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TKE Balance for SBL
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Budget Equations for SBL
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> Turbulentkinetic energy: Eg = E(u >
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Budget Equations for SBL

DE, 0,
+ =11+pF. - D
Dt Oz PE -
DE, 0,
=—fF. - D
Dt 4 P g
_ 1y
E9—5<6’ >



Total Turbulent Energy.
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Budget Equations for SBL
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No Critical Richardson Number

\)

IKE

—| D

—| (67

[/T

DEjy
Dt

DE

P

DQ
0P e BE —D
Dt T 3, T +BF, — Dk
oD
- P:_/BF:_DP

Dt

0z

Eltr o ple)-ple)eLov, )

Po



Atmospheric Turbulent Convection

> The atmospheric turbulent convection:

« the fully organized large-scale flow (the mean flow or mean wind)

« the small-scale turbulent fluctuations,
« long-lived large-scale semi-organized (coherent) structures.

> Two types of the semi-organized Sstructures:

o cloud “streets”
o Cloud cells

> The life-times and spatial scales of the semi-organized
structures are much larger.than the turbulent scales.

Etling, D. and Brown, R. A., 1993. Boundary-LLayer Meteorol., 65, 215—248.

Atkinson, B. W. and'Wu Zhang, J., 1996. Reviews of: Geophysics, 34, 403—431.



Closed cloud cells over the Atlantic Ocean

ﬂjfmme = Several hours




Open cloud cells over the Pacific Ocean




Cloud “streets” over Indian ocean




Cloud “streets” over the Amazon River
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Laboratory Turbulent Convection

> In laboratory turbulent convection (in the Rayleigh-
Benard apparatus) coherent organized features of
motion, such as large-scale circulation patterns (the
‘mean wind") are observed.

> There are several open guestions concerning these
flows:

* How do they arise ?
 What Is the effect of mean wind on turbulent convection?
° |S It turbulence (due to the mean wind) or

bueyancy-produced turbulence?



Coherent Structures (Mean Wind) 1n
Laboratory Turbulent Convection
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Unforced Convection: A = 1

Mean temperature field

U (y,2) T(y,2)



Temperature Field in Forced and Unforced
Turbulent Convection
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Forced turbulent convection Unforced convection
(two oscillating grids)



Set—up for Forced Turbulent Convection
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Problems

> The Rayleigh numbers based on the molecular transport

coefficients are very large:
_gBATL
- VK

This corresponds to fully developed turbulent convection in

):% ~10"1 = 10"

atmospheric and laboratory flows.

> The effective Rayleigh numbers based on the turbulent transport

coefficients (the turbulent viscosity and turbulent diffusivity) are not
high.

Rl _ 8PATL
Lo S5

They are less than the critical Rayleigh numbers required for the
excitation of large-scale convection.

Hence the emergence of large-scale convective flows (which are
observed in the atmospheric and laboratory flows) seems puzzling.



Turbulent objects

turbulent objects

Tangling

“True”

Turbulence
(Kolmogorov cascade)

“Tangling”
Turbulence
(no cascade)

Regular
flow

Semi-organized
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through
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Interaction between mean-flow and

Mean-flow objects



Tangling turbulence in sheared mean flow

Sheared mean Kolmogorov "Tangling”
flow turbulence turbulence
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Heat flux




Redistribution of a homogeneous vertical
turbulent heat flux by a converging horizontal
mean flow




Heat flux

Traditional parameterization

<9u>=—fc}§@

Modification of the heat flux by tangling turbulence
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Mean field eqguations
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Method of Derivation

Equations for the correlation functions for:
>The velocity fluctuations (f'd’fj = <“.1- uj.>

>The temperature fluctuations M =(66)

<6‘ “:-)

The spectral T-approximation (the third-order closure procedure)

>The heat flux (M)
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Heat flux

Traditional parameterization

<9u>=—KT§@

Modification of the heat flux by tangling turbulence
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I'’he growth rate of convective wind instability.




Convective-wind instability

Instabilily 10 Instabilily ;¢

The range of parameters for which the convective-wind instability
occurs for different anisotropy of turbulence.



Critical Rayleigh Number

Ra” =2247
u=0.7 Ra” =826
=72 Ra™ =256
=> Ra” =72

1/3
1= 4g’£‘<u: 9>( Ra J V2 = g Ve In laminar convection:
L ‘N 2‘ Pr; Ra” =657.5



Closed Cloud Cells over the Atlantic Ocean
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Cloud cells

Observations Theory
L.
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Mechanism of convective-shear instability
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Counter wind flux

F' = (0u)
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Method of Derivation

Equations for the correlation functions for:
>The velocity fluctuations (f'd’fj = <“.1- uj.>

>The temperature fluctuations M =(66)

<6‘ “:-)

The spectral T-approximation (the third-order closure procedure)

>The heat flux (M)
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Heat flux

Traditional parameterization

<9u>=—KT§@

Modification of the heat flux by tangling turbulence
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Mechanism of convective-shear instability
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Convective-shear waves
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Conyvective-shear instability

Instability

The range of parameters for which the convective-shear instability
occurs for different values of shear and anisotropy.



Convective-shear instability.

e=0), a=2, »=0.1

1'05%, =2, 30,1

10 20 30

The growth rate of the convective-shear instability and
frequencies of the generated convective-shear waves.




Convective-shear instability




Maximum growth rate

The growth rate of the convective shear instability
for different thermal anisotropy



Conditions for. the instability

The range of parameters [ /L, and L/],
for which the convective shear instability occurs



Thermal anisotropy
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Cloud “streets” over the Amazon River




Cloud “streets”

Observations | Theory
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The atmospheric convective boundary layer
(CBL) consists in three basic parts:

> Surface layer strongly unstably stratified and dominated by small-
scale turbulence of very complex nature including usual 3-D turbulence,
generated by mean-flow surface shear and structural shears
), and unusual strongly anisotropic buoyancy-
driven turbulence ;

> CBL core dominated by the structural energy-, momentum- and
mass-transport, with only minor contribution from usual 3-D turbulence
generated by local structural shears on the background of almost zero
vertical gradient of potential temperature (or buoyancy);

> Turbulent entrainment layer at the CBL upper boundary,
characterised by essentially stable stratification with negative
(downward) turbulent flux of potential temperature (or buoyancy).



Budget Equations for Shear-Free Convection




CBL-Core for Shear-Free Convection
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Solution for Cloud Cells (CBL-core)
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Budget Equations for Shear-Free Convection




EFB-Theory for CBL-Core
for Shear-Free Convection

AW mplies the averaging over the
MMA volume of the semi-organized
structure.



EFB-Theory for CBL-Core
for Shear-Free Convection

The kinetic energy of the semi-organized structures (cloud cells):
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Unforced Convection: A = 1

Mean temperature field

U (y,2) T(y,2)



EFB-Theory for CBL-Core
for Shear-Free Convection

The vertical flux of entropy transported by the semi-organized structures:

Lo o —(eoq 2l U ®ud

BL (_ _ F’)l*

The ratio of fluxes of entropy :




Sheared Convection (CBL-core)

D® The shear velocity:
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The solution of
linearized equations:




Vorticily of Cloud Streets
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Budget Equations for Sheared Convection




Production in Sheared Convection

The production of turbulence is caused by three sources:
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EFB-Theory for CBL-Core
for Sheared Convection

The kinetic energy of the semi-organized structures (cloud streets):
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Convection In Planetary Scales

Altitude (km) 15—
A: Tropopause in arctic zone 2
B: Tropopause in temperate zone

Mid-latitude cell 4

Hadley cell

Hadley cell

According to the observations, 6 large-scale convective cells are observed in the
Earth's atmospheric large-scale circulation:



Southern Oscillations

The Southern Oscillation is an
oscillation of surface air pressure
between the tropical eastern and the
western Pacific Ocean.

20 40 60 80 100 120 t

FIG. 1. Time dependence of the southern oscillation index (SOT)
after 5 month window averaging, where the time is measured in years,
t = 0 corresponds to the year 1878, and the total time interval of the
observations of the SOI is 138 years. The data are taken from [29].

http://www.bom.gov.au/climate/current/soi2.shtmi

FIG. 2. The spectrum Esor( f) of the SOL. The frequency is
measured in the units of inverse years. The shown periods of
oscillations (13.88; 6.61; 4.96; 3.96; 3.08; 2.57) are measured in
years.




Rossby Waves

282m

Ry = JgH/f

The periods of the classical planetary 2D Rossby waves do not exceed 100 days.

dv ‘p
— + - V)y= —?(—) — B0 +2v x Q,
dt P,

FYe (V-V)8 = —(v- V)b,

V-(pv)=0,

3 L z ,.r'fH P

E Q H FIG. 3. The period Ty = 2x ;’|cu"§nf'| (measured in years) of the
|:3 D: FII bt IIL.I' slow 3D Rossby waves vs the characteristic scale L./H,, where
¥, s — L.=m/k for m=1 (solid) and m =2 (dashed). The stars (for m=1)
E R J 'l E A and squares (for m = 2) correspond to the observed periods of
':__ —I_ '[]- } 1. the SOI; see Fig. 2. The vertical sizes of these observed modes,
L. =17.3;10.6;12.4; 16.3 km, determine the wave numbers k of the

slow 3D Rossby waves; see Egs. (23) and (25).
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FIG. 3. The period T = 2n/|wgm| (measured in years) of the

U= § CXp (;‘..f — ik r)[ATYT T AP YP + LrL‘lTYT] slow 3D Rossby waves vs the characteristic scale L./H,., where

im L.=m/k for m=1 (solid) and m =2 (dashed). The stars (for m=1)
- EE l and squares (for m = 2) correspond to the observed periods of
m i the SOI; see Fig. 2. The vertical sizes of these observed modes,
Yr = €y YE {I}, Qﬂ}a Yp =rV ij (ﬁ- '9'-‘5'): "}:} L, =7.3;10.6;12.4;16.3 km, determine the wave numbers k of the
slow 3D Rossby waves; see Eqs. (23) and (25).
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Generation of slow 3D Rossby Waves in
Planetary Convection

2 25 3 L./H,

FIG. 4. The characteristic time Tinq = y ! (measured in years)

of the excitation of the 3D Rossby waves vs the characteristic scale
L./H, of the convective cells for m = 1 (solid) and m = 2 (dashed).

The instability causes excitation of the 3D
Rossby waves interacting with the convective
mode and the inertial wave mode.

FIG. 3. The period Ty = ;-’.m’lcu'ﬁml (measured in years) of the
slow 3D Rossby waves vs the characteristic scale L_/H,, where
L.=m/k form=1 (solid) and m =2 (dashed). The stars (form=1)
and squares (for m = 2) correspond to the observed periods of
the SOI; see Fig. 2. The vertical sizes of these observed modes,
L. =7.3:10.6;12.4; 16.3 km, determine the wave numbers k of the
slow 3D Rossby waves; see Eqs. (23) and (25).
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