Stably Stratified Atmospheric Turbulence and Internal Gravity Waves

Igor Rogachevskii, Tov Elperin, Nathan Kleeorin,

Ben-Gurion University of the Negev, Beer-Sheva, Israel NORDITA, KTH Royal Institute of Technology and Stockholm University, Sweden

Sergej Zilitinkevich

University of Helsinki and Finnish Meteorological Institute, Helsinki, Finland

Victor L'vov

Rehovot, Israel

Outline

Energy and Flux Budget Turbulence Closure Theory

- > Atmospheric Sheared Stably Stratified Turbulence without Waves
- > Atmospheric Sheared Stably Stratified Turbulence with Internal Gravity Waves
- Atmospheric Shear Free Stably Stratified Turbulence produced by Internal Gravity Waves
- > Laboratory Experiments (Stably Stratified Turbulence)
- > Atmospheric Turbulent Convection (may be)

Stable PBL

Shallow, stably-stratified planetary boundary layer (PBL) in Bergen visualized by water haze (winter 2012, courtesy T. Wolf)

Budget Equation for TKE

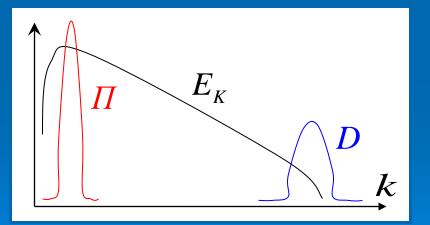
 $\mathbf{S} = \frac{C}{C}$

 $E_{K} = \frac{1}{2} \left\langle \mathbf{u}^{2} \right\rangle$

 $\frac{\partial E_{K}}{\partial t} = \Pi_{tot} - T - D$ Balance in R-space

 $\Pi_{tot} \approx D$

 $T = \operatorname{div} \Phi_u$



$$t_T = \frac{l}{\sqrt{E_K}}$$
 $\operatorname{Ri} = \frac{N^2}{S^2}$ $N^2 = \beta \frac{\partial \overline{\Theta}}{\partial z}$

$$\overline{\mathbf{U}}$$

 $\frac{\partial E_{K}}{\partial t} = K_{M}S^{2} - \beta |F_{z}| - \frac{E_{K}}{t_{T}} - T$ $\Box = -\langle u_{i}u_{j}\rangle \nabla_{j}\overline{U}_{i} = K_{M}S^{2}$ Steady-state for homogeneous turbulence: $E_{K} \approx t_{T}(K_{M}S^{2} - \beta |F_{z}|)$

TKE Balance for SBL

$$\frac{\partial E_{\kappa}}{\partial t} = K_{M}S^{2} - \beta |F_{z}| - \frac{E_{\kappa}}{t_{T}} - T$$

$$S \longrightarrow TKE \longrightarrow D_{U}$$

$$E_{\kappa} \approx t_{T}(K_{M}S^{2} - \beta |F_{z}|) \downarrow$$

$$"S" = "B" B B = \beta F_{z} = -(2E_{z} t_{T}) \frac{\partial \overline{\Theta}}{\partial z}$$

$$Ri_{C} \approx 0.25 \qquad \beta = \frac{g}{T_{0}}$$

$$Ri = \frac{N^{2}}{S^{2}} \qquad N^{2} = \beta \frac{\partial \overline{\Theta}}{\partial z}$$

$$\Theta = T(P_{0}/P)^{1-1/\gamma}$$

Budget Equations for SBL

- > Turbulent kinetic energy:
- > Potential temperature fluctuations:
- > Flux of potential temperature :

$$E_K = \frac{1}{2} \left\langle \mathbf{u}^2 \right\rangle$$

$$E_{\theta} = \frac{1}{2} \left\langle \theta^2 \right\rangle$$

$$\mathbf{F} = \left\langle \mathbf{u} \; \boldsymbol{\theta} \right\rangle$$

$$\frac{DE_{\kappa}}{Dt} + \operatorname{div}\left(\Phi_{u}\right) - \Pi - \beta F_{z} = -D_{\kappa}$$

$$\frac{DE_{\theta}}{Dt} + \operatorname{div}\left(\Phi_{\theta}\right) + \frac{N^{2}}{\beta} F_{z} = -D_{\theta}$$

$$\frac{DF_{i}}{Dt} + \operatorname{div}_{j}\left(\Phi_{ij}^{F}\right) + (\mathbf{F} \cdot \nabla)\overline{U}_{i} + \frac{N^{2}}{\beta} \tau_{ij}e_{j} - 2C_{\theta}\beta e_{i} E_{\theta} = -D_{i}^{F}$$

$$E_{\kappa} = \frac{E_{\kappa}}{t_{T}} \qquad D_{\theta} = \frac{E_{\theta}}{C_{\theta} t_{T}} \qquad D_{i}^{F} = \frac{F_{i}}{C_{F} t_{T}} \qquad C_{\theta}\beta_{i}\left\langle\theta^{2}\right\rangle = \beta_{i}\left\langle\theta^{2}\right\rangle + \frac{1}{\rho_{0}}\left\langle\theta\nabla_{r}p\right\rangle$$

$$\Pi = -\tau_{\mu}\nabla_{i}\overline{U}_{i} = K_{M}S^{2}$$

Boussinesq Approximation

$$\left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \vec{\nabla}\right) \mathbf{u} = -\vec{\nabla} \left(\frac{p}{\rho_0}\right) - \mathbf{\beta} \,\theta + v \,\Delta \mathbf{u}$$

$$\left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \vec{\nabla}\right) \theta = \kappa \,\Delta \theta - \mathbf{u} \cdot \vec{\nabla} \overline{\Theta}$$

$$\boldsymbol{\beta} = \frac{\mathbf{g}}{T_0}$$

 $\theta = T \left(\frac{p_0}{p}\right)^{(\gamma-1)/\gamma}$

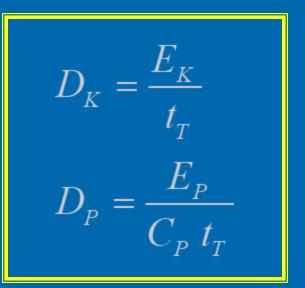
 $\vec{\nabla}p_{0} = \rho_{0}\mathbf{g}$

 $\frac{\text{inertial force}}{\text{viscous force}} \propto \frac{\text{u}\,\ell}{\nu} = \text{Re} \approx 10^6 \div 10^7$

$$\frac{\text{advective term}}{\text{diffusive term}} \propto \frac{\text{u}\,\ell}{\kappa} = \text{Pe} \approx 10^6 \div 10^7$$

Budget Equations for SBL

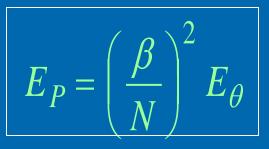
$$\frac{DE_{K}}{Dt} + \frac{\partial \Phi_{K}}{\partial z} = \Pi + \beta F_{z} - D_{K}$$
$$\frac{DE_{P}}{Dt} + \frac{\partial \Phi_{P}}{\partial z} = -\beta F_{z} - D_{P}$$
$$E_{\theta} = \frac{1}{2} \left\langle \theta^{2} \right\rangle$$



$$E_{p} \equiv \frac{g}{\rho_{0}} \left\langle \int \rho \, dz \right\rangle = \left(\frac{\beta}{N}\right)^{2} E_{\theta} = \frac{1}{2} \left(\frac{\beta}{N}\right)^{2} \left\langle \theta^{2} \right\rangle$$

Total Turbulent Energy $\frac{DE}{Dt} + \nabla \cdot \Phi = \Pi - \frac{E}{C_u t_T} \qquad E = E_K + \left(\frac{\beta}{N}\right)^2 E_{\theta}$

The turbulent potential energy:



Production of Turbulent energy:

$$\Pi = -\tau_{ij} \nabla_j \overline{U}_i = K_M S^2$$
$$K_M = 2C_\tau A_z l \sqrt{E_K}$$

Budget Equations for SBL

$$\frac{DE_{K}}{Dt} + \frac{\partial \Phi_{K}}{\partial z} = \Pi + \beta F_{z} - D_{K}$$

$$\frac{DE_{p}}{Dt} + \frac{\partial \Phi_{p}}{\partial z} = -\beta F_{z} - D_{p}$$

$$\frac{DF_{z}}{Dt} + \frac{\partial \Phi_{F}}{\partial z} = -D_{z}^{F} - \langle u_{z}u_{z} \rangle \frac{\partial \overline{\Theta}}{\partial z} + 2C_{\theta}\beta E_{\theta}$$

$$E_{p} \equiv (\beta/N)^{2} E_{\theta} = \frac{1}{2}(\beta/N)^{2} \overline{\theta'^{2}} \qquad C_{\theta}\beta_{z}\langle \theta^{3} \rangle = \beta_{z}\langle \theta^{3} \rangle + \frac{1}{\rho_{0}}\langle \theta \nabla_{z} p \rangle$$

No Critical Richardson Number

$$S \longrightarrow TKE \Longrightarrow D_{U}$$

$$\downarrow$$

$$B \longrightarrow \frac{1}{2} \langle \theta^{2} \rangle \Longrightarrow D_{\theta}$$

$$\int \frac{DE_{K}}{\partial t} + \frac{\partial \Phi_{K}}{\partial z} = \Pi + \beta F_{z} - D_{K}$$

$$\frac{DE_{P}}{Dt} + \frac{\partial \Phi_{P}}{\partial z} = -\beta F_{z} - D_{P}$$

$$B \equiv \beta F_{z} = -(2E_{z} t_{T}) \frac{\partial \Theta}{\partial z} + C_{\theta} \beta^{2} \langle \theta^{2} \rangle t_{T}$$

$$C_{\theta} \beta_{1} \langle \theta^{2} \rangle = \beta_{1} \langle \theta^{2} \rangle + \frac{1}{\rho_{0}} \langle \theta \nabla_{r} \rho \rangle$$

Budget Equations for SBL

$$\frac{DE_{K}}{Dt} + \frac{\partial \Phi_{K}}{\partial z} = \Pi + \beta F_{z} - D_{K}$$

$$\frac{DE_{P}}{Dt} + \frac{\partial \Phi_{P}}{\partial z} = -\beta F_{z} - D_{P}$$

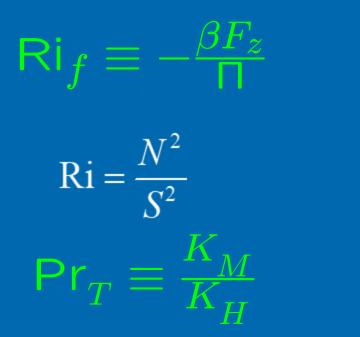
$$\frac{DF_{z}}{Dt} + \frac{\partial \Phi_{F}}{\partial z} = -\langle u_{z}^{2} \rangle \frac{\partial \overline{\Theta}}{\partial z} + 2C_{\theta} \beta E_{\theta} - \frac{F_{z}}{C_{F} t_{T}}$$

$$p \equiv (\beta/N)^{2} E_{\theta} = \frac{V}{2} (\beta/N)^{2} \overline{\theta'}^{2}$$

E

 $C_{\theta} \beta_i \left\langle \theta^2 \right\rangle = \beta_i \left\langle \theta^2 \right\rangle + \frac{1}{\rho_0} \left\langle \theta \nabla_i p \right\rangle$

$$Ri = Pr_{\rm T}Ri_{\rm f} = \frac{C_{\tau}}{C_{\rm F}}Ri_{\rm f} \left(1 - \frac{Ri_{\rm f}(1 - R_{\infty})A_z^{(\infty)}}{R_{\infty}(1 - Ri_{\rm f})A_z(Ri_{\rm f})}\right)^{-1}$$



$$Pr_{\rm T} \approx Pr_{\rm T}^{(0)} + \frac{(1 - R_{\infty})A_z^{(\infty)}}{R_{\infty}A_z^{(0)}}Ri.$$

$$Pr_{\rm T} \approx 0.8 + 0.45 Ri$$

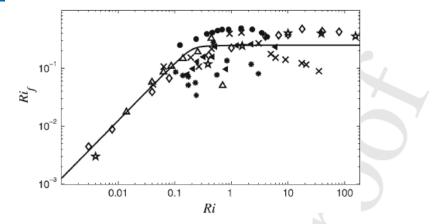


Fig. 4 Ri-dependence of the flux Richardson number $Ri_{\rm f} = -\beta F_z/(\tau S)$ for meteorological observations: slanting black triangles (Kondo et al. 1978), snowflakes (Bertin et al. 1997); laboratory experiments: slanting crosses (Rehmann and Koseff 2004), diamonds (Ohya 2001), black circles (Strang and Fernando 2001); DNS: five-pointed stars (Stretch et al. 2001); LES: triangles (our DATABASE64). Solid line shows the steady-state EFB model, Eq. 56, with $Ri_{\rm f} \rightarrow R_{\infty} = 0.25$ at $Ri \rightarrow \infty$

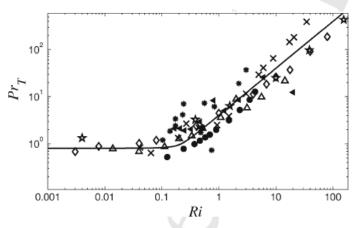


Fig. 5 *Ri*-dependence of the turbulent Prandtl number $Pr_{T} = K_{M}/K_{H}$, after the same data as in Fig. 4 (meteorological observations, laboratory experiments, DNS, and LES). Solid line shows the steady-state EFB model, Eq. 56

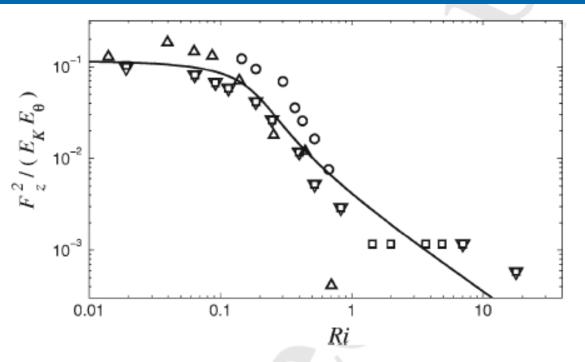


Fig. 9 Ri-dependence of the squared dimensionless turbulent flux of potential temperature $F_z^2/(E_K E_\theta)$, for meteorological observations: squares (CME), circles (SHEBA), overturned triangles (CASES-99); laboratory experiments: diamonds (Ohya 2001); LES: triangles (our DATABASE64). Solid line shows the steady-state EFB model, Eq. 61

 $\frac{N}{S^2}$

Ri =

$$\frac{F_z^2}{E_{\rm K}E_{\theta}} = \frac{2C_{\tau}}{C_{\rm P}} \frac{A_z(Ri_{\rm f})}{Pr_{\rm T}}$$

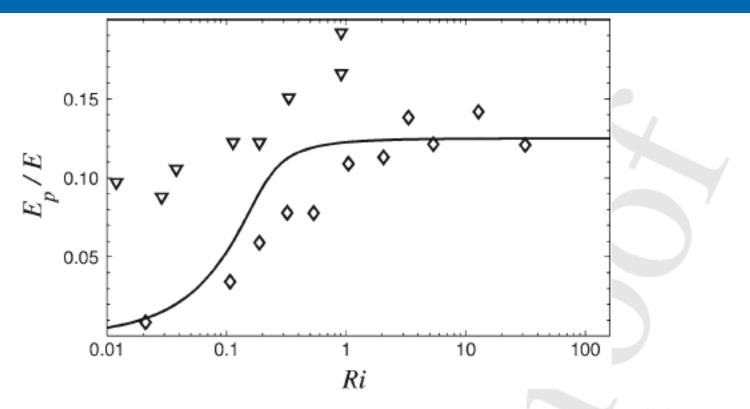


Fig. 7 Ri-dependence of the potential-to-total turbulent energy ratio E_P/E , for meteorological observations: overturned triangles (CASES-99), and laboratory experiments: diamonds (Ohya 2001). Solid line shows the steady-state EFB model, Eqs. 54, 56

$$\frac{E_{\rm P}}{E} = \frac{C_{\rm P}Ri_{\rm f}}{1 - (1 - C_{\rm P})Ri_{\rm f}}.$$

$$Ri = \frac{N^2}{S^2}$$

$$Ri = Pr_{\rm T}Ri_{\rm f} = \frac{C_{\tau}}{C_{\rm F}}Ri_{\rm f} \left(1 - \frac{Ri_{\rm f}(1 - R_{\infty})A_z^{(\infty)}}{R_{\infty}(1 - Ri_{\rm f})A_z(Ri_{\rm f})}\right)^{-1}$$

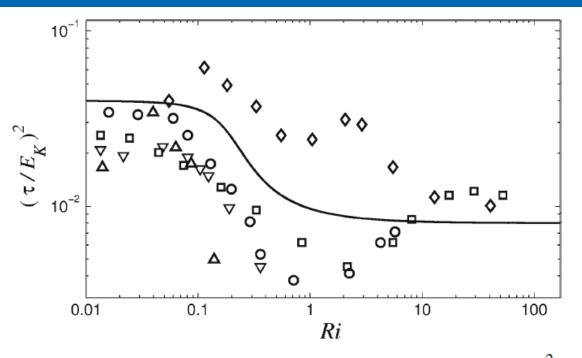


Fig. 8 *Ri* dependence of the squared dimensionless turbulent flux of momentum $(\tau/E_K)^2$, for *meteorological observations: squares* (CME), *circles* (SHEBA), *overturned triangles* (CASES-99); *laboratory experiments: diamonds* (Ohya 2001); LES: *triangles* (our DATABASE64). *Solid line* shows the steady-state EFB model, Eq. 60

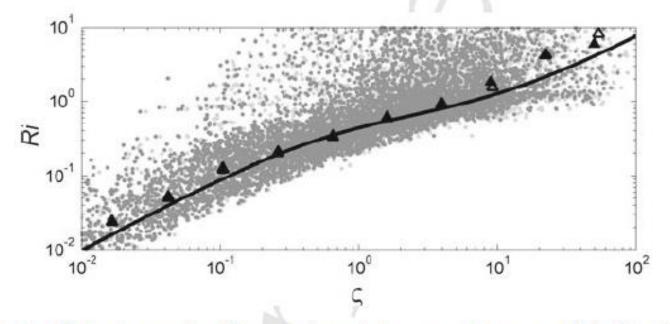


Fig. 12 Gradient Richardson number *Ri* versus dimensionless parameters $\zeta = z/L$ (white triangles) and $\zeta = l_0/L$ (black triangles) based on the Obukhov length scale *L*, after our LES. Solid line shows our model. Open triangles correspond to $\zeta = z/L$, black triangles to $\zeta = z/[(1 + C_\Omega \Omega z/E_K^{1/2})L]$

 $K_{\rm M} = \tau / S$

$$Ri \equiv \frac{N^2}{S^2}, \qquad L = \frac{\tau^{3/2}}{-\beta F_z}$$

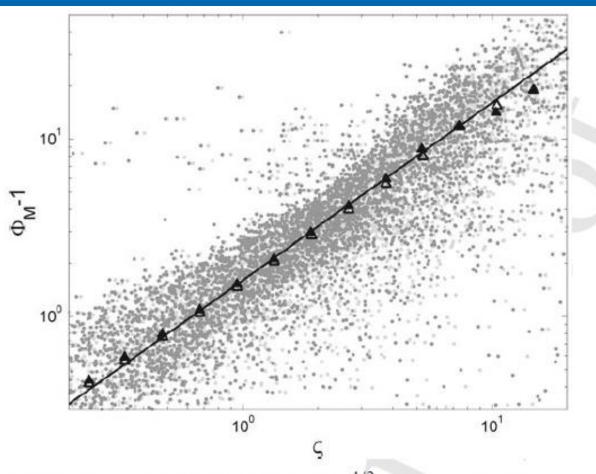


Fig. 10 Dimensionless wind-velocity gradient $\Phi_{\rm M} = (kz/\tau^{1/2}) (\partial U/\partial z)$ versus dimensionless height ς based on the Obukhov length L in the stably stratified atmospheric boundary layer, after LES (our DATA-BASE64). Solid line is plotted after Eq. 70 with $C_u = k/R_{\infty} = 1.6$. Open triangles correspond to $\varsigma = z/L$, black triangles to $\varsigma = z/[(1 + C_{\Omega}\Omega z/E_{\rm K}^{1/2})L]$ with $C_{\Omega} = 1$

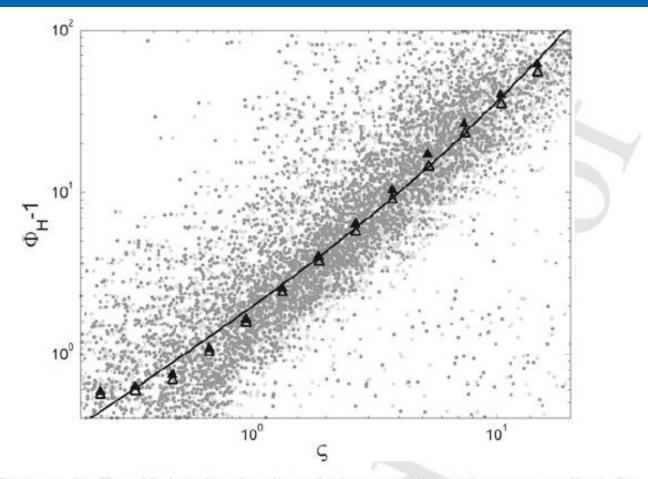
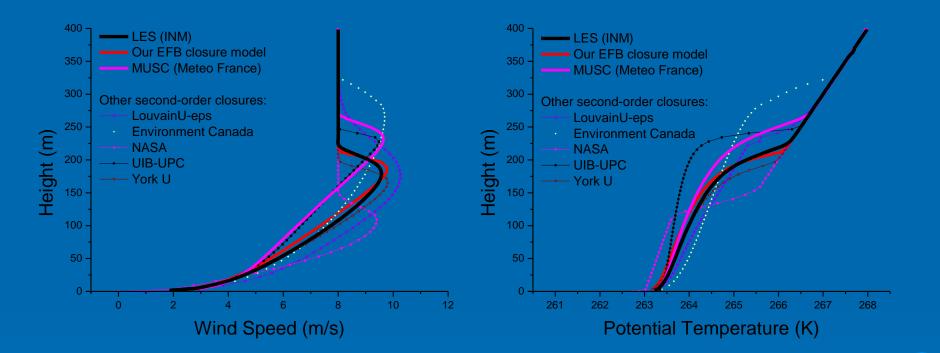


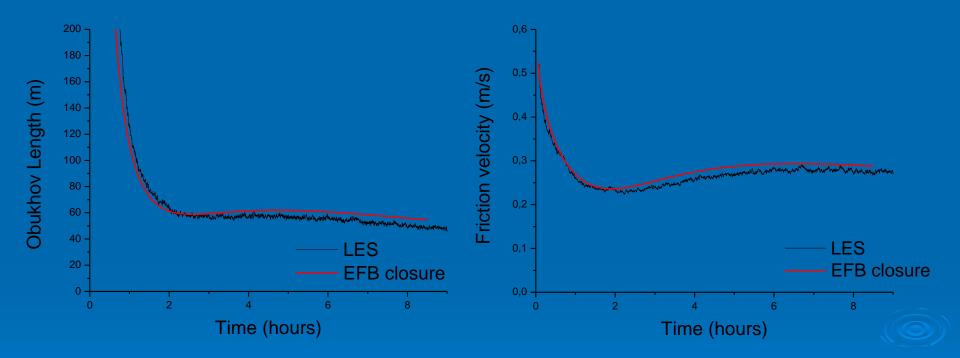
Fig. 11 Same as in Fig. 10 but for the dimensionless potential temperature gradient $\Phi_{\rm H} = (-k_{\rm T} z \tau^{1/2} / F_z) (\partial \Theta / \partial z)$. Solid line is plotted after Eq. 86. Open triangles correspond to $\zeta = z/L$, black triangles to $\zeta = z/[(1 + C_{\Omega} \Omega z / E_{\rm K}^{1/2})L]$

Comparison with GABLS1 (Holtslag et al, 2003) Nocturnal Stable PBL

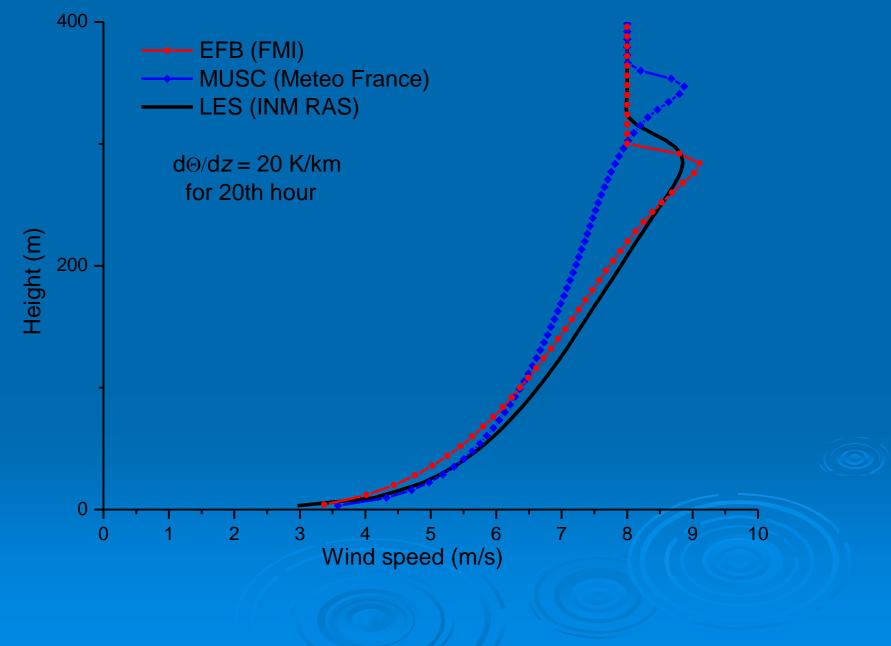


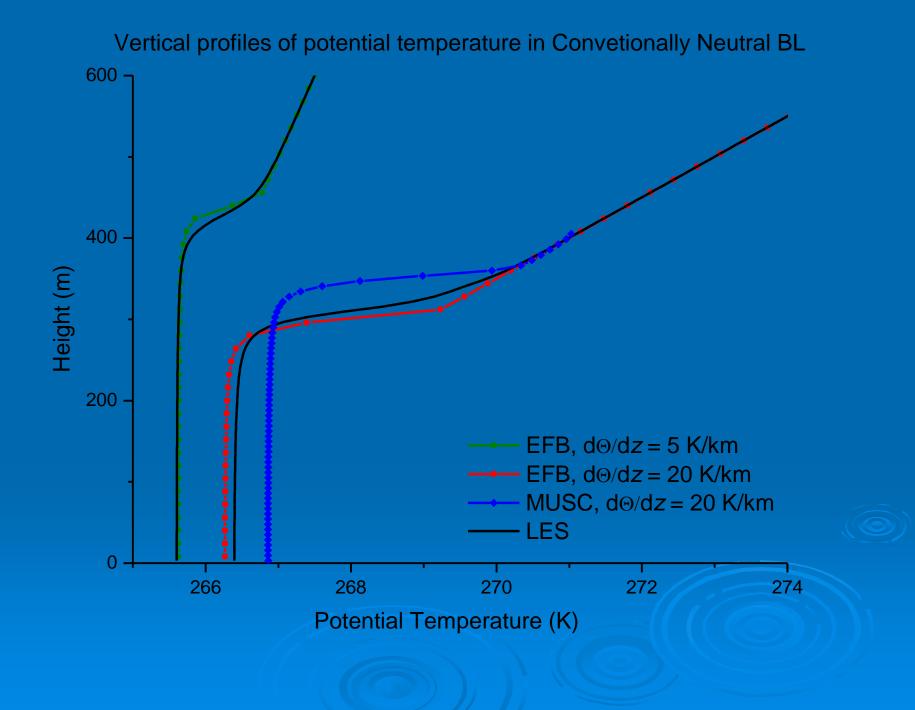
EFB-closure profiles of the wind speed and potential temperature compared with the GABLS1 LES

Temporal development of the Obukhov length-scale and friction velocity



- No tuning of empirical constants to this particular case
- Very little sensitivity to spatial resolution
- Works well with only one prognostic equation (TKE)





Large-Scale Internal Gravity Waves (IGW)

Basic Equations:

$$\frac{\partial \mathbf{V}^{W}}{\partial t} = -\left(\mathbf{U}\cdot\nabla\right)\mathbf{V}^{W} - \nabla\left(\frac{P^{W}}{\rho_{0}}\right) + \beta\Theta^{W}\mathbf{e} - \left(\mathbf{V}^{W}\cdot\nabla\right)\mathbf{V}^{W},\\ \frac{\partial\Theta^{W}}{\partial t} = -\left(\mathbf{U}\cdot\nabla\right)\Theta^{W} - \frac{1}{\beta}\left(\mathbf{V}^{W}\cdot\mathbf{e}\right)N^{2} - \left(\mathbf{V}^{W}\cdot\nabla\right)\Theta^{W},$$

Solutions of the Linearized Equations:

$$V_{\alpha}^{W} = -\frac{k_{\alpha}k_{z}}{k_{h}^{2}}V_{0}^{W}(\mathbf{k})\cos(\omega t - \mathbf{k} \cdot \mathbf{r}), \quad \text{for } \alpha = 1, 2,$$
$$V_{3}^{W} \equiv V_{z}^{W} = V_{0}^{W}(\mathbf{k})\cos(\omega t - \mathbf{k} \cdot \mathbf{r}), \quad \mathbf{Pro}$$
$$\Theta^{W} = -\frac{Nk}{\beta k_{h}}V_{0}^{W}(\mathbf{k})\sin(\omega t - \mathbf{k} \cdot \mathbf{r})$$

 $N^{2} = \beta \frac{\partial \overline{\Theta}}{\partial z} \qquad \frac{k_{h}}{k(z)} = Constant} \frac{k_{h}}{k(z)} N(z) + \mathbf{k} \cdot (\mathbf{U}(z) - \mathbf{U}(Z_{0})) = \frac{k_{h}}{k_{0}} N(Z_{0}),$

 $\mathbf{k}_h = \text{constant}$

$$\frac{\partial \mathbf{r}}{\partial t} = \frac{\partial \omega}{\partial \mathbf{k}},$$
$$\frac{\partial \mathbf{k}}{\partial t} = -\frac{\partial \omega}{\partial \mathbf{r}},$$

Frequency of IGW:

$$\omega = \frac{k_h}{k} N + \mathbf{k} \cdot \mathbf{U},$$

Large-Scale Internal Gravity Waves (IGW)

- We consider the large-scale IGW with random phases whose periods and wave lengths are much larger than the turbulent time and length scales.
- > We represent the total velocity as the sum of the mean-flow velocity, the turbulent velocity, and the wave-field velocity: $\mathbf{v} = \mathbf{U} + \mathbf{u} + \mathbf{V}^W$,
- We neglect the wave-wave interactions at large scales, but take into account the turbulence-wave interactions.
- > We assume that the energy spectrum of the ensemble of IGW is isotropic and has the power-law form: $e_W(k_0) = (\mu 1)E_W H^{-(\mu+1)}k_0^{-\mu}$,

where $E_W = \int [e_W(\mathbf{k}_0)/2\pi k_0^2] d\mathbf{k}_0 = \int e_W(k_0) dk_0$

Large-Scale Internal Gravity Waves with Random phases

$$\frac{DE_K}{Dt} + \frac{\partial \Phi_K}{\partial z} = -\tau_{i3} \frac{\partial U_i}{\partial z} + \beta F_z - \varepsilon_K - \left\langle \tau_{ij}^W \frac{\partial V_i^W}{\partial x_j} \right\rangle_W + \beta \left\langle V_z^W \Theta^W \right\rangle_W,$$

$$\frac{DE_{\theta}}{Dt} + \frac{\partial \Phi_{\theta}}{\partial z} = -F_z \frac{\partial \Theta}{\partial z} - \varepsilon_{\theta} - \left\langle F_j^W \frac{\partial \Theta^W}{\partial x_j} \right\rangle_W,$$

$$\frac{DF_i}{Dt} + \frac{\partial}{\partial x_j} \Phi_{ij}^{(F)} = \beta_i \left\langle \theta^2 \right\rangle + \frac{1}{\rho_0} \left\langle \theta \nabla_i p \right\rangle - \tau_{i3} \frac{\partial \Theta}{\partial z} - F_j \frac{\partial U_i}{\partial x_j} - \varepsilon_i^{(F)} - \left\langle \tau_{ij}^W \frac{\partial \Theta^W}{\partial x_j} \right\rangle_W$$

$$-\left\langle F_j^W \frac{\partial V_i^W}{\partial x_j} \right\rangle_W.$$

where

$$F_i^W \approx -C_F t_T \left(\tau_{ij} \frac{\partial \Theta^W}{\partial x_j} + \tau_{i3}^W \frac{\partial \Theta}{\partial z} + F_j \frac{\partial V_i^W}{\partial x_j} \right).$$

$$\tau_{ij}^{W} \approx -C_{\tau} t_{T} \left(\tau_{ik} \frac{\partial V_{j}^{W}}{\partial x_{k}} + \tau_{jk} \frac{\partial V_{i}^{W}}{\partial x_{k}} \right)$$

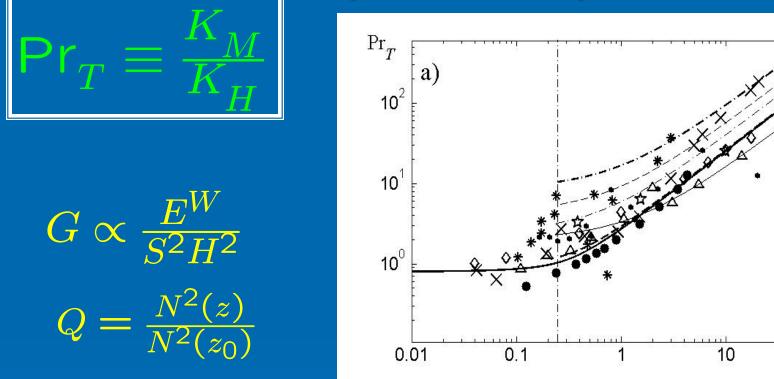
Budget Equations for SBL with Large-Scale Internal Gravity Waves $\omega = \frac{k_h}{k} N$

$$\frac{DE_{K}}{Dt} + \frac{\partial \Phi_{K}}{\partial z} = \Pi + \beta F_{z} - \frac{E_{K}}{t_{T}} + \Pi^{W}$$

$$\frac{DE_{P}}{Dt} + \frac{\partial \Phi_{P}}{\partial z} = -\beta F_{z} - \frac{E_{P}}{C_{P}t_{T}} + \prod_{P}^{W}$$

 $\frac{DF_z}{Dt} + \frac{\partial \Phi_F}{\partial z} = -\left\langle u_z^2 \right\rangle \frac{\partial \overline{\Theta}}{\partial z} + 2C_\theta \beta E_\theta - \frac{F_z}{C_F t_T} + \prod_F^W E_\theta$

Turbulent Prandtl Number vs. Ri (IG-Waves)

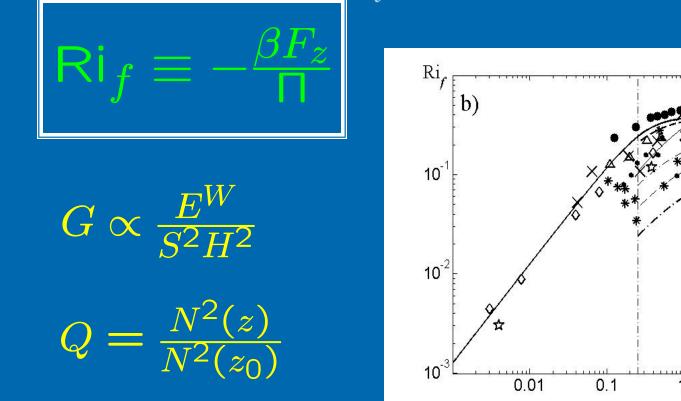


Meteorological observations: slanting black triangles (Kondo et al., 1978), snowflakes (Bertin et al., 1997); laboratory experiments: black circles (Strang and Fernando, 2001), slanting crosses (Rehmann and Koseff, 2004), diamonds (Ohya, 2001); LES: triangles (Zilitinkevich et al., 2008); DNS: five-pointed stars (Stretch et al., 2001). Our model with IG-waves at Q=10 and different values of parameter G: G=0.01 (thick dashed), G= 0.1 (thin dashed-dotted), G=0.15 (thin dashed), G=0.2 (thick dashed-dotted), at Q=1 for G=1 (thin solid) and without IG-waves at G=0 (thick solid).

Ri

100

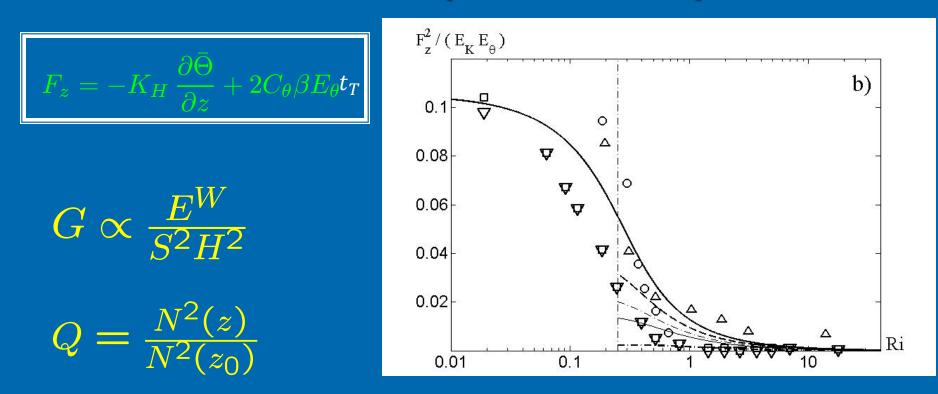
(IG-Waves) vs. Ri Ri



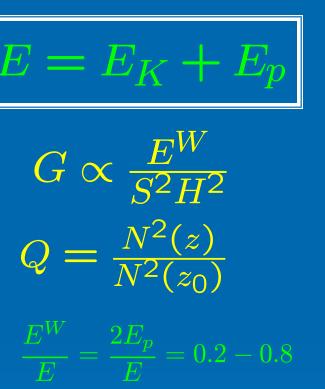
10 100

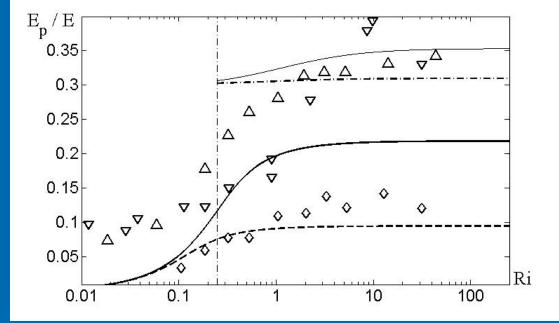
Meteorological observations: slanting black triangles (Kondo et al., 1978), snowflakes (Bertin et al., 1997); laboratory experiments: black circles (Strang and Fernando, 2001), slanting crosses (Rehmann and Koseff, 2004), diamonds (Ohya, 2001); LES: triangles (Zilitinkevich et al., 2008); DNS: five-pointed stars (Stretch et al., 2001). Our model with IG-waves at Q=10 and different values of parameter G: G=0.01 (thick dashed), G= 0.1 (thin dashed-dotted), G=0.15 (thin dashed), G=0.2 (thick dashed-dotted), at Q=1 for G=1 (thin solid); and without IG-waves at G=0 (thick solid).

F_z vs. Ri (IG-Waves)



Meteorological observations: squares [CME, Mahrt and Vickers (2005)], circles [SHEBA, Uttal et al. (2002)], overturned triangles [CASES-99, Poulos et al. (2002), Banta et al. (2002)], slanting black triangles (Kondo et al., 1978), snowflakes (Bertin et al., 1997); laboratory experiments: black circles (Strang and Fernando, 2001), slanting crosses (Rehmann and Koseff, 2004), diamonds (Ohya, 2001); LES: triangles (Zilitinkevich et al., 2008); DNS: five-pointed stars (Stretch et al., 2001). Our model with IG-waves at Q=10 and different values of parameter G: G=0.001 (thin dashed), G=0.005 (thick dashed-dotted), G=0.01 (thin dashed-dotted), G=0.05 (thick dashed-dotted), at Q=1 for G=0.1 (thin solid); and without IG-waves at G=0 (thick solid).





Meteorological observations: overturned triangles [CASES-99, Poulos et al. (2002), Banta et al. (2002)]; laboratory experiments: diamonds (Ohya, 2001); LES: triangles (Zilitinkevich et al., 2008). Our model with IG-waves at Q=10 and different values of parameter G: G=0.2 (thick dashed-dotted), at Q=1 for G=1 (thin solid); and without IGwaves at G=0 (thick solid for $\operatorname{Ri}_{f}^{\infty} = 0.4$) and (thick dashed for $\operatorname{Ri}_{f}^{\infty} = 0.2$).

Large-Scale Internal Gravity Waves with Random phases

$$\frac{DE_K}{Dt} + \frac{\partial \Phi_K}{\partial z} = -\tau_{i3} \frac{\partial U_i}{\partial z} + \beta F_z - \varepsilon_K - \left\langle \tau_{ij}^W \frac{\partial V_i^W}{\partial x_j} \right\rangle_W + \beta \left\langle V_z^W \Theta^W \right\rangle_W,$$

$$\frac{DE_{\theta}}{Dt} + \frac{\partial \Phi_{\theta}}{\partial z} = -F_z \frac{\partial \Theta}{\partial z} - \varepsilon_{\theta} - \left\langle F_j^W \frac{\partial \Theta^W}{\partial x_j} \right\rangle_W,$$

$$\frac{DF_i}{Dt} + \frac{\partial}{\partial x_j} \Phi_{ij}^{(F)} = \beta_i \left\langle \theta^2 \right\rangle + \frac{1}{\rho_0} \left\langle \theta \nabla_i p \right\rangle - \tau_{i3} \frac{\partial \Theta}{\partial z} - F_j \frac{\partial U_i}{\partial x_j} - \varepsilon_i^{(F)} - \left\langle \tau_{ij}^W \frac{\partial \Theta^W}{\partial x_j} \right\rangle_W$$

$$-\left\langle F_j^W \frac{\partial V_i^W}{\partial x_j} \right\rangle_W.$$

where

$$F_i^W \approx -C_F t_T \left(\tau_{ij} \frac{\partial \Theta^W}{\partial x_j} + \tau_{i3}^W \frac{\partial \Theta}{\partial z} + F_j \frac{\partial V_i^W}{\partial x_j} \right).$$

$$\tau_{ij}^{W} \approx -C_{\tau} t_{T} \left(\tau_{ik} \frac{\partial V_{j}^{W}}{\partial x_{k}} + \tau_{jk} \frac{\partial V_{i}^{W}}{\partial x_{k}} \right)$$

Budget Equations for IGW: S=0

$$\frac{DE_{K}^{W}}{Dt} + \operatorname{div} \mathbf{\Phi}^{W} = \left\langle \tau_{ij}^{W} \frac{\partial V_{i}^{W}}{\partial x_{j}} \right\rangle_{W},$$

$$\frac{DE_{P}^{W}}{Dt} = \frac{\beta^{2}}{N^{2}} \left\langle F_{j}^{W} \frac{\partial \Theta^{W}}{\partial x_{j}} \right\rangle_{W},$$

where

$$\tau_{ij}^{W} \approx -C_{\tau} t_{T} \left(\tau_{ik} \frac{\partial V_{j}^{W}}{\partial x_{k}} + \tau_{jk} \frac{\partial V_{i}^{W}}{\partial x_{k}} \right)$$
$$F_{i}^{W} \approx -C_{F} t_{T} \left(\tau_{ij} \frac{\partial \Theta^{W}}{\partial x_{j}} + \tau_{i3}^{W} \frac{\partial \Theta}{\partial z} + F_{j} \frac{\partial V_{i}^{W}}{\partial x_{j}} \right)$$
$$\Phi^{W} = \frac{1}{\rho_{0}} \left\langle p^{W} \mathbf{V}^{W} \right\rangle_{W} = \int \mathbf{C}_{g}(\mathbf{k}) \widetilde{E}^{W}(\mathbf{k}) d\mathbf{k} ,$$

Total wave energy:

$$\boldsymbol{E}^{\boldsymbol{W}} = \boldsymbol{E}_{\boldsymbol{K}}^{\boldsymbol{W}} + \boldsymbol{E}_{\boldsymbol{p}}^{\boldsymbol{W}} \,,$$

W

$$\frac{DE^{w}}{Dt} + \frac{\partial}{\partial z} \Big[V_{g}(Q) E^{w} \Big] = -\gamma_{d}(E^{w}) E^{w}$$

$$\gamma_d(E^W) = C_F \left(1 + \Pr_0\right) \pi^W \frac{\ell_T}{H^2} \sqrt{E_K(E^W)}$$

$$V_g(Q) = \frac{\mu - 1}{\mu} N_0 H f(Q)$$

Wave Richardson Number

Ri_w

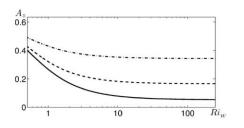


Figure 1. The anisotropy parameter A_z versus the parameter for different values of the parameter C_0 : $C_0 = 1/15$ (solid), $C_0 = 0.1$ (dashed), $C_0 = 0.217$ (dashed-doted).

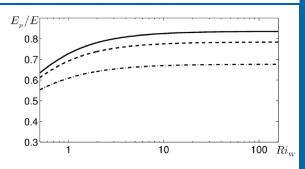
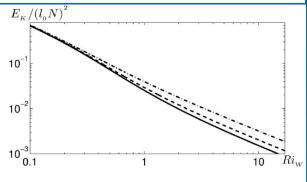


Figure 2. The ratio of potential to the total energy versus the parameter Ri_w



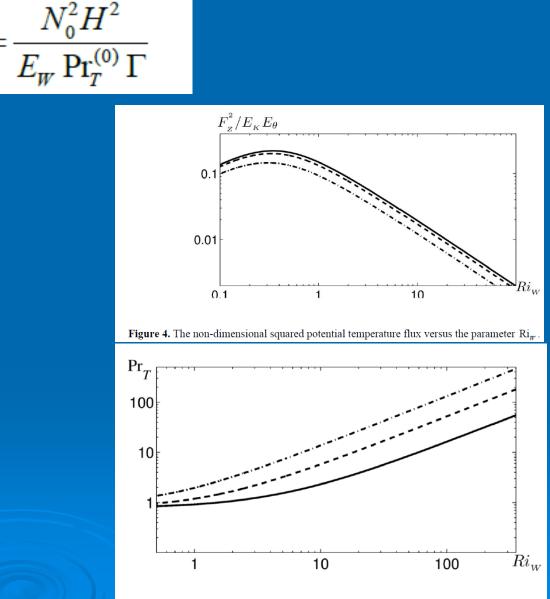


Figure 5. The turbulent Prandtl number Pr_T versus the parameter Ri_W .

Spatial Profiles

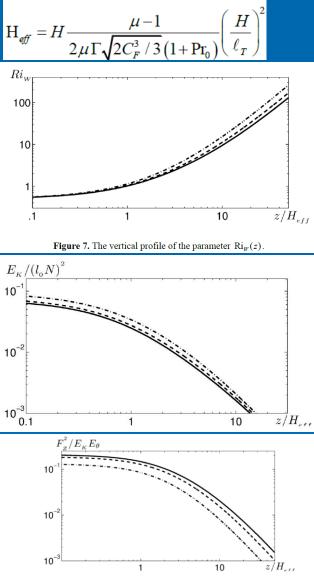


Figure 9. The vertical profile of the non-dimensional squared flux of the potential temperature.

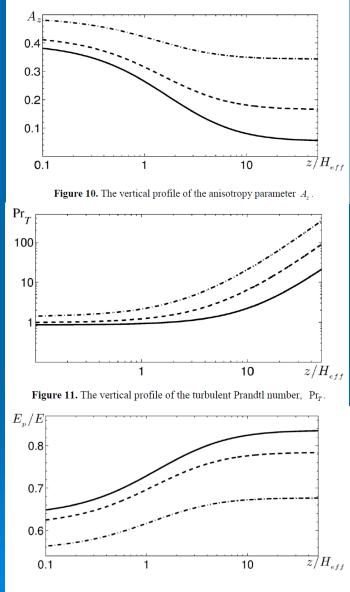
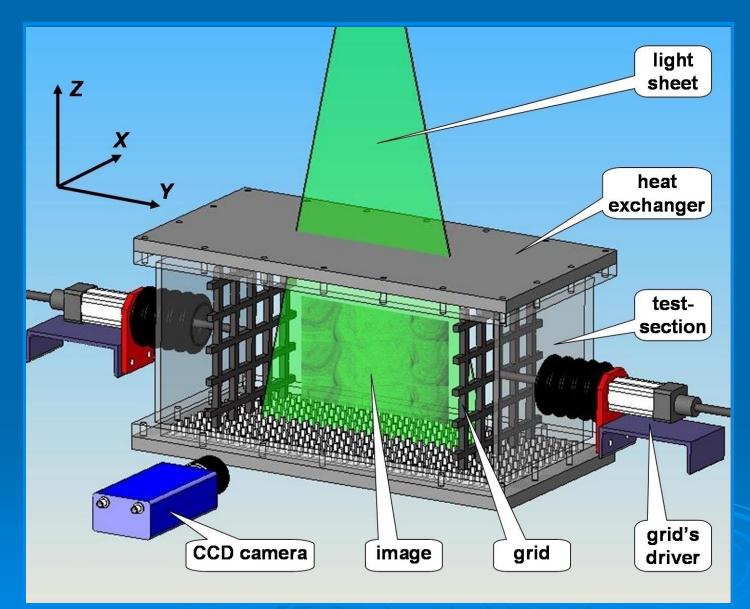
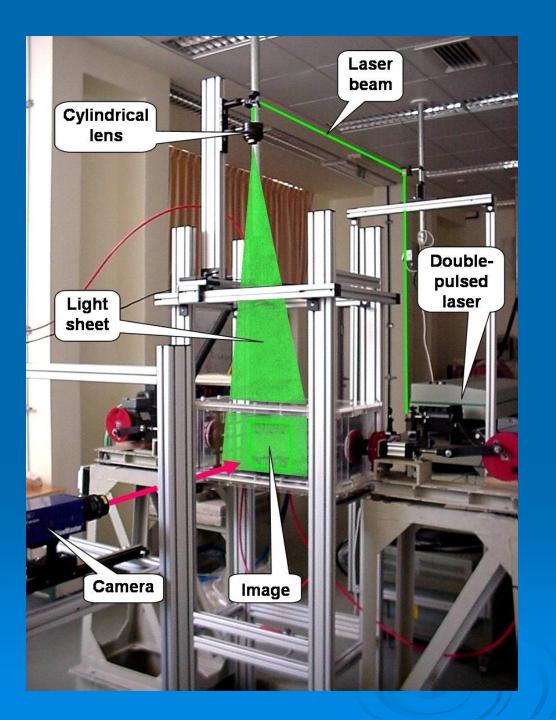


Figure 12. The vertical profile of the ratio of the potential to the total energy.

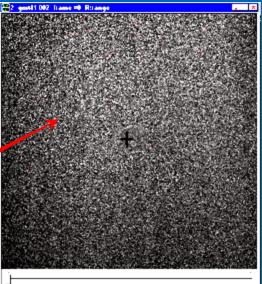
Laboratory Experiments of Stably Stratified Turbulent Flow





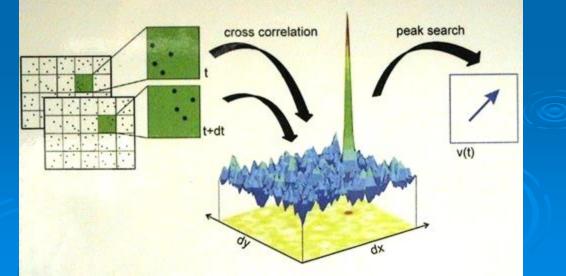
Experimental set - up: oscillating grids turbulence generator and particle image velocimetry system

Particle Image Velocimetry System

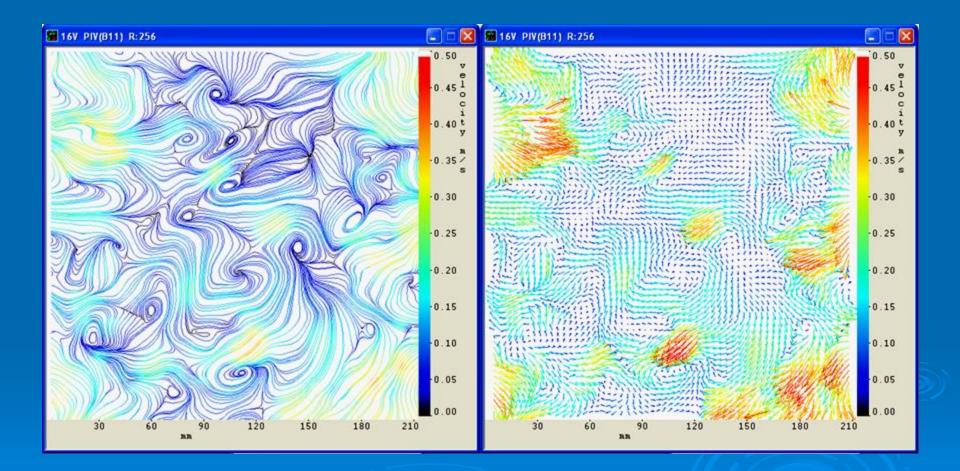


Raw image of the incense smoke tracer particles in oscillating grids turbulence

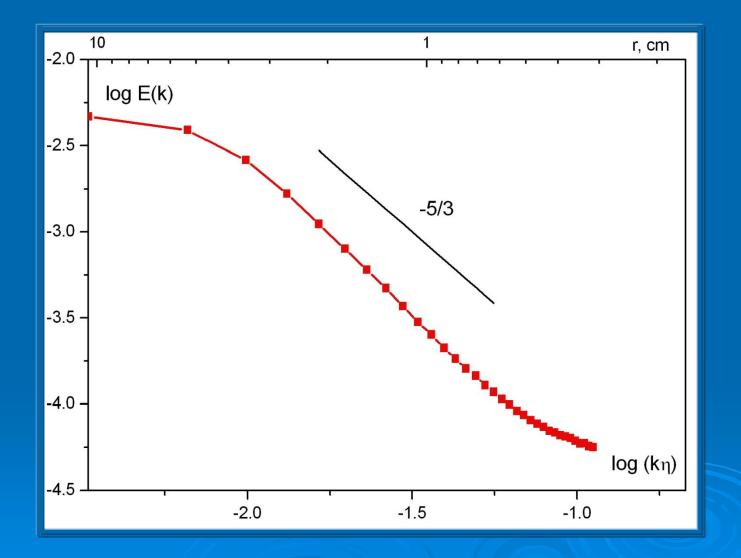
Particle Image Velocimetry Data Processing



Instantaneous Streamlines of the Flow and Velocity Fluctuations

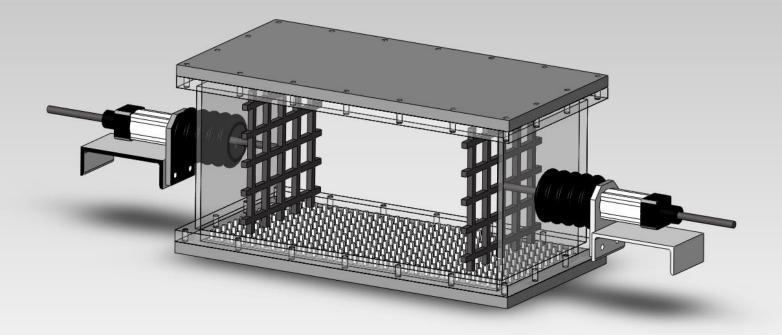


Turbulent Energy Spectrum



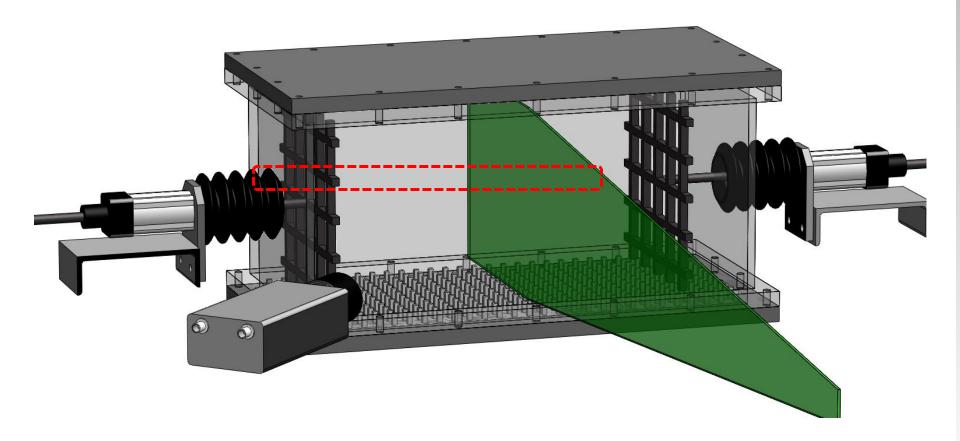
Stably stratified turbulent flows

A fog-ridden, pooled shallow SBL in a mountain valley (SBL- stable boundary layer)



Experim I Setup

Unstably stratified



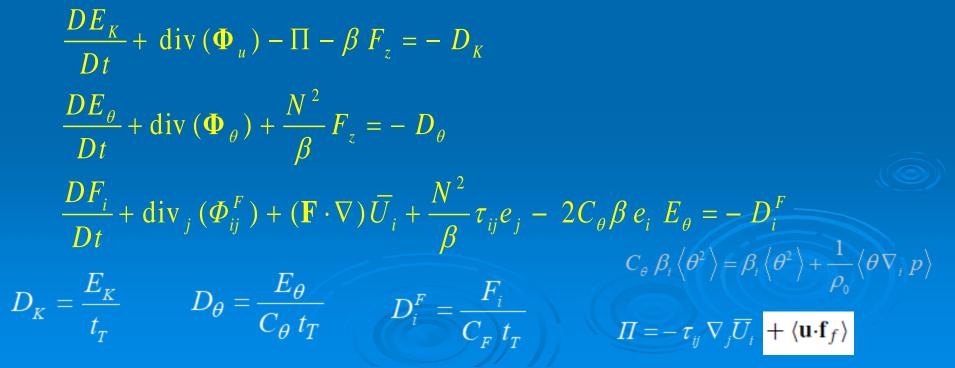
Budget Equations for SBL

- > Turbulent kinetic energy:
- > Potential temperature fluctuations:
- > Flux of potential temperature :

$$E_K = \frac{1}{2} \left\langle \mathbf{u}^2 \right\rangle$$

$$E_{\theta} = \frac{1}{2} \left\langle \theta^2 \right\rangle$$

 $\mathbf{F} = \left\langle \mathbf{u} \; \boldsymbol{\theta} \right\rangle$



Theoretical Analysis

 E_k $E_{ heta}$ The energy- and flux-budget turbulence closure (EFB model)

$$(\ell_{x}\nabla_{x}T)^{2} = \left[\left(\ell_{x}\nabla_{x}T\right)^{2} + \left(\ell_{y}\nabla_{y}T\right)^{2} + \left(\ell_{z}\nabla_{z}T\right)^{2} \right] \cdot \left[1 + 2C_{\theta}C_{F}\beta\tau_{0}^{2}\left(\nabla_{z}T\right)\right]^{-1}$$

$$\frac{\mathsf{TKE}}{\mathsf{e}} = \langle u_{i}u_{i} \rangle / 2$$

$$\frac{\mathsf{TE}}{\mathsf{e}\mathsf{TKE}\mathsf{+}\mathsf{TPE}}$$

$$\frac{\mathsf{steady} - \mathsf{stae}}{\mathsf{s}_{x} \approx \tau_{y} \approx \tau_{z} = \tau_{0}}$$

$$\rho\left[\ell^{3} / L_{x}^{2}; \left(\ell^{3} / (L_{x}^{2} L_{y})\right)\right] < < 1$$

$$\left[\frac{\ell_{x}\nabla_{x}T}{\langle \theta^{2} \rangle}^{2} = \frac{1}{2C_{F}} = const$$

$$\rho\left[\ell^{3} / L_{x}^{2}; \left(\ell^{3} / (L_{x}^{2} L_{y})\right)\right] < < 1$$

$$\left[\frac{\ell_{x}\nabla_{x}T}{\langle \theta^{2} \rangle}^{2} = \frac{1}{2C_{F}} = const$$

$$\rho\left[\ell^{3} / L_{x}^{2}; \left(\ell^{3} / (L_{x}^{2} L_{y})\right)\right] < < 1$$

$$\left[\frac{\ell_{x}\nabla_{x}T}{\langle \theta^{2} \rangle}^{2} = \frac{1}{2C_{F}} = const$$

$$\rho\left[\ell^{3} / L_{x}^{2}; \left(\ell^{3} / (L_{x}^{2} L_{y})\right)\right] < < 1$$

$$\left[\frac{\ell_{x}\nabla_{x}T}{\langle \theta^{2} \rangle}^{2} = \frac{1}{2C_{F}} = const$$

$$\rho\left[\ell^{3} / L_{x}^{2}; \left(\ell^{3} / (L_{x}^{2} L_{y})\right)\right] < < 1$$

$$\left[\frac{\ell_{x}\nabla_{x}T}{\langle \theta^{2} \rangle}^{2} = \frac{1}{2C_{F}} = const$$

$$\rho\left[\ell^{3} / L_{x}^{2}; \left(\ell^{3} / (L_{x}^{2} L_{y})\right)\right] < < 1$$

$$\left[\frac{\ell_{x}\nabla_{x}T}{\langle \theta^{2} \rangle}^{2} = \frac{1}{2C_{F}} = const$$

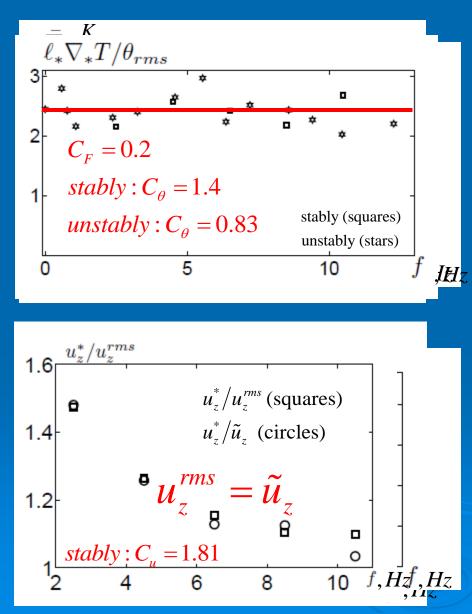
$$\rho\left[\ell^{3} / L_{x}^{2}; \left(\ell^{3} / (L_{x}^{2} L_{y})\right)\right] < < 1$$

$$\left[\frac{\ell_{x}\nabla_{x}T}{\langle \theta^{2} \rangle}^{2} = \frac{1}{2C_{F}} = const$$

$$\left[\frac{\ell_{x}\nabla_{x}T}{\langle \theta^{2} \rangle}^{2} = \frac{1}{2C_{F}} + const$$

$$\left[\frac{\ell_{x}\nabla_{x}T}{\langle \theta^{2} \rangle}^{$$

Comparison of Experimental and Theoretical Results



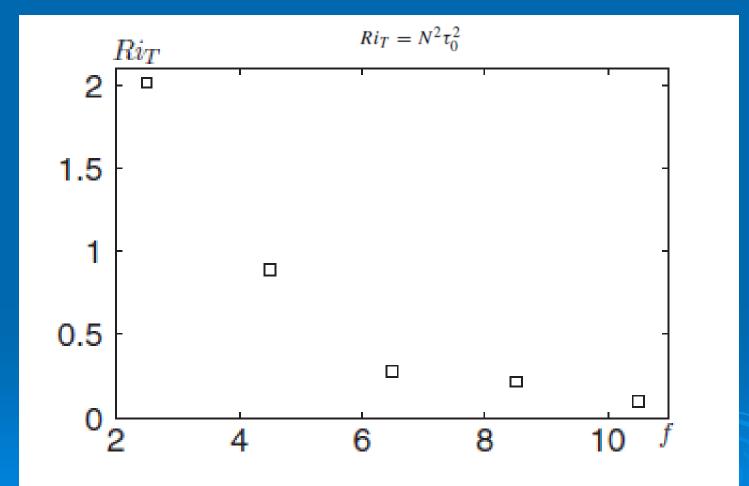
$$\frac{\left(\ell_* \nabla_* T\right)^2}{\theta_{rms}^2} = \frac{1}{2C_F} = const$$

$$\left(\ell_* \nabla_* T\right)^2 = \frac{\left(\ell_x \nabla_x T\right)^2 + \left(\ell_y \nabla_y T\right)^2 + \left(\ell_z \nabla_z T\right)^2}{1 + 2C_\theta C_F \beta \tau_0^2 \left(\nabla_z T\right)}$$

$$\theta_{rms} = \sqrt{\langle \theta^2 \rangle}$$

$$\tilde{u}_{z} = \left[\left\langle \left(u_{z}^{*} \right)^{2} \right\rangle - C_{u} \ell_{z} \beta \sqrt{\left\langle \theta^{2} \right\rangle} \right]^{1/2} \\ \left\langle \left(u_{z}^{*} \right)^{2} \right\rangle = 2\tau \left\langle u_{z} f_{z} \right\rangle / \left[1 + C_{r} (1 - 1/3Az) \right] \\ u_{z}^{rms} = \sqrt{\left\langle u_{z}^{2} \right\rangle}$$

Turbulent Richardson number



Experimental Set-up with Sheared Temperature Stratified Turbulence

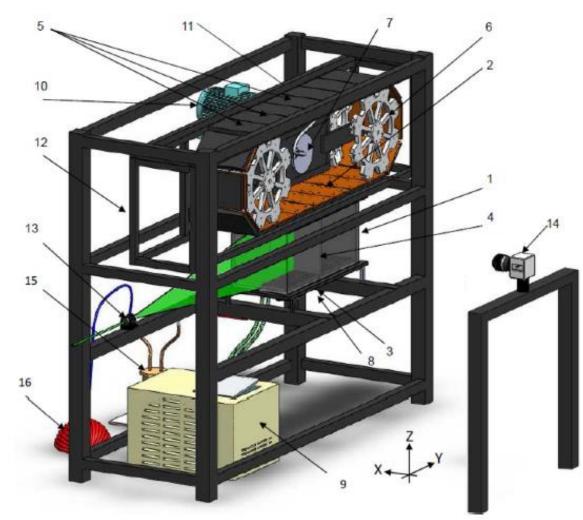
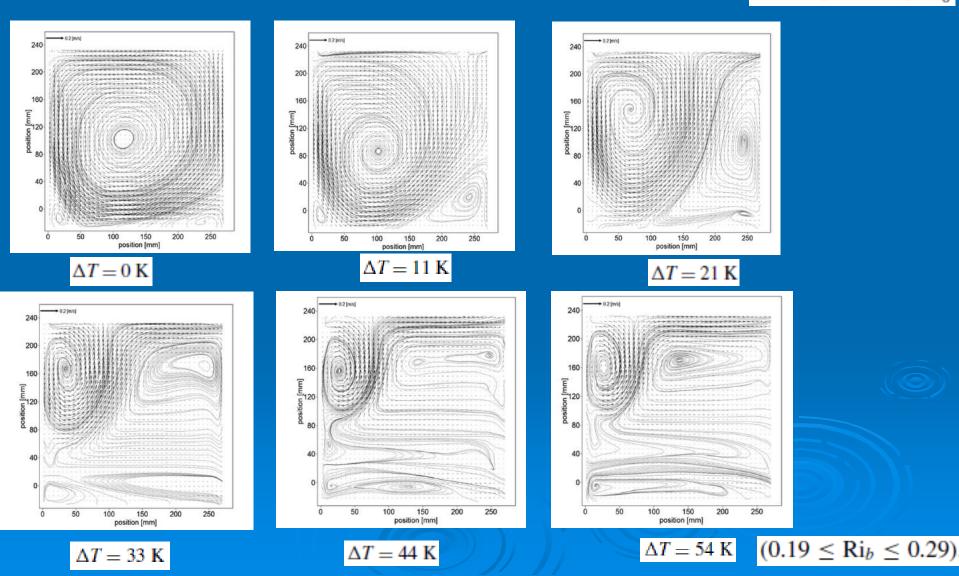


FIG. 1. Scheme of the experimental set-up with sheared temperature stratified turbulence: 1—rectangular cavity; 2—heated top wall; 3—cooled bottom wall; 4—internal partition; 5—plate heating elements; 6—gear wheels; 7—sliding rings; 8—tank with cold water; 9—chiller; 10—electric motor; 11—gear box; 12—rigid steel frame; 13—laser light sheet optics; 14—CCD camera; 15—generator of incense smoke; and 16—pump.

Mean Flow Patterns Obtained in the Experiments $Ri_b = g\alpha \Delta T H_z/U_0^2$



Scalings and Measurements

$$\rho U^2/2 \sim \rho \beta (\delta T) L_z$$

$$L_z \sim U^2 / \beta \Delta T$$

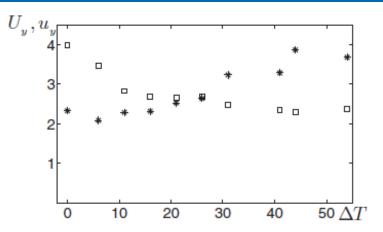
$$S = dU_y/dz \sim U_y/L_z$$

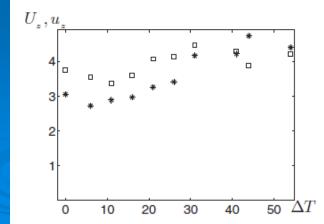
100

$$dU_y/dz \sim U_y \beta \Delta T/U^2 \sim \beta \Delta T/U$$

$$\rho u^2/2 \sim \Pi \ell_z/u_z \sim \ell_z^2 S^2 \sim \ell_z^2 (\beta \Delta T/U)^2$$
 $u \propto \ell_z \Delta$

$$\Pi = v_T S^2$$
$$v_T \sim \ell_z u_z$$
turbulent *u_z* (snowflakes)





References

- Zilitinkevich, S., Elperin, T., Kleeorin, N., and Rogachevskii, I, 2007: Energy- and fluxbudget (EFB) turbulence closure model for stably stratified flows. Boundary Layer Meteorology, Part 1: steady-state homogeneous regimes. *Boundary Layer Meteorology*, 125, 167-191.
- Zilitinkevich S., Elperin T., Kleeorin N., Rogachevskii I., Esau I., Mauritsen T. and Miles M., 2008: Turbulence energetics in stably stratified geophysical flows: strong and weak mixing regimes. *Quarterly Journal of Royal Meteorological Society*, 134, 793-799.
- Zilitinkevich, S.S., Elperin, T., Kleeorin, V. L'vov, N., Rogachevskii, I., 2009: Energy- and flux-budget turbulence closure model for stably stratified flows. Part II: the role of internal gravity waves. *Boundary-Layer Meteorol.* 133, 139-164.
- Zilitinkevich, S.S., Elperin, T., Kleeorin, N., Rogachevskii, I., and Esau, I., 2013: A hierarchy of energy- and flux-budget (EFB) turbulence closure models for stably stratified geophysical flows. Boundary-Layer Meteorol. 146, 341-373.
- Eidelman A., Elperin T., Gluzman Y., Kleeorin N., and Rogachevskii I., 2013: "Experimental study of temperature fluctuations in forced stably stratified turbulent flows". Physics of Fluids, 25, 015111 (1-16).
- Cohen N., Eidelman A., Elperin T., Kleeorin N., and Rogachevskii I., 2014: "Sheared stably stratified turbulence and large-scale waves in a lid driven cavity". Physics of Fluids, 26, 105106 (1-16).
- Elperin T., Kleeorin N., Rogachevskii I., Soustova I.A., Troitskaya Yu., Zilitinkevich S., 2018: "Internal gravity waves in turbulence closure model for atmospheric stably stratified flows". To be submitted to Phys. Rev. E.

Conclusions

- Budget equations for the kinetic and potential energies and for the heat flux play a crucial role for analysis of stably stratified turbulence.
- Explanation for no critical Richardson number.
- Reasonable Ri-dependencies of the turbulent Prandtl number, the anisotropy of stably stratified turbulence, the normalized heat flux and TKE which follow from the developed theory.
- The scatter of observational, experimental, LES and DNS data in stably stratified turbulence are explained by effects of large-scale internal gravity waves on SBL-turbulence.

Conclusions

Predictions of energy- and flux-budget turbulence closure (EFB) model are in a good agreement with the experimental results.

Temperature cannot be considered as a passives scalar in most of the range of grid frequencies because Richardson number is small <u>only</u> for large frequencies.

✤We detected also long-term nonlinear oscillations of the mean temperature in stably stratified turbulence for all frequencies of grid oscillations similarly to the case of the unstably stratified flows.

THE END