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Outline

Energy and Flux Budget Turbulence Closure Theory

Atmospheric Sheared Stably Stratified Turbulence 

without Waves

Atmospheric Sheared Stably Stratified Turbulence with 

Internal Gravity Waves

Atmospheric Shear Free Stably Stratified Turbulence 

produced by Internal Gravity Waves

Laboratory Experiments (Stably Stratified Turbulence)

Atmospheric Turbulent Convection (may be)



Stable PBL

Shallow, stably-stratified planetary boundary layer (PBL) in

Bergen visualized by water haze (winter 2012, courtesy T. Wolf)



Budget Equation for TKE 
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Steady-state for 

homogeneous turbulence: 



TKE Balance for SBL
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Budget Equations for SBL

 Turbulent kinetic energy:

 Potential temperature fluctuations:

 Flux of potential temperature :
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Boussinesq Approximation
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Budget Equations for SBL 



Total Turbulent Energy
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The turbulent potential energy:

Production of Turbulent energy:



Budget Equations for SBL
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No Critical Richardson Number
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Budget Equations for SBL
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Comparisons

E = EK+Ep



Comparisons



Comparisons



Comparisons



Comparisons



0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12

Wind Speed (m/s)

H
e
ig

h
t 
(m

)

 LES (INM)

 Our EFB closure model

 MUSC (Meteo France)

Other second-order closures:

 LouvainU-eps

 Environment Canada

 NASA

 UIB-UPC

 York U

0

50

100

150

200

250

300

350

400

261 262 263 264 265 266 267 268

 LES (INM)

 Our EFB closure model

 MUSC (Meteo France)

Other second-order closures:

 LouvainU-eps

 Environment Canada

 NASA

 UIB-UPC

 York U

Potential Temperature (K)
H

e
ig

h
t 
(m

)

EFB-closure profiles of the wind speed and potential temperature

compared with the GABLS1 LES

Comparison with GABLS1 (Holtslag et al, 2003)

Nocturnal Stable PBL
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Temporal development of the Obukhov

length-scale and friction velocity

 No tuning of empirical constants to this particular case

 Very little sensitivity to spatial resolution

 Works well with only one prognostic equation (TKE)
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Large-Scale Internal Gravity Waves (IGW)

Basic Equations:

Solutions of the Linearized Equations:

Frequency of IGW:

Propagation of IGW in WKB:



Large-Scale Internal Gravity Waves (IGW)

 We consider the large-scale IGW with random phases whose 

periods and wave lengths are much larger than the turbulent 

time and length scales.

 We represent the total velocity as the sum of the mean-flow 

velocity, the turbulent velocity, and the wave-field velocity:

 We neglect the wave-wave interactions at large scales, but take 

into account the turbulence-wave interactions. 

 We assume that the energy spectrum of the ensemble of IGW 

is isotropic and has the power-law form: 

where

v=U+ u+VW ;



Large-Scale Internal Gravity Waves

with Random phases

where



Budget Equations  for SBL with 

Large-Scale Internal Gravity Waves  
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Turbulent Prandtl Number vs. Ri

(IG-Waves) 

Meteorological observations: slanting black triangles (Kondo et al., 1978), snowflakes 

(Bertin et al., 1997); laboratory experiments: black circles (Strang and Fernando, 2001), 

slanting crosses (Rehmann and Koseff, 2004), diamonds (Ohya, 2001); LES: triangles 

(Zilitinkevich et al., 2008); DNS: five-pointed stars (Stretch et al., 2001). Our model  with 

IG-waves at Q=10 and different values of parameter G:  G=0.01 (thick dashed), G= 0.1 
(thin dashed-dotted), G=0.15 (thin dashed),  G=0.2 (thick dashed-dotted ), at  Q=1 for 

G=1 (thin solid) and without IG-waves at  G=0 (thick solid).
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vs.         (IG-Waves)

Meteorological observations: slanting black triangles (Kondo et al., 1978), snowflakes 

(Bertin et al., 1997); laboratory experiments: black circles (Strang and Fernando, 2001), 

slanting crosses (Rehmann and Koseff, 2004), diamonds (Ohya, 2001); LES: triangles 

(Zilitinkevich et al., 2008); DNS: five-pointed stars (Stretch et al., 2001). Our model  with 

IG-waves at Q=10 and different values of parameter G:  G=0.01 (thick dashed), G= 0.1 
(thin dashed-dotted), G=0.15 (thin dashed),  G=0.2 (thick dashed-dotted ), at  Q=1 for 

G=1 (thin solid); and without IG-waves at  G=0 (thick solid).
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vs.  Ri (IG-Waves) 

Meteorological observations: squares [CME, Mahrt and Vickers (2005)], circles [SHEBA, 

Uttal et al. (2002)], overturned triangles [CASES-99, Poulos et al. (2002), Banta et al. 

(2002)], slanting black triangles (Kondo et al., 1978), snowflakes (Bertin et al., 1997); 

laboratory experiments: black circles (Strang and Fernando, 2001), slanting crosses 

(Rehmann and Koseff, 2004), diamonds (Ohya, 2001); LES: triangles (Zilitinkevich et al., 
2008); DNS: five-pointed stars (Stretch et al., 2001). Our model  with IG-waves at Q=10

and different values of parameter G:  G=0.001 (thin dashed), G=0.005 (thick dashed), 

G= 0.01 (thin dashed-dotted), G=0.05 (thick dashed-dotted), at  Q=1 for G=0.1 (thin 

solid); and without IG-waves at  G=0 (thick solid).
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vs. (IG-Waves) 

Meteorological observations: overturned triangles [CASES-99, Poulos et al. (2002), 

Banta et al. (2002)]; laboratory experiments: diamonds (Ohya, 2001); LES: triangles 

(Zilitinkevich et al., 2008). Our model  with IG-waves at Q=10 and different values of 

parameter G:  G=0.2 (thick dashed-dotted), at  Q=1 for G=1 (thin solid); and without IG-

waves at  G=0 (thick solid for                      ) and (thick  dashed for                     ).Ri1f = 0:2Ri1f = 0:4

G / EW
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Large-Scale Internal Gravity Waves

with Random phases

where



Budget Equations for IGW: S=0
where

Total wave energy:

where



Wave Richardson Number



Spatial Profiles



Laboratory Experiments of Stably Stratified Turbulent Flow



Experimental set - up: 

oscillating  grids  turbulence 

generator and particle image 

velocimetry system



Raw image of the incense

smoke tracer particles in
oscillating grids turbulence

Particle Image Velocimetry System

Particle Image

Velocimetry Data

Processing



Instantaneous Streamlines of the Flow and 

Velocity Fluctuations



Turbulent Energy Spectrum



WHITHER THE STABLE BOUNDARY LAYER? A Shift in the Research Agenda”

by H. J. S. Fernando and J. C. Weil

 Stably stratified turbulent flows

 We study experimentally temperature 

fluctuations in stably stratified  forced  

turbulence in air flow.

A fog-ridden, pooled shallow SBL in a mountain 

valley

(SBL- stable  boundary layer) 



Experimental Setup

Air

Pr=0.71

58 cm

26 cm

26 cm

Grids frequency : 1 to 10.5 Hz

Amplitude (grid stroke) : 6.1 cm
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Budget Equations for SBL

 Turbulent kinetic energy:

 Potential temperature fluctuations:

 Flux of potential temperature :
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Theoretical Analysis 
The energy- and flux-budget turbulence closure (EFB model)
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Comparison of Experimental and Theoretical 

Results
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Turbulent Richardson number



Experimental Set-up with Sheared 

Temperature Stratified Turbulence



Mean Flow Patterns Obtained 

in the Experiments



Scalings and Measurements
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Conclusions

 Budget equations for the kinetic and potential energies
and for the heat flux play a crucial role for analysis of
stably stratified turbulence.

 Explanation for no critical Richardson number.

 Reasonable Ri-dependencies of the turbulent Prandtl
number, the anisotropy of stably stratified turbulence, the
normalized heat flux and TKE which follow from the
developed theory.

 The scatter of observational, experimental, LES and DNS
data in stably stratified turbulence are explained by effects
of large-scale internal gravity waves on SBL-turbulence.



Conclusions

Predictions of energy- and flux-budget turbulence closure 

(EFB) model are in a good agreement with the experimental 

results.

Temperature cannot be considered as a passives scalar  in 

most of the range of grid frequencies because Richardson 

number is small  only for large frequencies.

We detected also long-term nonlinear oscillations of the 

mean temperature in stably stratified turbulence for all 

frequencies of grid oscillations similarly to the case of the 

unstably stratified flows.



THE END


