2D Bose and Non-Fermi Liquid "Metals"

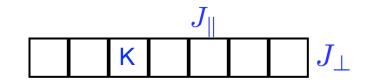
MPA Fisher, with O. Motrunich, D. Sheng, E. Gull, S. Trebst, A. Feiguin

KITP Cold Atoms Workshop 10/5/2010

Interest: A class of exotic gapless 2D Many-Body States

- a) What are these "strange-metals"? Singular surfaces in momentum space (eg. *Bose- surfaces*)
- b) Variational wavefunctions?
- c) 2D Bose-metal in cold atoms?

- 2D "Strange-Metals" have tractable quasi-1D descendents
- Approach 2D via quasi-1D "ladders" with DMRG



What is a "Bose-Metal"?

First: Bose Condensate in Free Bose Gas

Superfluid in interacting Bose Gas

Equal time Boson Green's function

$$G_b(\mathbf{r}) = \langle b^{\dagger}(\mathbf{r})b(\mathbf{0})
angle$$

Momentum distribution fucntion

$$n_{\mathbf{k}}^{b} = G_{b}(\mathbf{k}) = \langle b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} \rangle$$

Off-diagonal long-ranged order

BEC condensate

$$G_b(\mathbf{r} \to \infty) = \rho$$

 $n_{\mathbf{k}}^{BEC} = N \delta_{\mathbf{k},\mathbf{0}}$

n_k

k

$\begin{array}{ll} & \textbf{2D Interacting Superfluid} \\ \text{Interacting Hamiltonian} & H = \sum_{j} \frac{\mathbf{p}_{j}^{2}}{2m} + \sum_{i,j} V(\mathbf{r}_{i} - \mathbf{r}_{j}) \end{array}$

 $G_b(\mathbf{r}) = \langle b^{\dagger}(\mathbf{r})b(\mathbf{0}) \rangle$

Green's function

Off-diagonal

$$G_b(\mathbf{r} \to \infty) = \rho_c = Z\rho; \quad Z < 1$$

k

Depleted Condensate density in Interacting Superfluid

long-ranged order

$$n_{\mathbf{k}}^{SF} = ZN\delta_{\mathbf{k},0} + \delta n_{\mathbf{k}}^{SF} \qquad \text{Z<1}$$

2D Bose-Metal

$$G_b(\mathbf{r}) = \langle b^{\dagger}(\mathbf{r})b(\mathbf{0}) \rangle$$

1- + 1

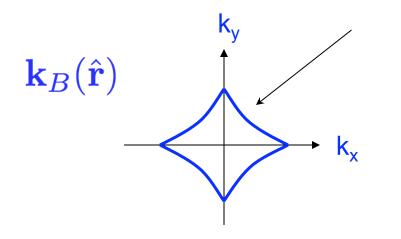
(Equal time Boson Green's function)

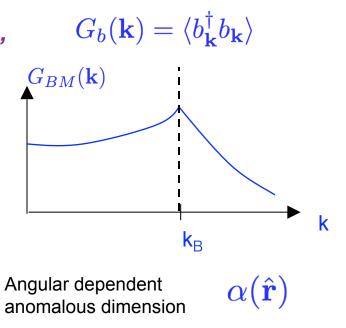
$$G_{BM}(\mathbf{r}) \sim \frac{\cos[\mathbf{k}_B(\hat{\mathbf{r}}) \cdot \mathbf{r}]}{|\mathbf{r}|^{\alpha(\hat{\mathbf{r}})}}$$

• Real space Green's function has oscillatory

power law decay (*not* a Bose condensate)

• A stable liquid phase of bosons that is not a superfluid

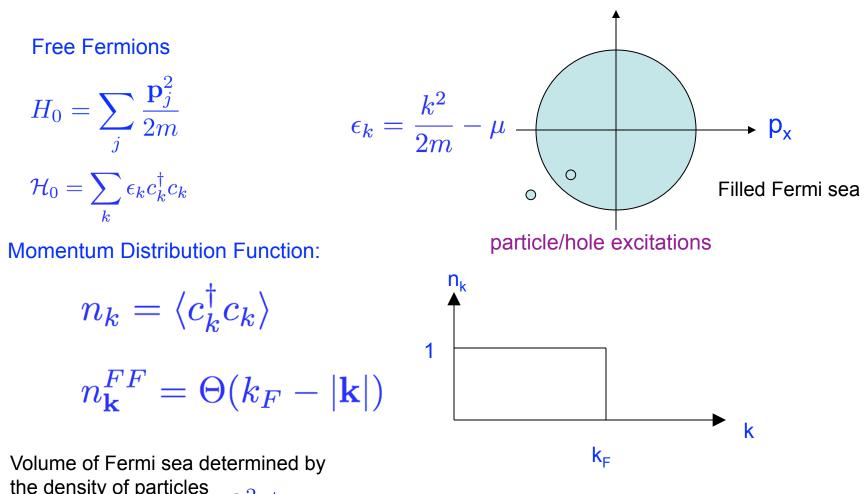




What is a "Non-Fermi-liquid metal"?

First: What is a Fermi Liquid Metal

2D Free Fermi Gas



the density of particles $\rho = k_F^2/4\pi$ Fermion Spectral function:

$$A_0(k,\omega) = ImG_0(k,\omega) = \delta(\omega - \epsilon_k)$$

Sharp quasiparticle excitations:

2D Fermi-liquid Metal

Equal time Green's function:

$$G(\mathbf{r} - \mathbf{r'}) = \langle c^{\dagger}(\mathbf{r})c(\mathbf{r'}) \rangle$$

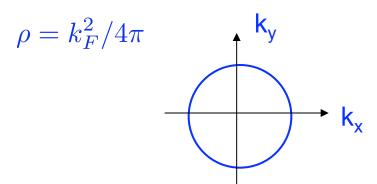
Oscillatory decay

$$G_{FL}(\mathbf{r}) \sim \frac{\cos(k_F |\mathbf{r}| - 3\pi/4)}{|\mathbf{r}|^{\alpha_{FL}}}; \quad \alpha_{FL} = 3/2$$

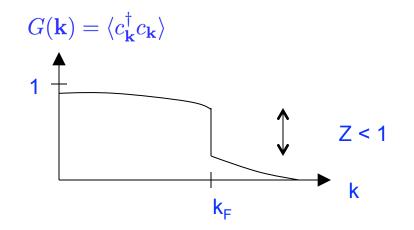
Momentum distribution function

$$n_{\mathbf{k}}^{FL} = Z \cdot n_{\mathbf{k}}^{FF} + \delta n_{\mathbf{k}}^{FL} \qquad Z < 1$$

Luttingers Thm: Volume inside Fermi surface set by total density of fermions

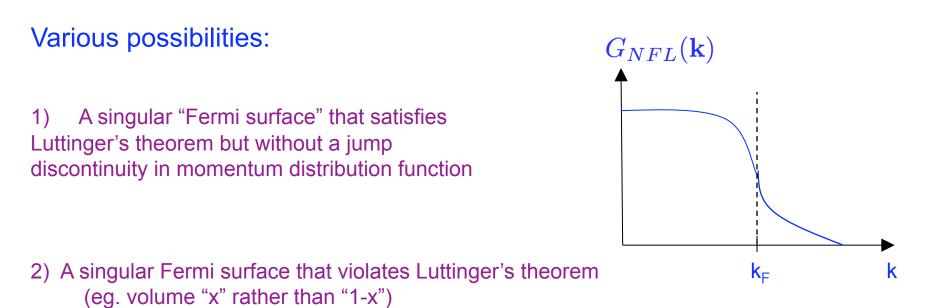


Quasi-particle excitation are (infinitely) long-lived on the Fermi surface

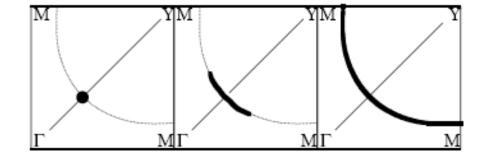


 $A(k,\omega) = Z\delta(\omega - \epsilon_k) + A_{inc}(k,\omega)$

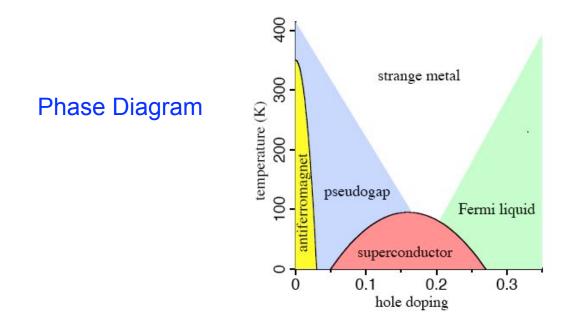
2D Non-Fermi Liquid Metal



3) A singular "Fermi surface" with ``arc"



Motivation for Non-Fermi-Liquid Metal: "Abnormal" state of High T_c Superconductors



Strange metal: "Fermi surface" but quasiparticles are not "sharp" Spectral function measured with ARPES suggests Z=0

Strategy: Construct candidate Non-Fermi liquid quantum states as putative strange metals

Wavefunction for 2D Bose-Metal? Wavefunction for 2D Non-Fermi liquid Metal?

First: Wavefunction for BEC and Superfluid phase of Bosons

Wavefunction for Free Fermions and a Fermi liquid

Wavefunctions for Bose BEC and Superfluid

Bose Einstein Condensate (BEC)

 $\Psi_{BEC} = 1$

Wavefunction is everywhere positive ie. nodeless

Interacting Superfluid (SF)

Maintain the same nodeless structure, put in a factor to keep the particles apart

 $\Psi_{SF} = e^{-\sum_{i < j} u(\mathbf{r}_i - \mathbf{r}_j)} \ge 0$

Jastrow form $u(\mathbf{r})$ is a variational parameter (function)

Wavefunction for 2D Free Fermi gas

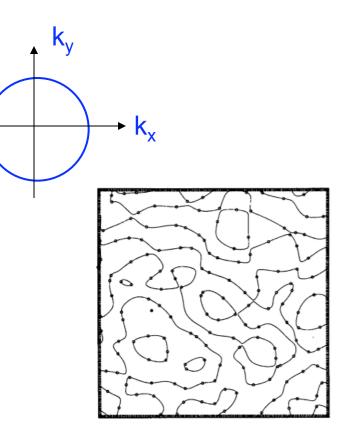
(N spinless fermions in 2D)

Free Fermion determinant: (eg with 2D circular Fermi surface)

$$\Psi_{FF}(\{\mathbf{r}_i\}) = det[e^{i\mathbf{k}_i \cdot \mathbf{r}_j}]$$

Real space *"nodal structure"* Define a ``relative single particle function"

$$\Phi_{\mathbf{r}_2,...,\mathbf{r}_N}(\mathbf{r}) \equiv \Psi(\mathbf{r},\mathbf{r}_2,...,\mathbf{r}_N)$$



Nodal lines: Ultraviolet and infrared "locking"

Wavefunction for interacting Fermi liquid?

Keep the sign (nodal) structure of free fermions, modifying the amplitude of the wavefunction, eg to keep the particles apart.

Common form: Multiply the free fermion wavefunction by a Jastrow factor,

$$\Psi_{Jastrow} = e^{-\sum_{i < j} u(\mathbf{r}_i - \mathbf{r}_j)} \ge 0$$

Proposed Fermi liquid wavefunction, with u(r) as a variational function

$$\Psi_{FL} = e^{-\sum_{i < j} u(\mathbf{r}_i - \mathbf{r}_j)} \psi_{FF}$$

Open question: Does the momentum distribution function that follows from this class of wavefunctions have a jump discontinuity on a Fermi surface with volume set by the density of particles?? Most probably yes!

$$G(\mathbf{r} - \mathbf{r}') = \int_{\mathbf{r}_{2},..,\mathbf{r}_{N}} \Psi_{FL}^{*}(\mathbf{r},\mathbf{r}_{2},..,\mathbf{r}_{N}) \Psi_{FL}(\mathbf{r}',\mathbf{r}_{2},..,\mathbf{r}_{N}) \quad \rightarrow \quad \left\langle c_{\mathbf{k}}^{\dagger} c_{\mathbf{k}} \right\rangle = G(\mathbf{k})$$

Wavefunction for a 2D (D-wave) Bose-Metal

O. Motrunich/ MPAF Phys. Rev. B (2007)

Wavefunctions:

N bosons moving in 2d:

Define a ``relative single particle function"

"Known" example of boson non-superfluid: Laughlin nu=1/2 Bosons:

Point nodes in ``relative particle function" Relative d+id 2-particle correlations

$$\Psi(\mathbf{r}_1,\mathbf{r}_2,...,\mathbf{r}_N)$$

$$\Phi_{\mathbf{r}_2,\ldots,\mathbf{r}_N}(\mathbf{r})\equiv\Psi(\mathbf{r},\mathbf{r}_2,\ldots,\mathbf{r}_N)\;.$$

$$\Psi_{\nu=1/2}(z_1, z_2, \dots, z_N) = \prod_{i < j} (z_i - z_j)^2$$
.

$$\Phi_{\nu=1/2}(z) \sim (z - z_i)^2$$

Goal: Construct time-reversal invariant analog of Laughlin, (with relative d_{xy} 2-particle correlations)

Wavefunction for D-wave Bose-Metal (DBM)

Hint: nu=1/2 Laughlin is a determinant squared

$$\Psi_{\nu=1/2} = [\Psi_{\nu=1}]^2$$
 $\Phi_{\nu=1}(z) \sim (z - z_i)$ p+ip 2-body

Try squaring Fermi sea wf: No, "s-wave" with ODLRO

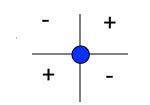
$$\Psi(\mathbf{r}_1,\mathbf{r}_2,\ldots,\mathbf{r}_N) = (\det e^{i\mathbf{k}_i\cdot\mathbf{r}_j})^2 , \quad (ext{S-type}).$$

"D-wave" Bose-Metal: Product of 2 different Fermi sea determinants, elongated in the x or y directions

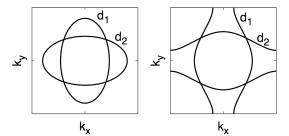
$$\Psi_{D_{xy}}(\mathbf{r}_1,...,\mathbf{r}_N) = (det)_x \times (det)_y$$

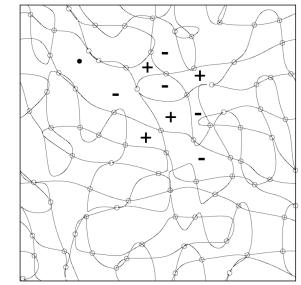
Nodal structure of DBM wavefunction:

$$\Phi_{D_{xy}}(\mathbf{r}) \sim (x - x_i)(y - y_i)$$



D_{xy} relative 2-particle correlations





Gauge Theory for D-wave Bose Metal phase Slave Fermion decomposition for lattice bosons: $b^{\dagger}(\mathbf{r}) = d_{1}^{\dagger}(\mathbf{r})d_{2}^{\dagger}(\mathbf{r})$

Gauge Theory Hamiltonian: $H_{U(1)} = H_t + H_a$

$$egin{aligned} H_t &= -\sum_{\mathbf{r}} \left[t_{\parallel} e^{i a_x(\mathbf{r})} d_1^{\dagger}(\mathbf{r}) d_1(\mathbf{r}+\hat{\mathbf{x}}) + t_{\perp} e^{i a_y(\mathbf{r})} d_1^{\dagger}(\mathbf{r}) d_1(\mathbf{r}+\hat{\mathbf{y}}) + h.c.
ight] \ &- \sum_{\mathbf{r}} \left[t_{\perp} e^{-i a_x(\mathbf{r})} d_2^{\dagger}(\mathbf{r}) d_2(\mathbf{r}+\hat{\mathbf{x}}) + t_{\parallel} e^{-i a_y(\mathbf{r})} d_2^{\dagger}(\mathbf{r}) d_2(\mathbf{r}+\hat{\mathbf{y}}) + h.c.
ight] \end{aligned}$$

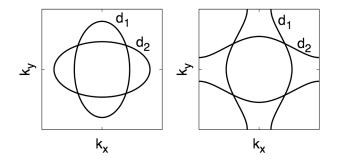
$$H_a = h \sum_{\mathbf{r}} \sum_{\mu=x,y} e_{\mu}^2(\mathbf{r}) - K \sum_{\mathbf{r}} \cos[(\nabla \times a)_{\mathbf{r}}]$$

$$(
abla \cdot e)_{\mathbf{r}} = d_1^\dagger(\mathbf{r}) d_1(\mathbf{r}) - d_2^\dagger(\mathbf{r}) d_2(\mathbf{r})$$

Strong coupling: h>>K,t integrate out gauge field gives Boson Hamiltonian:

 $\mathcal{H}(\hat{b},\hat{b}^{\dagger})$

Weak Coupling: K>> h,t Anisotropic Fermi surfaces of d_1 and d_2 minimally coupled to a (non-compact) U(1) gauge field



Bose Surfaces in D-wave Bose-Metal

Mean Field Green's functions factorize:

$$G_{b}^{MF}(\mathbf{r},\tau) = G_{d_{1}}^{MF}(\mathbf{r},\tau)G_{d_{2}}^{MF}(\mathbf{r},\tau)/\bar{\rho}$$

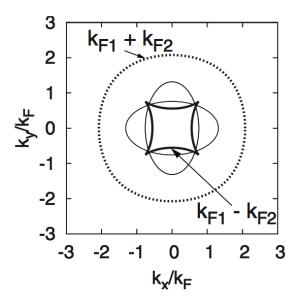
$$\mathcal{G}_{d_{\alpha}}^{MF}(\mathbf{r}) \approx \frac{1}{2^{1/2}\pi^{3/2}} \frac{\cos(\mathbf{k}_{F_{\alpha}}\cdot\mathbf{r}-3\pi/4)}{c_{\alpha}^{1/2}|\mathbf{r}|^{3/2}} \qquad (\partial\epsilon_{\alpha}/\partial\mathbf{k})_{\mathbf{k}_{F\alpha}(\hat{\mathbf{r}})} = (const)\hat{\mathbf{r}}$$

Momentum distribution function:

$$n_b(\mathbf{k}) = \int G_b(\mathbf{r}) e^{i\mathbf{k}\cdot\mathbf{r}} d\mathbf{r}$$

Two singular lines in momentum space, Bose surfaces:

$$\mathbf{k}_{F_1}(\hat{\mathbf{r}}) \pm \mathbf{k}_{F_2}(\hat{\mathbf{r}})$$



h/

Gutzwiller wavefunction for Electron NFL "metal"

Decompose the electron: spinless charge e boson and s=1/2 neutral fermionic spinon

$$c^{\dagger}_{\mathbf{r}\alpha} = b^{\dagger}_{\mathbf{r}} f^{\dagger}_{\mathbf{r}\alpha}$$

Mean Field Theory

Treat "Spinons" and Bosons as Independent:

Wavefunctions

$${\psi}_f(\mathbf{x}_{i\uparrow},\mathbf{x}_{i\downarrow})$$

$$\mathcal{H}=\mathcal{H}_f+\mathcal{H}_b$$

 $\psi_{i}, \mathbf{x}_{i\downarrow}) \qquad \psi_{b}(\mathbf{r}_{j})$

(enlarged Hilbert space - twice as many particles)

"Fix-up" Mean Field Theory

Gutzwiller projection: "glue" together Fermion and Boson "partons"

$$\Psi_G \equiv \psi_f(\mathbf{x}_{i\alpha}) \times \psi_b(\mathbf{r}_i \to \mathbf{x}_{i\alpha})$$

Project back into physical Hilbert space

Fermi and Non-Fermi Liquids?

Put the Spinons in a filled Fermi sea

$$\psi_f = \det[e^{i\mathbf{k}_i \cdot \mathbf{x}_{j\uparrow}}] \times \det[e^{i\mathbf{k}_i \cdot \mathbf{x}_{j\downarrow}}]$$

Fermi Liquid: Put the Bosons into a superfluid

$$\psi_b^{SF} = e^{-\sum_{i < j} u(\mathbf{r}_i - \mathbf{r}_j)}$$

 $\Psi_{FL} = \mathcal{P}_G[\psi_f^{FF} \times \psi_b^{SF}]$

Non-Fermi Liquid: Put Bosons into an *uncondensed* fluid - a "Bose metal"

 $\Psi_{NFL} = \mathcal{P}_G[\psi_f^{FF} \times \psi_b^{BoseMetal}]$

D-wave NFL Metal: Product of Fermi sea and D-wave Bose-Metal

Bose-Metals in Cold Atoms?

Bosonic Atoms in an optical Lattice

(1) Bose-Hubbard model:

$$\mathcal{H}_B = -J \sum_{\langle ij \rangle} (b_i^{\dagger} b_j + h.c.) + U \sum_i n_i^2$$

Unfrustrated;

Superfluid away from commensurate filling

Fermionic Atoms in an optical Lattice

(2) Attractive U Fermion Hubbard model

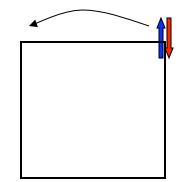
$$\mathcal{H} = -t \sum_{ij} (c_{i,\alpha}^{\dagger} c_{j,\alpha} + h.c.) - U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Cooper-Pair Hopping model

Attractive U Hubbard model for Fermionic atoms

$$\mathcal{H}_F = -t \sum_{ij} (c_{i,\alpha}^{\dagger} c_{j,\alpha} + h.c.) - U \sum_i n_{i\uparrow} n_{i\downarrow}$$

 $b_i^\dagger = c_{i\uparrow}^\dagger c_{i\downarrow}^\dagger$

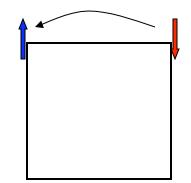


Cooper Pair Hopping model

Attractive U Hubbard model for Fermionic atoms

$$\mathcal{H}_F = -t \sum_{ij} (c_{i,\alpha}^{\dagger} c_{j,\alpha} + h.c.) - U \sum_i n_{i\uparrow} n_{i\downarrow}$$

 $b_i^\dagger = c_{i\uparrow}^\dagger c_{i\downarrow}^\dagger$

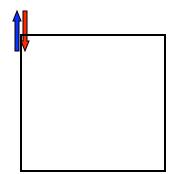


Cooper Pair Hopping model

Attractive U Hubbard model for Fermionic atoms

$$\mathcal{H}_F = -t \sum_{ij} (c_{i,\alpha}^{\dagger} c_{j,\alpha} + h.c.) - U \sum_i n_{i\uparrow} n_{i\downarrow}$$

 $b_i^\dagger = c_{i\uparrow}^\dagger c_{i\downarrow}^\dagger$

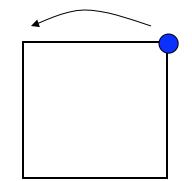


Cooper Pair Hopping model

Attractive U Hubbard model for Fermionic atoms

$$\mathcal{H}_F = -t \sum_{ij} (c_{i,\alpha}^{\dagger} c_{j,\alpha} + h.c.) - U \sum_i n_{i\uparrow} n_{i\downarrow}$$

 $b_i^\dagger = c_{i\uparrow}^\dagger c_{i\downarrow}^\dagger$



Attractive U Hubbard: Paired Superfluid phase

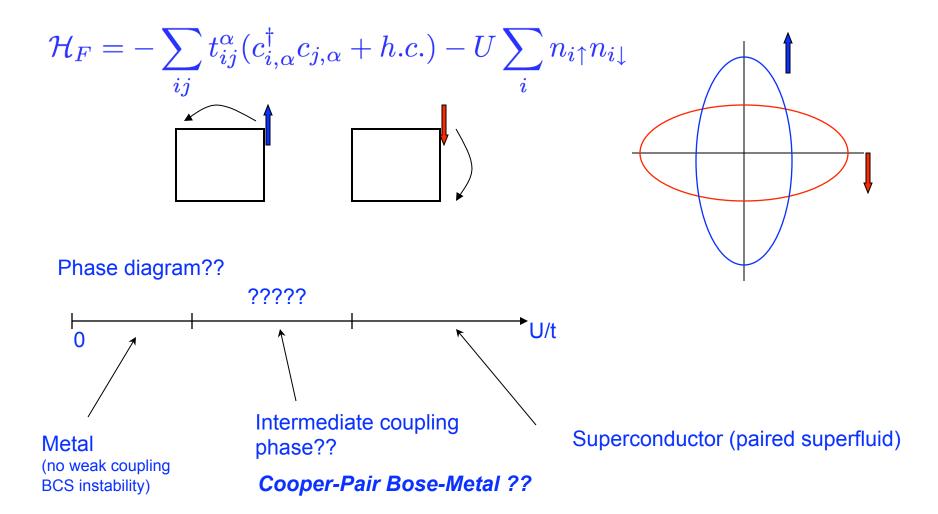
Attractive U Hubbard model for Fermionic atoms

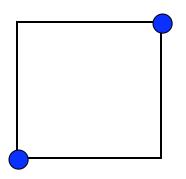
$$\begin{split} \mathcal{H}_{F} &= -t \sum_{ij} (c_{i,\alpha}^{\dagger} c_{j,\alpha} + h.c.) - U \sum_{i} n_{i\uparrow} n_{i\downarrow} \\ b_{i}^{\dagger} &= c_{i\uparrow}^{\dagger} c_{i\downarrow}^{\dagger} & \text{Hard core boson (Cooper pair)} \\ \mathcal{H}_{B} &= -J \sum_{\langle ij \rangle} (b_{i}^{\dagger} b_{j} + h.c.) + V \sum_{\langle ij \rangle} n_{i} n_{j} \\ J &\sim V \sim t^{2}/U \end{split}$$

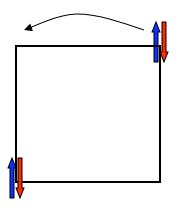
Unfrustrated (hard-core) Bose-Hubbard model -

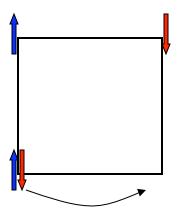
Paired superfluid phase for arbitrary U/t

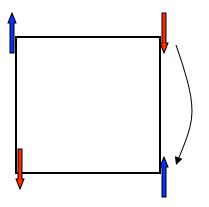
Generate frustration? *Anisotropic* attractive U Hubbard model

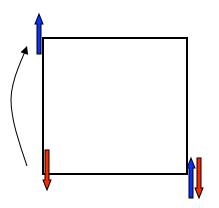


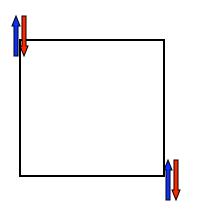


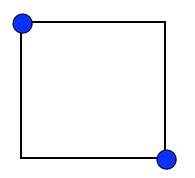










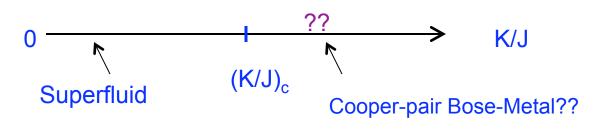


Cooper-Pair Ring Exchange Model

$$\mathcal{H}_{JK} = -J\sum_{ij} (b_i^{\dagger}b_j + h.c.) + K\sum_{plackets} (b_1^{\dagger}b_2b_3^{\dagger}b_4 + h.c.)$$

Cooper-pair ring term

Phase diagram: K/J and density of Cooper pairs bosons



Boson J-K Model support 2D Cooper-pair Bose-Metal?

$$\mathcal{H}_{JK} = -J \sum_{ij} (b_i^{\dagger} b_j + h.c.) + K \sum_{plackets} (b_1^{\dagger} b_2 b_3^{\dagger} b_4 + h.c.)$$

ED is too small for putative gapless phase Sign problem for Quantum Monte Carlo Variational Monte Carlo is biased DMRG only works well in 1D

Exploit Bose Surface in Cooper-Pair Bose Metal

"Slave Fermion" decomposition:

$$b^{\dagger}_i = c^{\dagger}_{i\uparrow}c^{\dagger}_{i\downarrow}$$

Mean Field Green's functions factorize: (no gauge fluctuations)

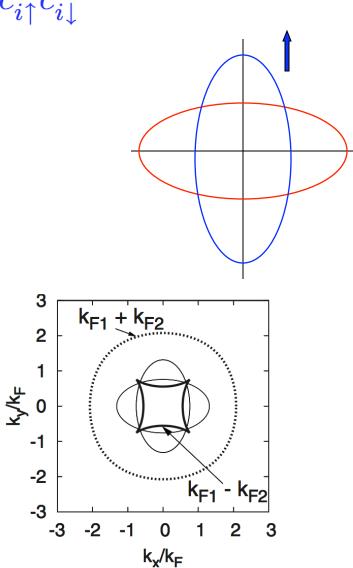
$$G_b^{MF}(\mathbf{r}) = G_{c_{\uparrow}}(\mathbf{r})G_{c_{\downarrow}}(\mathbf{r})$$

Momentum distribution function:

 $\langle b_k^\dagger b_k
angle$

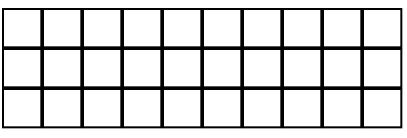
Two singular lines in momentum space, Bose surfaces:

$$\mathbf{k}_{F_1}(\hat{\mathbf{r}}) \pm \mathbf{k}_{F_2}(\hat{\mathbf{r}})$$

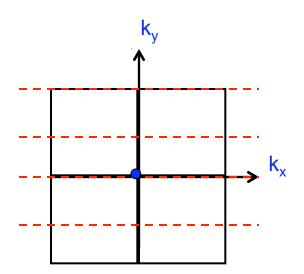


Ladders to the Rescue

Transverse y-components of momentum become quantized

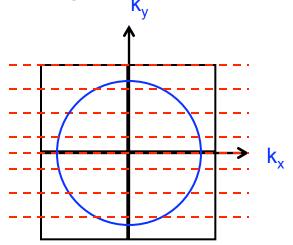


Put Bose superfluid on n-leg ladder



Single gapless 1d mode

Put Cooper-pair Bose-Metal on n-leg ladder



Many gapless 1d modes, one for each "Bose point"

Expectation: Signature of Bose surface in Bose-Metal on n-leg ladders!!

Boson ring model on the 2-Leg Ladder

- Exact Diagonalization (2 x 18)
- Variational Monte Carlo
- DMRG (2 x 50)

E. Gull, D. Sheng, S. Trebst, O. Motrunich and MPAF, Phys. Rev. B 78, 54520 (2008)

Correlation Functions:

- 1) Momentum Distribution function
- 2) Density-density structure factor

$$H = H_{J} + H_{4} ,$$

$$H_{J} = -J \sum_{\mathbf{r}; \hat{\mu} = \hat{\mathbf{x}}, \hat{\mathbf{y}}} (b_{\mathbf{r}}^{\dagger} b_{\mathbf{r}+\hat{\mu}} + h.c.) ,$$

$$H_{4} = K_{4} \sum_{\mathbf{r}} (b_{\mathbf{r}}^{\dagger} b_{\mathbf{r}+\hat{\mathbf{x}}} b_{\mathbf{r}+\hat{\mathbf{x}}+\hat{\mathbf{y}}}^{\dagger} b_{\mathbf{r}+\hat{\mathbf{y}}} + h.c.) ,$$

$$J \parallel$$

$$\mathbf{K} = J \parallel$$

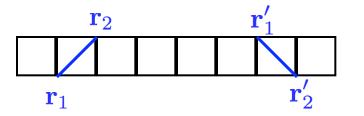
$$n(k_x, k_y) = \langle b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} \rangle; \quad k_y = 0, \pi$$

$$\mathcal{D}(\mathbf{k}) = \sum_{\mathbf{r}} e^{i\mathbf{k}\cdot\mathbf{r}} \langle n_{\mathbf{r}} n_{\mathbf{0}} \rangle \qquad n_{\mathbf{r}} = b_{\mathbf{r}}^{\dagger} b_{\mathbf{r}}$$

3) Pair-boson correlator

P(

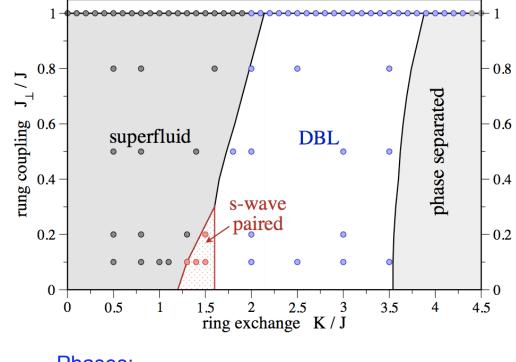
$$(\mathbf{r}_1,\mathbf{r}_2;\mathbf{r}_1',\mathbf{r}_2') = \langle b_{\mathbf{r}_1}^\dagger b_{\mathbf{r}_2}^\dagger b_{\mathbf{r}_1'} b_{\mathbf{r}_2'}
angle$$



Ladder descendant of 2D Bose-metal??

Phase Diagram for 2-leg ladder

 $\rho = 1/3$



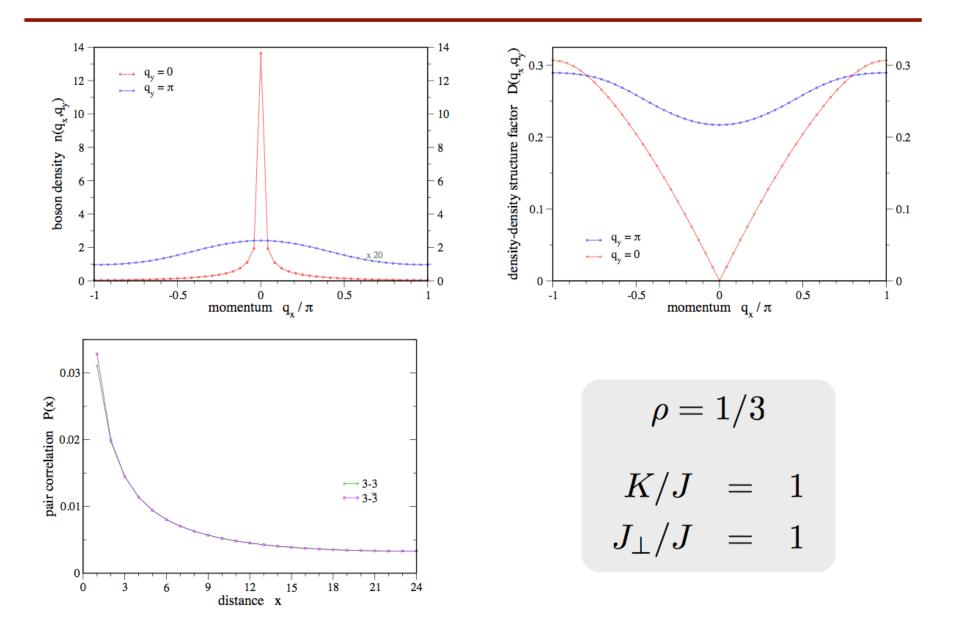
Phases:

- 1) Superfluid "Bose condensate"
- 2) D-Wave Bose Metal DBL
- 3) s-wave Pair-Boson "condensate"

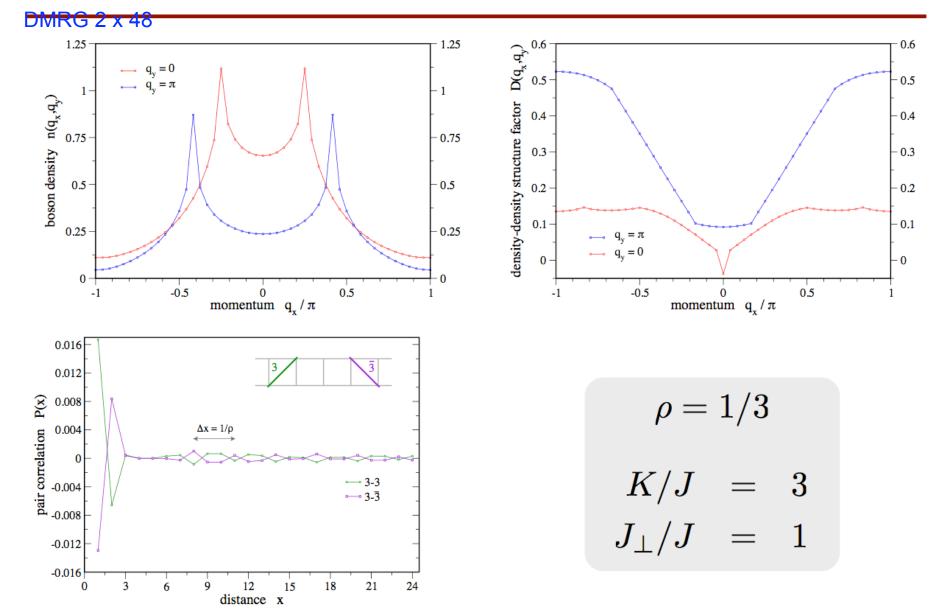
D-wave Bose-Metal occupies large region of phase diagram

Superfluid (DMRG)

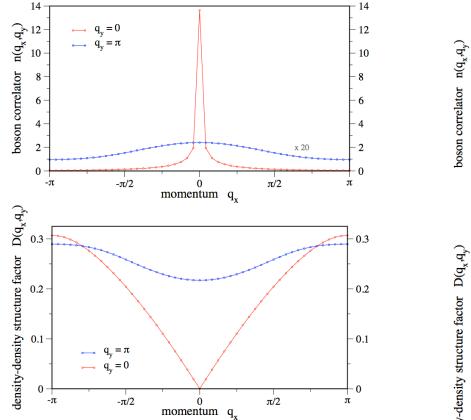
DMRG 2 x 48



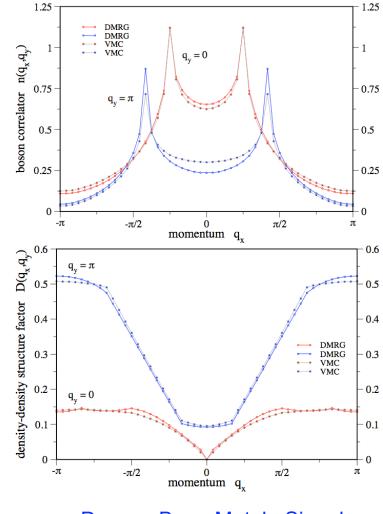
D-Wave Bose Metal (from DMRG)



Superfluid versus D-wave Bose-Metal

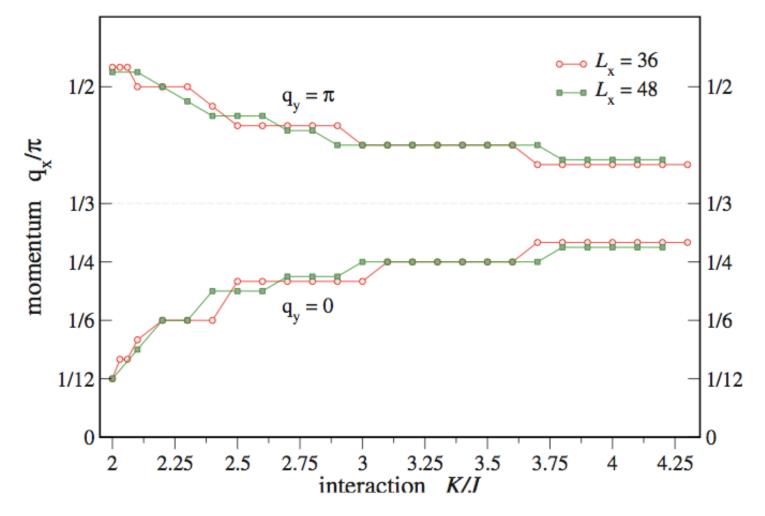


Superfluid - "condensed" at zero momentum

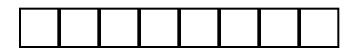


D-wave Bose-Metal; Singular "Bose points" at $q_y=0,\pi$

Singular Momentum in D-wave Bose-Metal (Bose "surface")



Variational Wavefunction for ladder



STRONG-COUPLING PHASES OF FRUSTRATED BOSONS ...

In DBM:

Bonding/Antibonding occupied For d_1 Fermion

Just Bonding occupied For d_2 Fermion

Variational parameter: Fermi wavevectors in d₁ bands



$$\Psi_{\text{bos}}(r_1, r_2, \ldots) = \Psi_{d_1}(r_1, r_2, \ldots) \cdot \Psi_{d_2}(r_1, r_2, \ldots)$$

DBM: How good is ladder variational wavefunction?



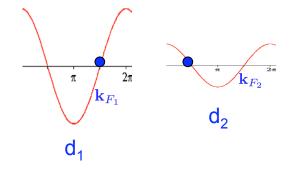
Gauge mean field theory predicts singularities in momentum distribution function at:

 $\mathbf{k}_{F_1} \pm \mathbf{k}_{F_2}$

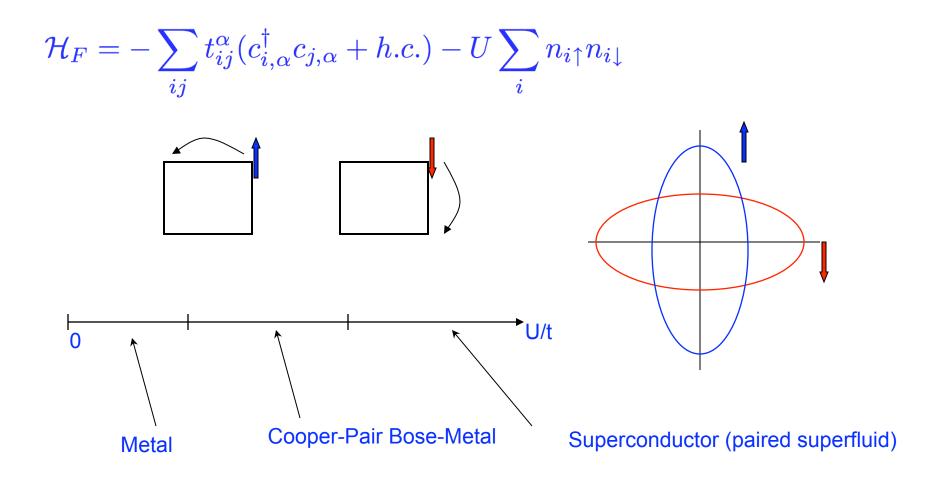
Both DMRG and det₁ x det₂ Wavefunction show singular cusps *only* at: $\mathbf{k}_{F_1} - \mathbf{k}_{F_2}$

Why? Ampere's Law - Parallel currents attract

d₁ and d₂ Fermions have opposite gauge charge, so right moving d₁ attracts left moving d₂ $\mathbf{k}_{F_1} - \mathbf{k}_{F_2}$ to form boson at momentum:



(Conjectured) Phase-Diagram for Anisotropic attractive U Hubbard model



Direct analysis of anisotropic Attractive U Hubbard model

A.E. Feiguin and MPAF, PRL 103, 25303 (2009).

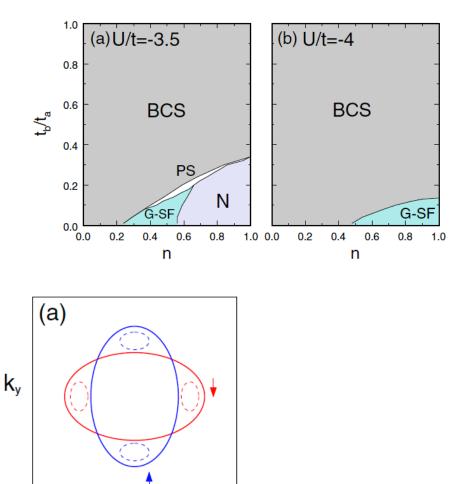
BCS theory – Phase diagram

 $t_b/t_{a=}$ anisotropy in the hopping n = Fermion density

$$\epsilon_{\uparrow}(k_x, k_y) = -2t_a \cos(k_x) - 2t_b \cos(k_y) - \mu,$$

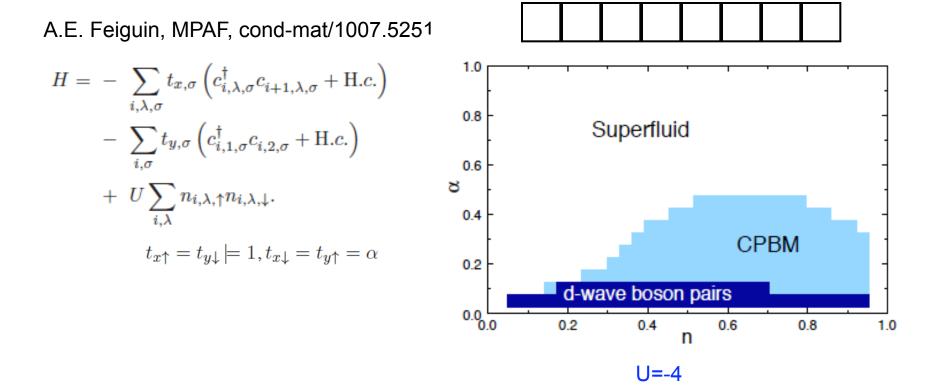
$$\epsilon_{\downarrow}(k_x, k_y) = -2t_b \cos(k_x) - 2t_a \cos(k_y) - \mu,$$

N= normal metal BCS = fully gapped superfluid G-SF = "gapless superfluid", condensate at Q=0 with gapless unpaired Fermi pockets



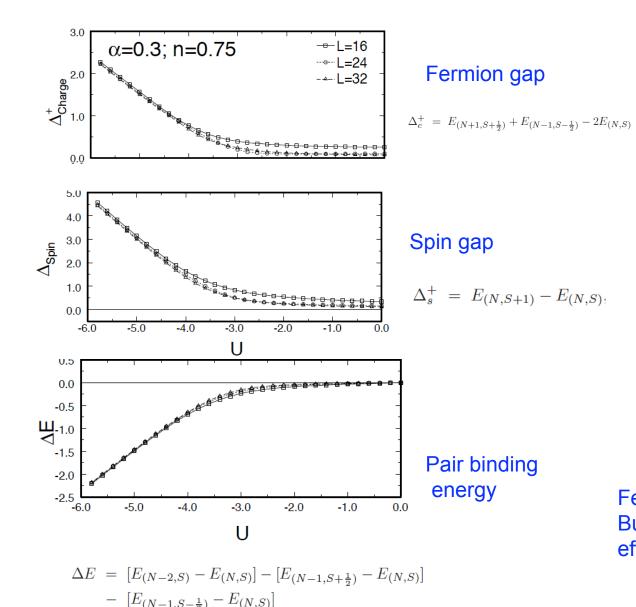
Cooper-pair Bose metal not accessible in BCS theory

Anisotropic attractive U Hubbard on 2-leg ladder



Evidence for CPBM

 $b_i^{\dagger} = c_{i\uparrow}^{\dagger} c_{i\downarrow}^{\dagger}$



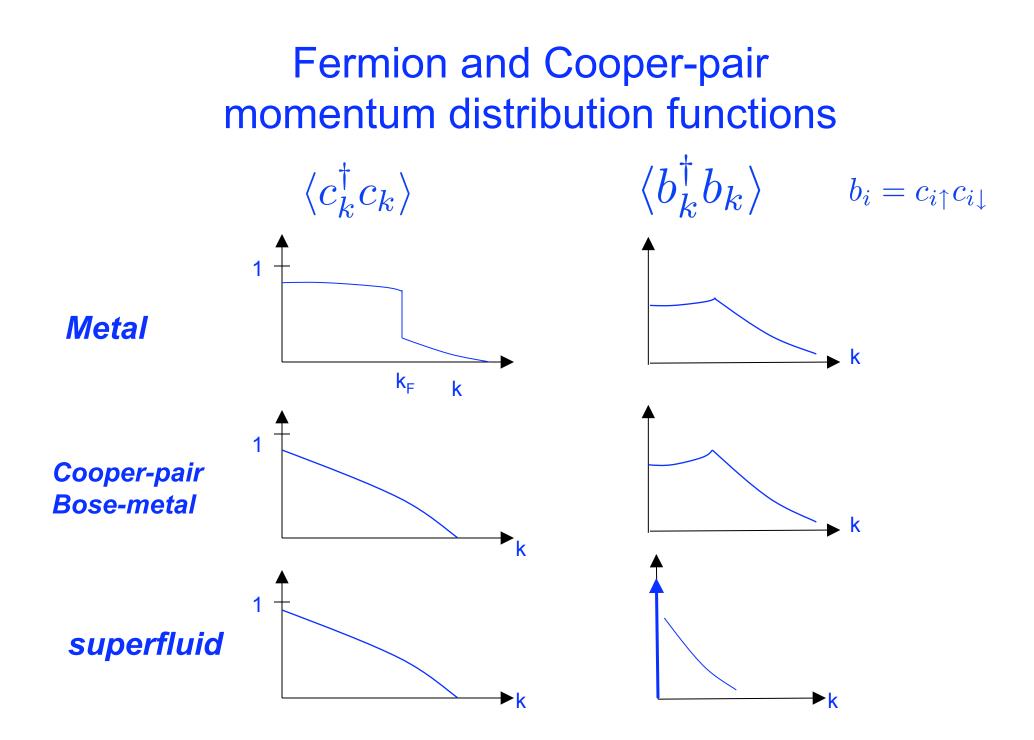
 $\underbrace{\underbrace{}_{ie}^{0.8}}_{0.6} = \underbrace{\underbrace{}_{ie}^{0.4}}_{0.2} \underbrace{\underbrace{}_{ie}^{0.4}}_{0.2} \underbrace{\underbrace{}_{ie}^{0.4}}_{0.2} \underbrace{\underbrace{}_{ie}^{10}}_{0.0} \underbrace{\underbrace{}_{ie}^{10$

$$n_{\text{Pair}}(\mathbf{k}) = (1/L) \sum_{ij} \exp[i\mathbf{k}(\mathbf{r}_i - \mathbf{r}_j)] \langle b_i^{\dagger} b_j \rangle$$

Cooper-pair momentum Distribution function

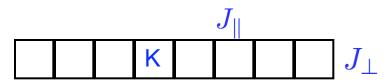
Resembles Bose-metal, Definitely not a superfluid

Fermions are gapped, But Cooper-pair "sees" residual effects of Fermi surfaces



Summary & Outlook

- Bose-Metals are 2D gapless liquids with singular "Bose" surfaces
- Cooper-pair Bose-metal accessible in cold atoms with anisotropic attractive Hubbard model?
- Every 2D Bose-Metal has a distinct set of quasi-1D descendents states which should be numerically accessible via DMRG
- Hard core bosons with 4-site ring term on the 2-leg ladder has a quasi-1D descendant Bose-Metal ground state over a large part of phase diagram



Future generalizations (DMRG, VMC, gauge theory):

- Boson Ring exchange models on 3-leg (in progress), 4-leg ladders
- Quasi-1D descendents of 2D non-Fermi liquids of itinerant electrons? (D-Wave Metal on the n-leg ladder?)
- Other Hamiltonians with Bose-Metal or non-Fermi-liquid states???