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Magnetic Bose condensates

BEC =⇒ magnetism for bosons with spin!

Condensate wavefunction 〈φ(r)〉 6= 0 is a spinor and must choose a
‘direction’ in spin space.

Example: spin-polarized Hydrogen [Siggia & Ruckenstein, 1980]

φ =

(
φ1/2
φ−1/2

)
= e iψ

(
e−iϕ/2 cos θ/2

e iϕ/2 sin θ/2

)

All states (of fixed norm) obtained by rotation of reference state

Does magnetism =⇒ BEC?

or can ordering happen sequentially as temperature lowered?
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Higher spin gives additional possibilities

Consider the spin-1 state

φ =



φ1
φ0
φ−1


 =




0
1
0




Not hard to show that φ†
(
m · S(1)

)
φ = 0 (S(1) the spin-1 matrices)

Yet evidently there is still an axis (headless?)

Fixing the nature of the BEC requires some dynamical input
(interactions)
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Contact interactions in a spin-1 gas

Total spin 2
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Contact interactions in a spin-1 gas

Hint =
∑

i<j

δ(ri − rj) [g0P0 + g2P2]

=
∑

i<j

δ(ri − rj) [c0 + c2Si · Sj ]

c0 = (g0 + 2g2) /3 c2 = (g2 − g0) /3
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Mean field ground states

Hint =
∑

i<j

δ(ri − rj) [g0P0 + g2P2]

=
∑

i<j

δ(ri − rj) [c0 + c2Si · Sj ]

Energy of state Ψm1···mN
(r1, . . . , rN) = φm1(r1) · · ·φmN

(rN) involves

Hint =
c2
2

(φ†Sφ)2
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(φ†Sφ)2

c2 < 0 (e.g. 87Rb)

φ†Sφ is maximized

c2 > 0 (e.g. 23Na)

φ†Sφ is minimized
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Spin-1 states: Cartesian representation

φ = a + ib
(

S
(1)
i

)
jk

= −iεijk

φ†S(1)φ = 2a× b
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Spin-1 states: Cartesian representation

φ = a + ib
(

S
(1)
i

)
jk

= −iεijk

φ†S(1)φ = 2a× b

c2 < 0 (e.g. 87Rb)

φ†Sφ is maximized

a and b perpendicular

Order parameter manifold is
SO(3)

Ferromagnetic condensate

c2 > 0 (e.g. 23Na)

φ†Sφ is minimized

a and b parallel

Order parameter written as
φ = ne iθ

Polar condensate
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The Bose FerromagnetThe Bose ferromagnet: 87Rb

– Stamper-Kurn group, BerkeleyStamper-Kurn group, Berkeley
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Order parameter manifold for polar condensates

Mean field ground state written φ = ne iθ

There is an evident redundancy: (n, θ) and (−n, θ + π) are the same
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Disclinations in nematic liquid crystals
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Consequences for Kosterlitz–Thouless transition

Circulation quantum is halved

∮
v · d l =

~
m

∮
∇θ =

~
m
πn =

h

2m
n, n ∈ Z

Consider free energy of a single half vortex / disclination

E =
ns

2m

∫
dr v2 =

πns~2

4m
ln

(
L

ξ

)

S = kB ln

(
L

ξ

)2

F = U − TS =

(
πns~2

4m
− 2kBT

)
ln

(
L

ξ

)

Vanishes for

ns =
8

π

mkBT

~2
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KT transition mediated by half-vortices / disclinations

Jump is 4× bigger than usual! (Korshunov, 1985)

∆nKT/2 = 4∆nKT =
8

π

mkBTc

π~2
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KT transition mediated by half-vortices / disclinations

Topological Defects and the Superfluid Transition of the s ! 1 Spinor Condensate
in Two Dimensions

Subroto Mukerjee,1,2 Cenke Xu,1 and J. E. Moore1,2

1Department of Physics, University of California, Berkeley, California 94720, USA
2Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

(Received 12 May 2006; published 20 September 2006)

The s ! 1 spinor Bose condensate at zero temperature supports ferromagnetic and polar phases that
combine magnetic and superfluid ordering. We analyze the topological defects of the polar condensate,
correcting previous studies, and show that the polar condensate in two dimensions is unstable at any finite
temperature; instead, there is a nematic or paired superfluid phase with algebraic order in exp"2i!#, where
! is the superfluid phase, and no magnetic order. The Kosterlitz-Thouless transition out of this phase is
driven by unbinding of half-vortices (the spin-disordered version of the combined spin and phase defects
found by Zhou), and the anomalous universal 8Tc=" stiffness jump at the transition is confirmed in
numerical simulations. The anomalous stiffness jump is a clear experimental signature of this phase and
the corresponding phase transition.

DOI: 10.1103/PhysRevLett.97.120406 PACS numbers: 05.30.Jp, 03.75.Mn

Bose condensates of atoms with nonzero total spin, such
as 87Rb [1] and 23Na [2], have recently been the focus of
intense experimental and theoretical study. The hyperfine
degree of freedom in these systems allows complex
ordered states, distinct from those occurring in more con-
ventional systems of spinless bosons and combining super-
fluidity with different types of magnetic behavior. The
dynamics and topological defects of such states can be
observed either destructively or in situ [3,4]. In particular,
the experimental study of two-dimensional condensates
has been of special interest recently for at least three
reasons: The superfluid transition in two dimensions (2D)
is of the unconventional Kosterlitz-Thouless (KT) type
[5] (i.e., driven by unbinding of vortex defects); two-
dimensional superfluids have power-law correlations of
the quantum phase, rather than true long-range order; and
two-dimensional models are appropriate for some current
experiments [4,6].

Topological defects and ordered phases in the s ! 1
(i.e., total spin F ! 1) spinor condensate have been dis-
cussed theoretically in many papers since the work of Ho
[7] and Ohmi and Machida [8]. Experimentally, s ! 1
systems are realized using atoms of 23Na, 39K, and 87Rb
with nuclear spin I ! 3=2. In this Letter, we resolve the
nature of the topological defects in the polar or antiferro-
magnetic phase by explicitly obtaining the order-parameter
manifold and its first homotopy group, then show that a
new phase results in any polar s ! 1 condensate at finite
temperature in 2D. For the polar phase, Zhou [9] found the
order-parameter manifold "U"1# $ S2#=Z2 by noticing a
Z2 symmetry omitted in the earlier work of Ho [7]
but obtained an incorrect first homotopy group [10]; that
this homotopy group was incorrect was shown by Makëlä
et al. [11], but these authors claimed that Zhou’s order-
parameter manifold was also wrong. We show that Zhou’s

order-parameter manifold is correct but has the homotopy
groups obtained indirectly in Ref. [11].

These topological defects are crucial because they create
a new phase in two dimensions: We find that the 2D polar
condensate is unstable to a paired or nematic phase at any
finite temperature. This phase has algebraic order in 2!,
where ! is the superfluid phase, no spin order, and a
Kosterlitz-Thouless superfluid transition driven by uncon-
ventional topological defects (half-vortices). It has a clear
experimental signature: an anomalous superfluid stiffness
jump, which can be observed in an optically trapped con-
densate by the approach used by Hadzibabic et al. [12] to
measure the conventional stiffness jump.

The Hamiltonian for the s ! 1 spinor condensate is [7]

 H !
Z
dr
! @2
2M

r %
a &r a %U"r# %

a  a

% c0
2
 %
a  %

b  b a %
c2
2
 %
a  %

a0Fab & Fa0b0 b0 b
"
; (1)

where a, b, a0, b0 run from mz ! %1 to mz ! '1,M is the
mass of the bosons, U"r# is the trapping potential, and c2
and c0 are constants that depend on the strengths of the
singlet and triplet scattering amplitudes. The matrices F
are the SU"2# generators in the s ! 1 representation.

The mean-field ground states for U"r# ! 0 are homoge-
neous and unfragmented in the thermodynamic limit and
can be decomposed using  ! #####

n0
p

# , where # is a normal-
ized spin-1 spinor [7,13]. For c2 > 0, the ground state is
‘‘polar,’’ and, for c2 < 0, the ground state is ‘‘ferromag-
netic’’; any polar state spinor #P and any ferromagnetic
state spinor #F can be obtained from simple reference
states using a phase ! and a rotation matrix U in the s !
1 representation of SU"2#:
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Kosterlitz-Thouless transition for the U!1" phase but no S2

order at finite temperature. The renormalization-group
flows (i.e., ! functions) to all orders are unaffected by
the Z2 identification, but the vortices in the superfluid
phase now carry half the normal quantum of vorticity.
Since the NL"M analysis neglects amplitude fluctuations,
it is desirable to check that such a phase actually exists: A
prediction of the above analysis of the isotropic polar phase
is that the finite-temperature KT transition should be me-
diated by half-vortices of the phase.

The algebraically ordered state below the KT transition
has algebraic correlations of e2i#, not ei#, as # is only
defined modulo $. Note that this finite-temperature
sigma-model analysis for both phase and spin is distinct
from the zero-temperature analysis of spin with quantum
fluctuations [9,17] and from spin nematic phases of bosons
in optical lattices [18]: The state we find at finite tempera-
ture is an algebraically ordered nematic superfluid with no
spin order and gapless excitations. A transition mediated
by half-vortices is also found for spinless bosons near a
Feshbach resonance [19].

To picture this state, suppose that e2i# had an expectation
value rather than algebraic order: Locally, each component
 % averages to zero, but the spin-singlet combination
 0 0 # 2 $1 #1 % &e2i# ! 0 and the total current can
be nonzero:

 j s %
@

2iM
 &
%r % % @&r#

M
: (6)

Such a state can be thought of as nematic, since order is
present only in 2#, or paired, since the order appears in a
two-boson operator if  represents individual bosons.

A direct check on the above scenario is that the
Kosterlitz-Thouless transition will occur when half-
vortices unbind. The KT jump in the renormalized stiffness
or ‘‘helicity modulus’’ at the transition must therefore be
4 times larger than the conventional value:

 &c % 4&0
c %

8Tc
$
: (7)

The superfluid stiffness jump by &0
c in superfluid helium

was observed by Bishop and Reppy [20]. Recently, the KT
transition of a spinless atomic Bose-Einstein condensate
was observed [12]: The prediction that an isotropic s % 1
polar condensate will have a jump 4 times as large is a
direct experimental test for the superfluid nematic phase.

Numerical Monte Carlo simulations of the polar phase
(Fig. 1) reveal a jump in the helicity modulus compatible
with the enhanced value [Eq. (7)] in the thermodynamic
limit and clearly distinct from the conventional jump &c0.
An additional check is provided by turning on spin-space
anisotropy. The complete phase diagram with spin-space
anisotropy introduced through the term

 H0 %
Z
drg2! y

$1 $1 $  y
#1 #1" (8)

is shown in Fig. 2. In the polar case c2 > 0, with mz % 0
favored (g2 > 0), an ordinary KT transition occurs and is

observed numerically. With mz % '1 favored (g2 < 0),
the order-parameter manifold is reduced to !U!1" (
U!1""=Z2, where half-vortices of the in-plane spin are
bound to half-vortices of the phase, and for weak anisot-
ropy the anomalous jump survives. The experimental
source of this anisotropy is the quadratic Zeeman coupling
to an external field.

The numerics use the Ginzburg-Landau free energy

 F %
Z
dr
!
%!r a"&!r a" $ a0!T # TMFc " &

a a

$ c0
2
 &
a &

b b a $
c2
2
 &
a &

a0Fab ) Fa0b0 b0 b

$ g2! y
$1 $1 $  y

#1 #1"
"
; (9)
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FIG. 1 (color online). (Top) Helicity modulus ! as a function
of temperature for a set of fixed values of the parameters, % %
0:5, a0 % 4:0, TMFc % 1:0, c0 % 10:0, c2 % 3:0, g2 % 0 [see
Eq. (10)] for different system sizes. The two lines are 8T=$
and 2T=$. (Bottom) The goodness of fit R2 to Eq. (11) for
different sets of system sizes as a function of temperature. The
asterisks and crosses correspond to sets with system sizes 6, 8,
10, 12, 14, 16, 18, 20 and 10, 12, 14, 16, 18, 20, 24, 32,
respectively.
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What about the n degrees of freedom?

A simple model is

H = −t
∑

<ij>

φ†i φj + c.c

= −2t
∑

ij

ni · nj cos (θi − θj)

Taking the continuum limit..

H → a2−d t

∫
dr
[
(∇θ)2 + (∇n)2

]

Identifying (n, θ) and (−n, θ + π) ties half vortices to disclinations

Beneath KT transition, half vortices are absent and one can treat the
n degrees of freedom as Heisenberg spins

Mermin–Wagner theorem says they do not order at finite temperature.
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The Zeeman effect

Within the spin-1 multiplet, the Zeeman energy is

HZ ,m = pm + qm2

p ∝ B linear and q ∝ B2/AHF quadratic Zeeman effects

Spin conservation makes p irrelevant, leading only to precession

At large q m = 0 state only occupied: ordering via usual KT transition

Basic problem:

How does the phase diagram evolve with q from the 1
2KT transition

mediated by half vortices to the usual KT transition?
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Consequences of quadratic Zeeman effect

HQZ = q
∑

i

φ†i S2
z φi = q

∑

i

(1− n2
z,i )

q > 0 favors alignment of n in z-direction (easy axis)

H = −2t
∑

ij

ni · nj cos (θi − θj)− q
∑

i

n2
z,i

Large q fixes n: regular KT transition
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Half vortices terminate soliton walls
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Conjectured phase diagram

Austen Lamacraft (University of Virginia) The phase diagram of polar condensates September 23rd, 2010 20 / 32



Monte Carlo simulation

Include hopping of singlet pairs φ · φ = cos(2θ)

H = −
∑

ij

[2t ni · nj cos (θi − θj) + u cos(2 [θi − θj ])]− q
∑

i

n2
z,i
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Monte Carlo simulation

Intermediate phase with singlet pair quasi-long range order

0 2 4 6 8 10
q

0

0.5

1

1.5

2

2.5

3
T
/t
D

N

O

(data at u = 1)

Austen Lamacraft (University of Virginia) The phase diagram of polar condensates September 23rd, 2010 21 / 32



Heat Capacity
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Binder cummulant

Φ =
∑

i

φi U4 =
〈
(
Φ†Φ

)2〉
(〈Φ†Φ〉)2
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Ising scaling for the lower transition

U4 = f
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What about finite magnetization?

At finite magnetization have spin-flop transition: n flops into x − y plane
Analogous to antiferromagnet
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Hidden zero-temperature bicritical point in the two-dimensional anisotropic
Heisenberg model: Monte Carlo simulations and proper finite-size scaling

Chenggang Zhou,1, 2 D. P. Landau,2 and T. C. Schulthess1

1Center for Nanophase Materials Science and Computer Science and Mathematics Division,
Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge Tennessee, 37831-6493 USA

2Center for Simulational Physics, University of Georgia, Athens Georgia, 30602 USA
(Dated: February 6, 2008)

By considering the appropriate finite-size effect, we explain the connection between Monte Carlo
simulations of two-dimensional anisotropic Heisenberg antiferromagnet in a field and the early renor-
malization group calculation for the bicritical point in 2 + ε dimensions. We found that the long
length scale physics of the Monte Carlo simulations is indeed captured by the anisotropic nonlinear
σ model. Our Monte Carlo data and analysis confirm that the bicritical point in two dimensions is
Heisenberg-like and occurs at T = 0, therefore the uncertainty in the phase diagram of this model
is removed.

PACS numbers: 05.10.Cc 05.70.Jk 75.10.-b 75.40.Mg

I. INTRODUCTION

The two-dimensional anisotropic Heisenberg antifer-
romagnet has recently been re-studied with extensive
Monte Carlo simulations.1 Twenty five years after the
first attempt to delineate its phase diagram with Monte
Carlo simulations,2 many features of it have been clar-
ified. However, the nature of the “spin-flop transition”
has been an issue under debate, because the data from
the simulations have been inadequate to show unambigu-
ously the thermodynamic limit of the phase boundaries.
There is no spin-flop transition in the thermodynamic
limit according to the renormalization group (RG) cal-
culations in 2 + ε dimensions.3,4,5 Instead, there are two
neighboring second order phase boundaries and a disor-
dered phase in between. By tracing the phase boundaries
from high to low temperatures, only an upper bound for
the bicritical temperature can be claimed. Below this
temperature, an apparent first order spin-flop transition
is indeed observed in both Monte Carlo simulations and
neutron scattering experiments on quasi-two-dimensional
Heisenberg antiferromagnetic systems with anisotropy.6

It has been generally agreed that the existing data are
consistent with the RG predictions, although some fea-
tures near the spin-flop line, e.g. the apparent hysteresis2

and the unexpected crossing points in the Binder cumu-
lant,1 have not been accounted for.

In this paper, we study the “spin-flop transition” of
the XXZ model defined by the Hamiltonian

H = J
∑

〈i,j〉

[
∆

(
Sx

i Sx
j + Sy

i Sy
j

)
+ Sz

i Sz
j

]
− H

∑

i

Sz
i . (1)

Here Sx
i , Sy

i , and Sz
i are three components of a unit vec-

tor located on site i of a square lattice with periodic
boundary conditions in both directions. The anisotropy
is given by the parameter ∆, and H is the external mag-
netic field in the z direction. By the term “spin-flop
transition”, we refer to the boundary region between the
antiferromagnetic (AF) phase and the XY phase where

FIG. 1: Three candidates for the phase diagram. Solid lines
are second order phase boundaries, and the dashed line in (a)
is a first order phase boundary.

two separate second order phase boundaries cannot be
identified in simulations of finite-size systems. We set
J = 1 and ∆ = 4/5 for simplicity. Our results are ex-
pected to be valid for 0 < ∆ < 1, since no qualitatively
different behavior has been found for other values of ∆,
and the phase diagram for ∆ = 4/5 is most accurately
known.1

At low temperatures and in a low magnetic field, sys-
tems described by Eq. (1) exhibit an Ising-like AF phase,
where the order parameter, i.e. the staggered magneti-
zation in the z direction, has a finite value. Above a
sufficiently large magnetic field, which is a function of
temperature, the AF phase is replaced by an XY phase,
where the order parameter, i.e. the in-plane staggered
magnetization, has a finite value in the finite-size system
due to the power-law decay of its correlation function.
As pointed out in Ref. 1, there are three different possi-
ble scenarios for this spin-flop transition: (a) It is a first
order phase transition at low temperature; the first order
phase boundary and the second order phase boundaries
of the XY phase and the AF phase meet at a bicritical
point. (b) The bicritical point appears at zero tempera-
ture with a very narrow disordered phase separating the
XY and AF phases. (c) A “biconical phase”, in which
both order parameters are nonzero, separates the XY
and the AF phases. These three scenarios are shown in

Zero temperature Heisenberg fixed point
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Outline

1 Magnetism in Bose condensates

2 Order parameters and topology in polar condensates

3 Domain walls, disclinations, and the phase diagram in 2D

4 Generalized XY model: view from field theory
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Generalized XY model

Hgen = −
∑

〈ij〉

(
∆ cos(θi − θj) + (1−∆) cos(2θi − 2θj)

)

Korshunov (1985), Grinstein & Lee (1985)
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Field theoretic view: how can domain walls end?1

Recall disorder operator µ in Ising model

Half vortex insertion tied to disorder operator

1Thanks to Paul Fendley for discussions
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Phase diagram from µ cos(φ/2) perturbation

1
2KT occurs when cos (φ/2) becomes relevant if 〈µ〉 6= 0
Along Ising line: continuous transition until µ cos(φ/2) relevant
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Scaling with µ cos(φ/2) perturbation

Hvortex = λµ cosφ/2

Three couplings to keep track of

1 λ, half vortex fugacity

2 tI , energy operator for Ising

3 Stiffness K of superfluid

dλ

d`
=

(
2− 1

8
− πK

4

)
λ+

1

2
λtI

dtI
d`

= tI +
λ2

2
dK

d`
= λ2
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RG flow for K > 15/2π
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