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Outline

@ Magnetism in Bose condensates
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Magnetic Bose condensates

BEC = magnetism for bosons with spin!

Condensate wavefunction (¢(r)) # 0 is a spinor and must choose a
‘direction’ in spin space.
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Magnetic Bose condensates

BEC = magnetism for bosons with spin!

Condensate wavefunction (¢(r)) # 0 is a spinor and must choose a
‘direction’ in spin space.

Example: spin-polarized Hydrogen [Siggia & Ruckenstein, 1980]

b= b1/2 _ i e"chosﬁ/2
- \$12) e'?/2sin /2

All states (of fixed norm) obtained by rotation of reference state
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Magnetic Bose condensates

BEC = magnetism for bosons with spin!

Condensate wavefunction (¢(r)) # 0 is a spinor and must choose a
‘direction’ in spin space.

Example: spin-polarized Hydrogen [Siggia & Ruckenstein, 1980]

o P12\ _ v e_i@/2c059/2
¢_(¢_1/2 - ¢ e/ sin /2

All states (of fixed norm) obtained by rotation of reference state

Does magnetism —> BEC?

or can ordering happen sequentially as temperature lowered?
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Higher spin gives additional possibilities

Consider the spin-1 state

®1 0
o=\ 9 | =|1
-1 0
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Higher spin gives additional possibilities

Consider the spin-1 state

®1 0
o=\ 9 | =|1
-1 0

e Not hard to show that ¢f (m . S(l)) ¢ =0 (S the spin-1 matrices)

Austen Lamacraft (University of Virginia) The phase diagram of polar condensates September 23rd, 2010 5/32



Higher spin gives additional possibilities

Consider the spin-1 state

®1 0
o=\ 9 | =|1
-1 0

e Not hard to show that ¢f (m . S(l)) ¢ =0 (S the spin-1 matrices)

@ Yet evidently there is still an axis (headless?)
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Higher spin gives additional possibilities

Consider the spin-1 state

®1 0
o=\ 9 | =|1
-1 0

e Not hard to show that ¢f (m . S(l)) ¢ =0 (S the spin-1 matrices)
@ Yet evidently there is still an axis (headless?)

@ Fixing the nature of the BEC requires some dynamical input
(interactions)
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Contact interactions in a spin-1 gas

Total spin 2

A\
4 Collision W

Austen Lamacraft (University of Virginia) The phase diagram of polar condensates September 23rd, 2010



Contact interactions in a spin-1 gas

Total spin 0

. A
o Collision e
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Contact interactions in a spin-1 gas

A 9%

Hioe = Y 8(ri — 1)) [g0P0 + £2P2]

i<j

= Z d(ri —rj)[co + @S;i - Sj]

i<j

oy

o’

co= (g +28)/3 c=(8—8)/3

Austen Lamacraft (University of Virginia) The phase diagram of polar condensates September 23rd, 2010 6 /32



Mean field ground states

Hioe = Y 8(ri — 1)) [g0P0 + £2P2]

i<j

= Zé(r,- — 1) [0+ &2S; - S

i<j

’

Energy of state Wy, .ompy (1, - -, ¥N) = @my(r1) - - - ¢my(ra) involves

|nt - (¢TS¢)
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Mean field ground states

Hioe = Y 8(ri — 1)) [g0P0 + £2P2]

i<j

= Zé(r,- — 1) [0+ &2S; - S

i<j

’

Energy of state Wy, .ompy (1, - -, ¥N) = @my(r1) - - - ¢my(ra) involves

|nt - (¢TS¢)

o ('S¢ is minimized

o ('S¢ is maximized
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Spin-1 states: Cartesian representation

¢=a+ib
<Si(1)>jk = —lzp

#'SMp =2axb
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Spin-1 states: Cartesian representation

p=a+ib
<Si(1)>jk = —lzp

#'SMgp =2axb

¢ <0 (e.g. ¥Rb) co > 0 (e.g. #Na)
o ¢'S¢ is maximized e ¢'S¢ is minimized
@ a and b perpendicular @ a and b parallel
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Spin-1 states: Cartesian representation

¢=a+ib
<Si(1)>jk = —lzp

#'SMgp =2axb

¢ <0 (e.g. Rb)

o ¢'S¢ is maximized o ¢'S¢ is minimized

@ a and b perpendicular @ a and b parallel

@ Order parameter manifold is @ Order parameter written as
SO(3) ¢ = ne'
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Spin-1 states: Cartesian representation

¢=a+ib
<S’.(1)>jk = —lzp

#'SMgp =2axb

’

o <0 (e.g. ¥Rb) c >0 (e.g. *Na)
e ¢'S¢ is maximized e ¢'S¢ is minimized
@ a and b perpendicular @ a and b parallel
@ Order parameter manifold is o Order parameter written as
S0(3) ¢ = ne'
@ Ferromagnetic condensate ) @ Polar condensate )
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The Bose Ferromagnet

0 50 10 150 200 250ms

Stamper-Kurn group, Berkeley
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Outline

9 Order parameters and topology in polar condensates
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Order parameter manifold for polar condensates

Mean field ground state written ¢ = ne'

There is an evident redundancy: (n,6) and (—n, 0 + ) are the same
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Order parameter manifold for polar condensates

Mean field ground state written ¢ = ne'

There is an evident redundancy: (n,6) and (—n, 6 + ) are the same

O=mn
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Disclinations in nematic liquid crystals

Principles of
condensed
y matter physics

P. M. Chaikin & T. C. Lubensky |
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Consequences for Kosterlitz—Thouless transition

Circulation quantum is halved

%v-dlzhfvezhﬂn:hn, nez
m m 2m
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Consequences for Kosterlitz—Thouless transition

Circulation quantum is halved

%v-dlzhfvezhﬂn:hn, nez
m m 2m

Consider free energy of a single half vortex / disclination

_ s [ g2 o Tl (L
E—2m drv® = am In(g

2
S= kBIn <é>

2
F=U-TS= (”"sh = 2kBT> In <L>
4m 13
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Consequences for Kosterlitz—Thouless transition

Circulation quantum is halved

%v-dlzhfvezhﬂn:hn, nez
m m 2m

Consider free energy of a single half vortex / disclination

_ s [ g2 o Tl (L
E—2m drv® = am In(g

2

SszIn <é>
wngh? L
FzU—TS:( re —2kBT> In<£>

8 mkg T
T T J

Vanishes for
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Consequences for Kosterlitz—Thouless transition

Circulation quantum is halved

%v-dlzhfvezhﬂn:hn, nez
m m 2m

Consider free energy of a single half vortex / disclination

/4,‘.2 _ 7rn5h2 1 /L\

Possible Experiments on Two-dimensional Nematics
B By P. G. pB GBNNES '
Phyuque du Solide, Faculté des Sciences, 91 Orsay

. Received 9th July, 1971
N / \S/

Vanishes for

8 mkg T
T T J
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KT transition mediated by half-vortices / disclinations

Jump is 4x bigger than usual! (Korshunov, 1985)

8 ka TC
A = 4A = -
Nkt /2 nkTt P
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KT transition mediated by half-vortices / disclinations

k endi
PRL 97, 120406 (2006) PHYSICAL REVIEW LETTERS 22 SEPTEMBER. 2006

Topological Defects and the Superfluid Transition of the s = 1 Spinor Condensate
in Two Dimensions

Subroto Mukerjee,"? Cenke Xu,' and J. E. Moore'*
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What about the n ees of freedom?
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What about the n degrees of freedom?

@ A simple model is
H=—t Z gb,Tgbj +c.c
<ij>

= —21‘2 n; - nj cos (0, — 91)

y
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What about the n degrees of freedom?

@ A simple model is

H= —tz ¢,T¢j+c.c

<ij>

= —21‘2 n; - nj cos (0, — 91)

y

@ Taking the continuum limit..
H— 229t / dr [(vo)2 + (Vn)z]

Identifying (n,8) and (—n, 6 + 7) ties half vortices to disclinations
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What about the n degrees of freedom?

@ A simple model is

H= —tz ¢,T¢j+c.c

<ij>

= —21‘2 n; - nj cos (0, — 91)

)

@ Taking the continuum limit..
H— 229t / dr [(vo)2 + (Vn)z]
Identifying (n,8) and (—n, 6 + 7) ties half vortices to disclinations

@ Beneath KT transition, half vortices are absent and one can treat the
n degrees of freedom as Heisenberg spins
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What about the n degrees of freedom?

@ A simple model is
H=—t Z gb,TgZ)j +c.c
<ij>

= —21‘2 n; - nj cos (0, — 91)

y

@ Taking the continuum limit..
H— 229t / dr [(vo)2 + (Vn)z]

Identifying (n,8) and (—n, 6 + 7) ties half vortices to disclinations

@ Beneath KT transition, half vortices are absent and one can treat the
n degrees of freedom as Heisenberg spins

@ Mermin—Wagner theorem says they do not order at finite temperature.
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Outline

9 Domain walls, disclinations, and the phase diagram in 2D
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The Zeeman effect

Within the spin-1 multiplet, the Zeeman energy is

Hz,m = pm+ qm’ J

p o B linear and q &< B?/AnF quadratic Zeeman effects
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The Zeeman effect

Within the spin-1 multiplet, the Zeeman energy is

Hz,m = pm+ qm’ J

p o B linear and q &< B?/AnF quadratic Zeeman effects

@ Spin conservation makes p irrelevant, leading only to precession
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The Zeeman effect

Within the spin-1 multiplet, the Zeeman energy is

Hz,m = pm+ qm’ J

p o B linear and q &< B?/AnF quadratic Zeeman effects

@ Spin conservation makes p irrelevant, leading only to precession

o At large g m = 0 state only occupied: ordering via usual KT transition
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The Zeeman effect

Within the spin-1 multiplet, the Zeeman energy is

Hz,m = pm+ qm’ J

p o B linear and q &< B?/AnF quadratic Zeeman effects

@ Spin conservation makes p irrelevant, leading only to precession

o At large g m = 0 state only occupied: ordering via usual KT transition

Basic problem:

How does the phase diagram evolve with g from the %KT transition
mediated by half vortices to the usual KT transition?
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Consequences of quadratic Zeeman effect

Hoz=q) ¢!S26.=q3 (1—n2,)
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Consequences of quadratic Zeeman effect

Hoz=q) ¢!S26.=q3 (1—n2,)

g > 0 favors alignment of n in z-direction (easy axis)

H= _2tzn,--njcos(a,-—Qj)—qZ"ii

y
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Consequences of quadratic Zeeman effect

Hoz=q) ¢!S26.=q3 (1—n2,)

g > 0 favors alignment of n in z-direction (easy axis)

H= _2tzn,--njcos(a,-—Qj)—qZ"ii

y

Large g fixes n: regular KT transition
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Conjectured phase diagram

-1/2 KT
Temperature (KV e+l 1/oKT
g +1
+1/2 -1
e +1/2 +1/2 19 /.+1/2 ) ®
[ B °
+1/2
’/
//’/ +1~ -1
e (X
+1/2 172
=9
Spin disordered Superfluid
Superfluid Ising
>
/ Quadratic Zeeman

(Domain wall energy)
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Monte Carlo simulation

Include hopping of singlet pairs ¢ - ¢ = cos(26)

H=- Z [2tn; - njcos (§; — ;) + ucos(2[6; — 0;])] — qz ni,
ij i
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Monte Carlo simulation

Intermediate phase with singlet pair quasi-long range order

3
S5

(data at u=1)
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Heat Capacity
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Binder cummulant
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Ising scaling for the lower transition
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Ising scaling for the lower transition

l4———1———7 1 1.4
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Ising scaling for the lower transition

l4———1———7 1 1.4
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Binder cumulant
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What about finite magnetization?

At finite magnetization have spin-flop transition: n flops into x — y plane
Analogous to antiferromagnet
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What about finite magnetization?

At finite magnetization have spin-flop transition: n flops into x — y plane
Analogous to antiferromagnet

1T

Ty

Zero temperature Heisenberg fixed point
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Outline

@ Generalized XY model: view from field theory
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eralized model

(ij)
Korshunov (1985), Grinstein & Lee (1985)
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Field theoretic view: how can domain walls en

'Thanks to Paul Fendley for discussions
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Field theoretic view: how can domain walls end??

Recall disorder operator p in Ising model

Flip ] \ u(r,)

e

'Thanks to Paul Fendley for discussions

Austen Lamacraft (University of Virginia) The phase diagram of polar condensates September 23rd, 2010 28 / 32



Field theoretic view: how can domain walls end??

Recall disorder operator p in Ising model

Flip | \ u(r,)

e

u(ry)

Half vortex insertion tied to disorder operator

'Thanks to Paul Fendley for discussions
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Phase diagram from i cos(¢/2) perturbation

Temperature 1/2 KT

<HU> nonzero

Spin disordered

Superfluid I

Ising

KT

Superfluid

/

>

Quadratic Zeeman
(Domain wall energy)
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Phase diagram from i cos(¢/2) perturbation

o KT occurs when cos (¢/2) becomes relevant if (;1) # 0
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Phase diagram from i cos(¢/2) perturbation

o KT occurs when cos (¢/2) becomes relevant if (;1) # 0
@ Along Ising line: continuous transition until 1 cos(¢/2) relevant

Temperature 1/2 KT KT,
<HU> nonzero
Spin disordered Superfluid
Superfluid ~—in g
>
/ Quadratic Zeeman

(Domain wall energy)
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Scaling with pcos(¢/2) perturbation

Hvortex = L cos ¢/2 J

Three couplings to keep track of

@ )\, half vortex fugacity
@ 1, energy operator for Ising
© Stiffness K of superfluid
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Scaling with pcos(¢/2) perturbation

Hvortex = L cos ¢/2 J

Three couplings to keep track of

@ )\, half vortex fugacity
@ 1, energy operator for Ising
© Stiffness K of superfluid

A _ <2—1—7TK>)\+1)¢,

dr 8 4 2
e~ T2
dK
)2
dé
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Temperature 1/2 KT
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