r}) \rangle \neq 0$ is a spinor and must choose a 'direction' in spin space.

Example: spin-polarized Hydrogen

[Siggia & Ruckenstein, 1980]

$$\phi = \begin{pmatrix} \phi_{1/2} \\ \phi_{-1/2} \end{pmatrix} = e^{i\psi} \begin{pmatrix} e^{-i\varphi/2} \cos \theta/2 \\ e^{i\varphi/2} \sin \theta/2 \end{pmatrix}$$

All states (of fixed norm) obtained by rotation of reference state

Magnetic Bose condensates

$BEC \implies magnetism for bosons with spin!$

Condensate wavefunction $\langle \phi(\mathbf{r}) \rangle \neq 0$ is a spinor and must choose a 'direction' in spin space.

Example: spin-polarized Hydrogen

[Siggia & Ruckenstein, 1980]

$$\phi = \begin{pmatrix} \phi_{1/2} \\ \phi_{-1/2} \end{pmatrix} = e^{i\psi} \begin{pmatrix} e^{-i\varphi/2} \cos \theta/2 \\ e^{i\varphi/2} \sin \theta/2 \end{pmatrix}$$

All states (of fixed norm) obtained by rotation of reference state

Does magnetism \implies BEC?

or can ordering happen sequentially as temperature lowered?

Consider the spin-1 state

$$\phi = \begin{pmatrix} \phi_1 \\ \phi_0 \\ \phi_{-1} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

Consider the spin-1 state

$$\phi = \begin{pmatrix} \phi_1 \\ \phi_0 \\ \phi_{-1} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

ullet Not hard to show that $\phi^{\dagger}\left(\mathbf{m}\cdot\mathbf{S}^{(1)}\right)\phi=0$ $\left(\mathbf{S}^{(1)}
ight)$ the spin-1 matrices)

Consider the spin-1 state

$$\phi = \begin{pmatrix} \phi_1 \\ \phi_0 \\ \phi_{-1} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

- ullet Not hard to show that $\phi^{\dagger}\left(\mathbf{m}\cdot\mathbf{S}^{(1)}\right)\phi=0$ $\left(\mathbf{S}^{(1)}
 ight)$ the spin-1 matrices)
- Yet evidently there is still an axis (headless?)

Consider the spin-1 state

$$\phi = \begin{pmatrix} \phi_1 \\ \phi_0 \\ \phi_{-1} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

- ullet Not hard to show that $\phi^{\dagger}\left(\mathbf{m}\cdot\mathbf{S}^{(1)}\right)\phi=0$ $\left(\mathbf{S}^{(1)}
 ight)$ the spin-1 matrices)
- Yet evidently there is still an axis (headless?)
- Fixing the nature of the BEC requires some dynamical input (interactions)

Contact interactions in a spin-1 gas

Total spin 2

Contact interactions in a spin-1 gas

Total spin 0

Contact interactions in a spin-1 gas

$$egin{aligned} H_{\mathsf{int}} &= \sum_{i < j} \delta(\mathbf{r}_i - \mathbf{r}_j) \left[g_0 \mathcal{P}_0 + g_2 \mathcal{P}_2
ight] \ &= \sum_{i < j} \delta(\mathbf{r}_i - \mathbf{r}_j) \left[c_0 + c_2 \mathbf{S}_i \cdot \mathbf{S}_j
ight] \end{aligned}$$

$$c_0 = (g_0 + 2g_2)/3$$
 $c_2 = (g_2 - g_0)/3$

Mean field ground states

$$H_{\text{int}} = \sum_{i < j} \delta(\mathbf{r}_i - \mathbf{r}_j) \left[g_0 \mathcal{P}_0 + g_2 \mathcal{P}_2 \right]$$
$$= \sum_{i < j} \delta(\mathbf{r}_i - \mathbf{r}_j) \left[c_0 + c_2 \mathbf{S}_i \cdot \mathbf{S}_j \right]$$

Energy of state $\Psi_{m_1\cdots m_N}(\mathbf{r}_1,\ldots,\mathbf{r}_N)=\phi_{m_1}(\mathbf{r}_1)\cdots\phi_{m_N}(\mathbf{r}_N)$ involves

$$H_{\mathrm{int}} = rac{c_2}{2} (\phi^\dagger \mathbf{S} \phi)^2$$

Mean field ground states

$$H_{\text{int}} = \sum_{i < j} \delta(\mathbf{r}_i - \mathbf{r}_j) \left[g_0 \mathcal{P}_0 + g_2 \mathcal{P}_2 \right]$$
$$= \sum_{i < j} \delta(\mathbf{r}_i - \mathbf{r}_j) \left[c_0 + c_2 \mathbf{S}_i \cdot \mathbf{S}_j \right]$$

Energy of state $\Psi_{m_1\cdots m_N}(\mathbf{r}_1,\ldots,\mathbf{r}_N)=\phi_{m_1}(\mathbf{r}_1)\cdots\phi_{m_N}(\mathbf{r}_N)$ involves

$$H_{\rm int} = \frac{c_2}{2} (\phi^{\dagger} \mathbf{S} \phi)^2$$

- $c_2 < 0 \text{ (e.g. }^{87}\text{Rb)}$
 - ϕ^{\dagger} **S** ϕ is maximized

- $c_2 > 0$ (e.g. ^{23}Na)
 - ϕ^{\dagger} **S** ϕ is minimized

$$\phi = \mathbf{a} + i\mathbf{b}$$
 $\left(S_i^{(1)}\right)_{jk} = -i\epsilon_{ijk}$
 $\phi^{\dagger} \mathbf{S}^{(1)} \phi = 2\mathbf{a} \times \mathbf{b}$

$$\phi = \mathbf{a} + i\mathbf{b}$$
 $\left(S_i^{(1)}\right)_{jk} = -i\epsilon_{ijk}$
 $\phi^{\dagger} \mathbf{S}^{(1)} \phi = 2\mathbf{a} \times \mathbf{b}$

$c_2 < 0 \text{ (e.g. }^{87}\text{Rb)}$

- ϕ^{\dagger} **S** ϕ is maximized
- a and b perpendicular

$c_2 > 0$ (e.g. ²³Na)

- ϕ^{\dagger} **S** ϕ is minimized
- a and b parallel

$$\phi = \mathbf{a} + i\mathbf{b}$$
 $\left(S_i^{(1)}\right)_{jk} = -i\epsilon_{ijk}$
 $\phi^{\dagger}\mathbf{S}^{(1)}\phi = 2\mathbf{a} \times \mathbf{b}$

$c_2 < 0$ (e.g. ⁸⁷Rb)

- ϕ^{\dagger} **S** ϕ is maximized
- a and b perpendicular
- Order parameter manifold is SO(3)

$c_2 > 0$ (e.g. ²³Na)

- ullet ϕ^{\dagger} $\mathbf{S}\phi$ is minimized
- a and b parallel
- Order parameter written as $\phi = \mathbf{n}e^{i\theta}$

$$\phi = \mathbf{a} + i\mathbf{b}$$
 $\left(S_i^{(1)}\right)_{jk} = -i\epsilon_{ijk}$
 $\phi^{\dagger}\mathbf{S}^{(1)}\phi = 2\mathbf{a} \times \mathbf{b}$

$c_2 < 0 \; ({ m e.g.} \; ^{87}{ m Rb})$

- ϕ^{\dagger} **S** ϕ is maximized
- a and b perpendicular
- Order parameter manifold is SO(3)
- Ferromagnetic condensate

$c_2 > 0$ (e.g. ²³Na)

- ϕ^{\dagger} **S** ϕ is minimized
- a and b parallel
- Order parameter written as $\phi = \mathbf{n}e^{i\theta}$
- Polar condensate

The Bose Ferromagnet

Stamper-Kurn group, Berkeley

Outline

- Magnetism in Bose condensates
- Order parameters and topology in polar condensates
- 3 Domain walls, disclinations, and the phase diagram in 2D
- 4 Generalized XY model: view from field theory

Order parameter manifold for polar condensates

Mean field ground state written $\phi = \mathbf{n}e^{i\theta}$ There is an evident redundancy: (\mathbf{n}, θ) and $(-\mathbf{n}, \theta + \pi)$ are the same

Order parameter manifold for polar condensates

Mean field ground state written $\phi = \mathbf{n}e^{i\theta}$ There is an evident redundancy: (\mathbf{n}, θ) and $(-\mathbf{n}, \theta + \pi)$ are the same

Order parameter manifold for polar condensates

Mean field ground state written $\phi = \mathbf{n}e^{i\theta}$

There is an evident redundancy: (\mathbf{n}, θ) and $(-\mathbf{n}, \theta + \pi)$ are the same

Disclinations in nematic liquid crystals

Consequences for Kosterlitz–Thouless transition

Circulation quantum is halved

$$\oint \mathbf{v} \cdot d\mathbf{I} = \frac{\hbar}{m} \oint \nabla \theta = \frac{\hbar}{m} \pi n = \frac{h}{2m} n, \qquad n \in \mathbb{Z}$$

Consequences for Kosterlitz–Thouless transition

Circulation quantum is halved

$$\oint \mathbf{v} \cdot d\mathbf{I} = \frac{\hbar}{m} \oint \nabla \theta = \frac{\hbar}{m} \pi n = \frac{h}{2m} n, \qquad n \in \mathbb{Z}$$

Consider free energy of a single half vortex / disclination

$$E = \frac{n_s}{2m} \int d\mathbf{r} \, \mathbf{v}^2 = \frac{\pi n_s \hbar^2}{4m} \ln \left(\frac{L}{\xi}\right)$$

$$S = k_B \ln \left(\frac{L}{\xi}\right)^2$$

$$F = U - TS = \left(\frac{\pi n_s \hbar^2}{4m} - 2k_B T\right) \ln \left(\frac{L}{\xi}\right)$$

Consequences for Kosterlitz-Thouless transition

Circulation quantum is halved

$$\oint \mathbf{v} \cdot d\mathbf{l} = \frac{\hbar}{m} \oint \nabla \theta = \frac{\hbar}{m} \pi n = \frac{h}{2m} n, \qquad n \in \mathbb{Z}$$

Consider free energy of a single half vortex / disclination

$$E = \frac{n_s}{2m} \int d\mathbf{r} \, \mathbf{v}^2 = \frac{\pi n_s \hbar^2}{4m} \ln \left(\frac{L}{\xi}\right)$$

$$S = k_B \ln \left(\frac{L}{\xi}\right)^2$$

$$F = U - TS = \left(\frac{\pi n_s \hbar^2}{4m} - 2k_B T\right) \ln \left(\frac{L}{\xi}\right)$$

Vanishes for

$$n_s = \frac{8}{\pi} \frac{m k_B T}{\hbar^2}$$

Consequences for Kosterlitz–Thouless transition

Circulation quantum is halved

$$\oint \mathbf{v} \cdot d\mathbf{I} = \frac{\hbar}{m} \oint \nabla \theta = \frac{\hbar}{m} \pi n = \frac{h}{2m} n, \qquad n \in \mathbb{Z}$$

Consider free energy of a single half vortex / disclination

$$E = \frac{n_s}{l_s} \int_{-\infty}^{\infty} ds \int_{-\infty}^{\infty} d$$

Possible Experiments on Two-dimensional Nematics

BY P. G. DE GENNES

Physique du Solide, Faculté des Sciences, 91 Orsay

Received 9th July, 1971 \ '''' / \\$/

Vanishes for

$$n_s = \frac{8}{\pi} \frac{mk_B T}{\hbar^2}$$

KT transition mediated by half-vortices / disclinations

Jump is 4× bigger than usual! (Korshunov, 1985)

$$\Delta n_{KT/2} = 4\Delta n_{KT} = \frac{8}{\pi} \frac{mk_B T_c}{\pi \hbar^2}$$

KT transition mediated by half-vortices / disclinations

PRL 97, 120406 (2006)

PHYSICAL REVIEW LETTERS

week ending 22 SEPTEMBER 2006

Topological Defects and the Superfluid Transition of the s=1 Spinor Condensate in Two Dimensions

A simple model is

$$H = -t \sum_{\langle ij \rangle} \phi_i^{\dagger} \phi_j + \text{c.c}$$

= $-2t \sum_{ij} \mathbf{n}_i \cdot \mathbf{n}_j \cos(\theta_i - \theta_j)$

A simple model is

$$H = -t \sum_{\langle ij \rangle} \phi_i^{\dagger} \phi_j^{} + \text{c.c}$$

= $-2t \sum_{ij} \mathbf{n}_i \cdot \mathbf{n}_j \cos(\theta_i - \theta_j)$

Taking the continuum limit..

$$H o a^{2-d} t \int d\mathbf{r} \left[(\nabla \theta)^2 + (\nabla \mathbf{n})^2 \right]$$

Identifying (\mathbf{n}, θ) and $(-\mathbf{n}, \theta + \pi)$ ties half vortices to disclinations

A simple model is

$$H = -t \sum_{\langle ij \rangle} \phi_i^{\dagger} \phi_j^{} + \text{c.c}$$

= $-2t \sum_{ij} \mathbf{n}_i \cdot \mathbf{n}_j \cos(\theta_i - \theta_j)$

Taking the continuum limit...

$$H o a^{2-d} t \int d\mathbf{r} \left[(\nabla \theta)^2 + (\nabla \mathbf{n})^2 \right]$$

Identifying (\mathbf{n}, θ) and $(-\mathbf{n}, \theta + \pi)$ ties half vortices to disclinations

 Beneath KT transition, half vortices are absent and one can treat the n degrees of freedom as Heisenberg spins

A simple model is

$$H = -t \sum_{\langle ij \rangle} \phi_i^{\dagger} \phi_j + \text{c.c}$$
$$= -2t \sum_{ij} \mathbf{n}_i \cdot \mathbf{n}_j \cos(\theta_i - \theta_j)$$

Taking the continuum limit..

$$H o a^{2-d} t \int d\mathbf{r} \left[(\nabla \theta)^2 + (\nabla \mathbf{n})^2 \right]$$

Identifying (\mathbf{n}, θ) and $(-\mathbf{n}, \theta + \pi)$ ties half vortices to disclinations

- Beneath KT transition, half vortices are absent and one can treat the n degrees of freedom as Heisenberg spins
- Mermin–Wagner theorem says they do not order at finite temperature.

Outline

- Magnetism in Bose condensates
- Order parameters and topology in polar condensates
- 3 Domain walls, disclinations, and the phase diagram in 2D
- 4 Generalized XY model: view from field theory

Within the spin-1 multiplet, the Zeeman energy is

$$H_{Z,m} = pm + qm^2$$

 $p \propto B$ linear and $q \propto B^2/A_{
m HF}$ quadratic Zeeman effects

Within the spin-1 multiplet, the Zeeman energy is

$$H_{Z,m} = pm + qm^2$$

 $p \propto B$ linear and $q \propto B^2/A_{\rm HF}$ quadratic Zeeman effects

• Spin conservation makes p irrelevant, leading only to precession

Within the spin-1 multiplet, the Zeeman energy is

$$H_{Z,m} = pm + qm^2$$

 $p \propto B$ linear and $q \propto B^2/A_{HF}$ quadratic Zeeman effects

- Spin conservation makes p irrelevant, leading only to precession
- At large q m=0 state only occupied: ordering via usual KT transition

Within the spin-1 multiplet, the Zeeman energy is

$$H_{Z,m} = pm + qm^2$$

 $p \propto B$ linear and $q \propto B^2/A_{HF}$ quadratic Zeeman effects

- Spin conservation makes p irrelevant, leading only to precession
- At large q m=0 state only occupied: ordering via usual KT transition

Basic problem:

How does the phase diagram evolve with q from the $\frac{1}{2}$ KT transition mediated by half vortices to the usual KT transition?

Consequences of quadratic Zeeman effect

$$H_{QZ} = q \sum_{i} \phi_{i}^{\dagger} S_{z}^{2} \phi_{i} = q \sum_{i} (1 - n_{z,i}^{2})$$

Consequences of quadratic Zeeman effect

$$H_{QZ} = q \sum_{i} \phi_{i}^{\dagger} S_{z}^{2} \phi_{i} = q \sum_{i} (1 - n_{z,i}^{2})$$

q > 0 favors alignment of **n** in z-direction (easy axis)

$$H = -2t \sum_{ij} \mathbf{n}_i \cdot \mathbf{n}_j \cos(\theta_i - \theta_j) - q \sum_i n_{z,i}^2$$

Consequences of quadratic Zeeman effect

$$H_{QZ} = q \sum_{i} \phi_{i}^{\dagger} S_{z}^{2} \phi_{i} = q \sum_{i} (1 - n_{z,i}^{2})$$

q > 0 favors alignment of **n** in z-direction (easy axis)

$$H = -2t \sum_{ij} \mathbf{n}_i \cdot \mathbf{n}_j \cos(\theta_i - \theta_j) - q \sum_i n_{z,i}^2$$

Large q fixes \mathbf{n} : regular KT transition

Half vortices terminate soliton walls

Conjectured phase diagram

Monte Carlo simulation

Include hopping of singlet pairs $\phi \cdot \phi = \cos(2\theta)$

$$H = -\sum_{ij} \left[2t \, \mathbf{n}_i \cdot \mathbf{n}_j \cos \left(\theta_i - \theta_j \right) + u \cos \left(2 \left[\theta_i - \theta_j \right] \right) \right] - q \sum_i n_{\mathbf{z},i}^2$$

Monte Carlo simulation

Intermediate phase with singlet pair quasi-long range order

 $(\mathsf{data} \ \mathsf{at} \ \mathit{u} = 1)$

Heat Capacity

Binder cummulant

$$\Phi = \sum_{i} \phi_{i}$$
 $U_{4} = \frac{\langle \left(\Phi^{\dagger}\Phi\right)^{2}\rangle}{\left(\langle\Phi^{\dagger}\Phi\rangle\right)^{2}}$

Ising scaling for the lower transition

$$U_4 = f\left(\frac{L}{\xi}\right) = f\left(L\left|\frac{T - T_c}{T_c}\right|^{\nu}\right)$$

Ising scaling for the lower transition

Ising scaling for the lower transition

What about finite magnetization?

At finite magnetization have *spin-flop* transition: \mathbf{n} flops into x-y plane Analogous to antiferromagnet

What about finite magnetization?

At finite magnetization have *spin-flop* transition: \mathbf{n} flops into x-y plane Analogous to antiferromagnet

Zero temperature Heisenberg fixed point

Outline

- Magnetism in Bose condensates
- Order parameters and topology in polar condensates
- 3 Domain walls, disclinations, and the phase diagram in 2D
- 4 Generalized XY model: view from field theory

Generalized XY model

$$H_{ ext{gen}} = -\sum_{\langle ij
angle} \left(\Delta \cos(heta_i - heta_j) + (1 - \Delta) \cos(2 heta_i - 2 heta_j)
ight)$$

Korshunov (1985), Grinstein & Lee (1985)

Field theoretic view: how can domain walls end?¹

¹Thanks to Paul Fendley for discussions

Field theoretic view: how can domain walls end?¹

Recall disorder operator μ in Ising model

¹Thanks to Paul Fendley for discussions

Field theoretic view: how can domain walls end?¹

Recall disorder operator μ in Ising model

Half vortex insertion tied to disorder operator

¹Thanks to Paul Fendley for discussions

Phase diagram from $\mu \cos(\phi/2)$ perturbation

Phase diagram from $\mu \cos(\phi/2)$ perturbation

• $\frac{1}{2}$ KT occurs when $\cos{(\phi/2)}$ becomes relevant if $\langle \mu \rangle \neq 0$

Phase diagram from $\mu \cos(\phi/2)$ perturbation

- $\frac{1}{2}$ KT occurs when $\cos{(\phi/2)}$ becomes relevant if $\langle \mu \rangle \neq 0$
- ullet Along Ising line: continuous transition until $\mu\cos(\phi/2)$ relevant

Scaling with $\mu \cos(\phi/2)$ perturbation

$$H_{\text{vortex}} = \lambda \, \mu \cos \phi / 2$$

Three couplings to keep track of

- **1** λ , half vortex fugacity
- Stiffness K of superfluid

Scaling with $\mu \cos(\phi/2)$ perturbation

$$H_{
m vortex} = \lambda \, \mu \cos \phi / 2$$

Three couplings to keep track of

- \bullet λ , half vortex fugacity
- 2 t_I , energy operator for Ising
- Stiffness K of superfluid

$$\frac{d\lambda}{d\ell} = \left(2 - \frac{1}{8} - \frac{\pi K}{4}\right) \lambda + \frac{1}{2} \lambda t_I$$
$$\frac{dt_I}{d\ell} = t_I + \frac{\lambda^2}{2}$$
$$\frac{dK}{d\ell} = \lambda^2$$

RG flow for $K > 15/2\pi$

