Turbulence and waves ``but how much mixing?'' and dissipation?

Annick Pouquet

Laboratory for Atmospheric and Space Physics, CU-Boulder & University Corporation for Atmospheric Research, Boulder

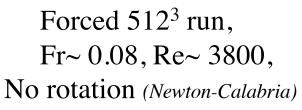
Corentin Herbert, LP - ENS / Lyon Raffaele Marino, LMFA-ECL/Lyon Duane Rosenberg, CIRA/NOAA-Boulder

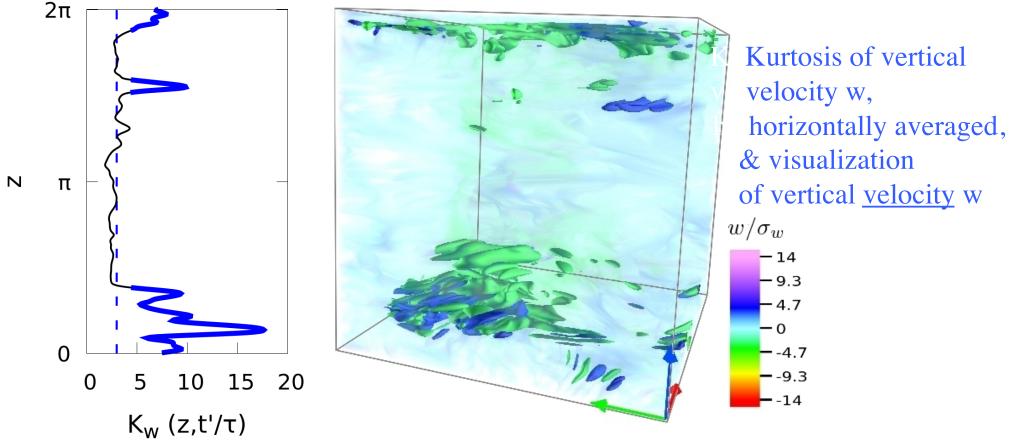
NSF/NCAR/Yellowstone: 76 decay or forced RST runs @1024³ res., 6 forced runs @2048³ ; ~ 85% background (free) time DOE/Titan: Decay RST run @ 4096³ point resolution, a few outputs of which are on the *John Hopkins turbulence data base*

Scaling laws for mixing & dissipation in unforced rotating stratified turbulence, <u>J. Fluid Mech.</u> **844**, 519, 2018 Variations of characteristic time scales in rot. strat. turb. using a large parametric numerical study, <u>Eur. Phys. J-E</u> **39**, 8, 2016 Evidence for Bolgiano-Obukhov scaling in rotating stratified turbulence using high-resolution Direct Num. Sim., <u>Phys. Fluids</u> **27**, 055105, 2015

BLayers18, KITP, Santa Barbara, June 4, 2018

pouquet@ucar.edu

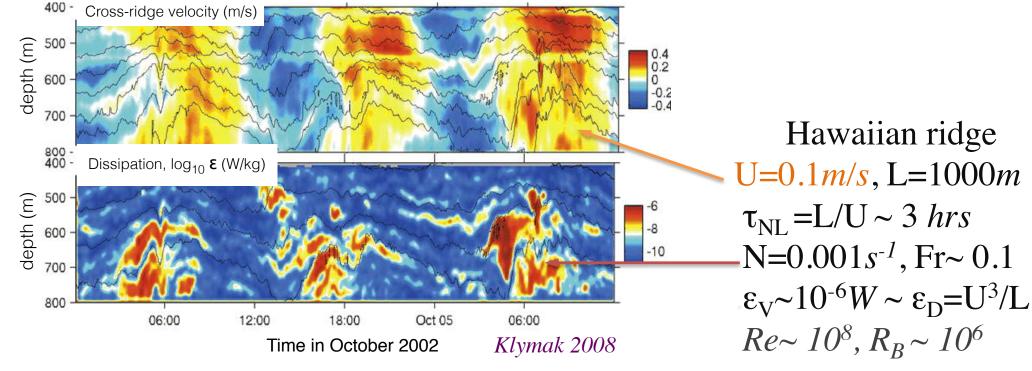


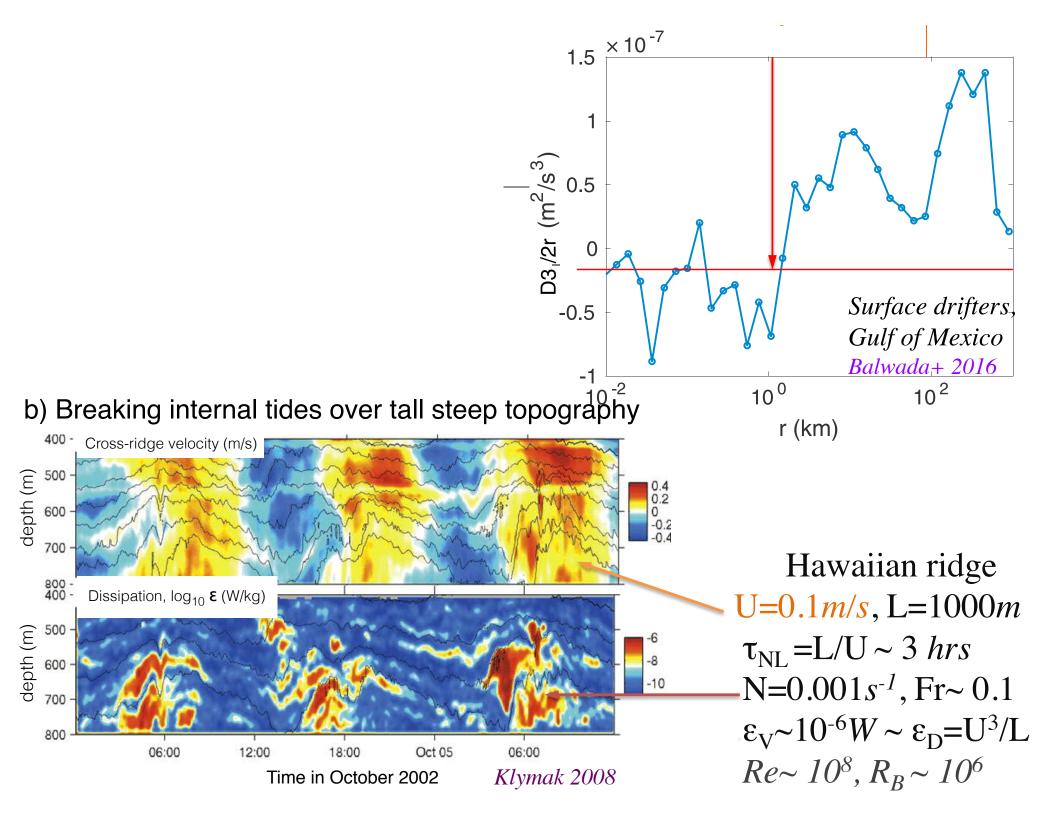


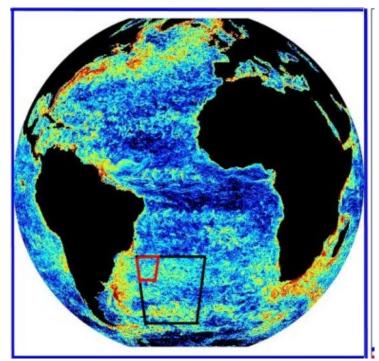
Strong intermittency of the vertical *velocity*

Model through the Vieillefosse system with gravity waves, forcing and dissipation

Feraco+, Vertical drafts and mixing in stratified turbulence: sharp transition with Froude number. Submitted to *Eur. J. Phys. Lett.*. ArXiv/ 1806.00342 (see also Rorai+, Turbulence comes in bursts in stably stratified flows, *Phys. Rev. E* **89**, 043002, 2014)



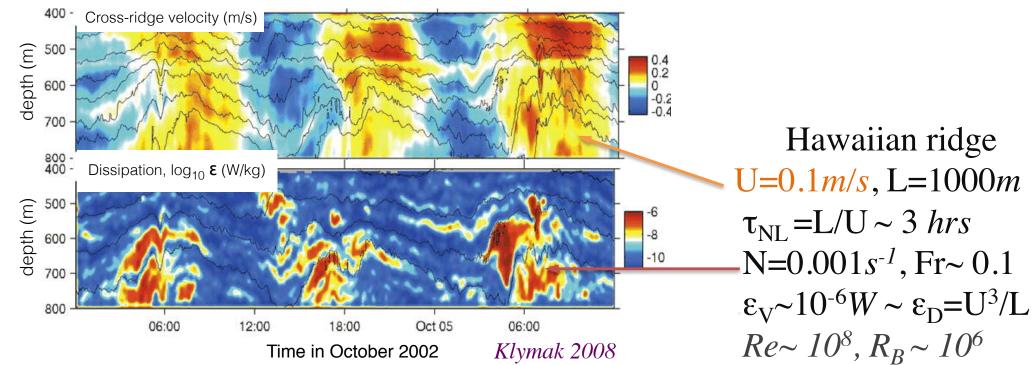




Ocean model, smallest resolved scale: 20km

Kinetic energy dissipation *Pearson+2018*

b) Breaking internal tides over tall steep topography



Outline

- Introduction
- Equations and characteristic scales
- Parametric study with direct numerical simulations
- Three constitutive laws for normalized E_{P} , E_{w} , ϵ_{V}
- Consequences of for scaling of mixing efficiency+
- Discussion, Conclusions and Perspectives

Incompressible Boussinesq equations + rotation 3D cubic box, periodic boundary conditions

$$\begin{aligned} \frac{\partial \mathbf{u}}{\partial t} + \boldsymbol{\omega} \times \mathbf{u} + 2\boldsymbol{\Omega} \times \mathbf{u} &= -N\vartheta \hat{e}_z - \nabla \mathcal{P} + \nu \nabla^2 \mathbf{u}, \\ \frac{\partial \vartheta}{\partial t} + \mathbf{u} \cdot \nabla \vartheta &= Nw + \kappa \nabla^2 \vartheta, \end{aligned}$$
 [\$\theta] = [L T¹]

Governing dimensionless parameters:

Reynolds, Froude, Rossby, Prandtl=1 $Re = \frac{U_0 L_0}{\nu}, \ Fr = \frac{U_0}{L_0 N}, \ Ro = \frac{U_0}{L_0 f}, \ Pr \neq \frac{\nu}{\kappa}, \quad f=2\Omega$

> Fr < 1, together with Re >> 1N/f = Ro/Fr > 2.5 (ocean, atmosphere)

SCALES: Purely stratified flow (f=0): Fr = $U_0/[NL_0] < 1$

Scale at which Fr = 1?

Scale at which Fr = 1?

 $\rightarrow L_B = U_0/N$, buoyancy scale

Scale at which Fr = 1?

 $\rightarrow L_B = U_0/N$, buoyancy scale

l? such that Fr(l)=1, for a Kolmogorov spectrum: $u(l) \sim \varepsilon_v^{1/3} l^{1/3}$ $\rightarrow l = l_{Oz} = [\varepsilon_v/N^3]^{\frac{1}{2}}$, Ozmidov scale

Scale at which Fr = 1?

 $\rightarrow L_B = U_0/N$, buoyancy scale

l? such that Fr(l)=1, for a Kolmogorov spectrum: $u(l) \sim \varepsilon_v^{1/3} l^{1/3}$ $\rightarrow l = l_{Oz} = [\varepsilon_v/N^3]^{\frac{1}{2}}$, Ozmidov scale , $L_B / l_{Oz} \sim Fr^{-1/2}$

Scale at which Fr = 1?

 $\rightarrow L_B = U_0/N$, buoyancy scale

l ? such that Fr(l)=1, for a Kolmogorov spectrum: $u(l) \sim \varepsilon_v^{1/3} l^{1/3}$ $\downarrow l = l_{Oz} = [\varepsilon_v/N^3]^{\frac{1}{2}}$, Ozmidov scale , $L_B / l_{Oz} \sim Fr^{-1/2}$

Buoyancy Reynolds number: $R_B \equiv \epsilon_v / [\nu N^2] = [l_{Oz} / \eta]^{4/3}$ $R_B = 1$ for $l_{Oz} = \eta = [\epsilon_v / \nu^3]^{-1/4}$ (η : Kolmogorov dissipation scale)

Purely stratified flow (f=0): Fr = $U_0/[NL_0] < 1$

Scale at which Fr = 1? $\rightarrow L_B = U_0/N$, buoyancy scale

l ? such that Fr(l)=1, for a Kolmogorov spectrum: $u(l) \sim \varepsilon_v^{1/3} l^{1/3}$ $l = l_{Oz} = [\varepsilon_v/N^3]^{\frac{1}{2}}$, Ozmidov scale , $L_B / l_{Oz} \sim Fr^{-1/2}$

Buoyancy Reynolds number: $R_B \equiv \epsilon_v / [\nu N^2] = [l_{Oz}/\eta]^{4/3}$ $R_B = 1 \text{ for } l_{Oz} = \eta = [\epsilon_v / \nu^3]^{-1/4}$ (η : Kolmogorov dissipation scale)

Numerical conendrum: large R_B , small Fr for geophysical flows With rotation: Ro also small; *Ro/Fr= N/f ~ 5 (ocean) or 100 (atmosphere)*

Purely stratified flow (f=0): $Fr = U_0/[NL_0] < 1$

Scale at which Fr = 1? $\rightarrow L_B = U_0/N$, buoyancy scale

l ? such that Fr(l)=1, for a Kolmogorov spectrum: $u(l) \sim \varepsilon_v^{1/3} l^{1/3}$ $l = l_{Oz} = [\varepsilon_v/N^3]^{\frac{1}{2}}$, Ozmidov scale , $L_B / l_{Oz} \sim Fr^{-1/2}$

Buoyancy Reynolds number: $R_B \equiv \epsilon_v / [\nu N^2] = [l_{Oz}/\eta]^{4/3}$ $R_B = 1 \text{ for } l_{Oz} = \eta = [\epsilon_v / \nu^3]^{-1/4}$ (η : Kolmogorov dissipation scale)

Numerical conendrum: large R_B , small Fr for geophysical flows With rotation: Ro also small; $Ro/Fr = N/f \sim 5$ (ocean) or 100 (atmosphere)

Note: $R_B = Re Fr^2$ only for $dE_V/dt \equiv \varepsilon_v = \varepsilon_D = U_0^2/[L_0/U_0] = U_0^3/L_0$

Purely stratified flow (f=0): $Fr = U_0/[NL_0] < 1$

Scale at which Fr = 1? $\rightarrow L_B = U_0/N$, buoyancy scale

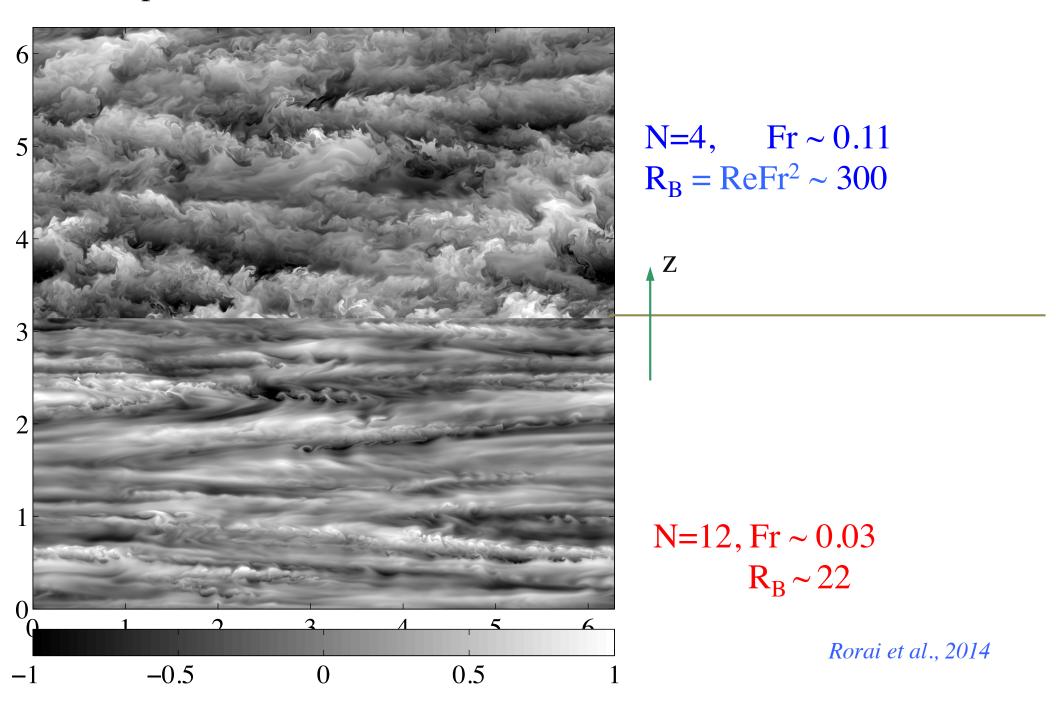
l ? such that Fr(l)=1, for a Kolmogorov spectrum: $u(l) \sim \varepsilon_v^{1/3} l^{1/3}$ $l = l_{Oz} = [\varepsilon_v/N^3]^{\frac{1}{2}}$, Ozmidov scale , $L_B / l_{Oz} \sim Fr^{-1/2}$

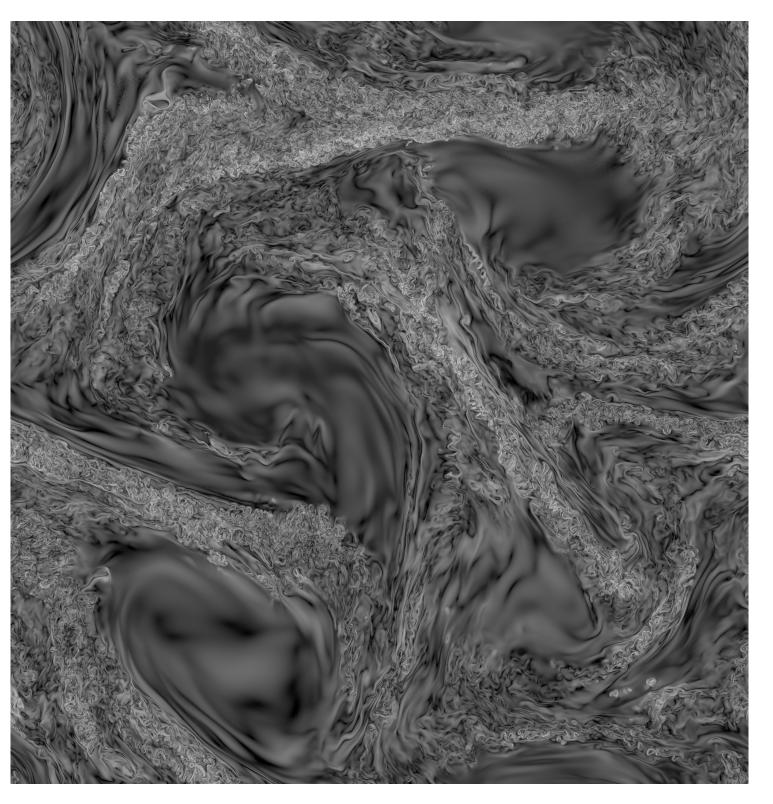
Buoyancy Reynolds number: $R_B \equiv \epsilon_v / [\nu N^2] = [l_{Oz}/\eta]^{4/3}$ $R_B = 1 \text{ for } l_{Oz} = \eta = [\epsilon_v / \nu^3]^{-1/4}$ (η : Kolmogorov dissipation scale)

Numerical conendrum: large R_B , small Fr for geophysical flows With rotation: Ro also small; $Ro/Fr = N/f \sim 5$ (ocean) or 100 (atmosphere)

Note:
$$R_B = Re \ Fr^2$$
 only for $dE_V/dt \equiv \varepsilon_v = \varepsilon_D = U_0^2/[L_0/U_0] = U_0^3/L_0$

Stratification, no rotation, large scale forcing, Re~ 24000, 2048³ grid: Temperature fluctuations, xz slice





Vertical vorticity at peak of dissipation $(\omega_{z-mag}, horizontal cut)$:

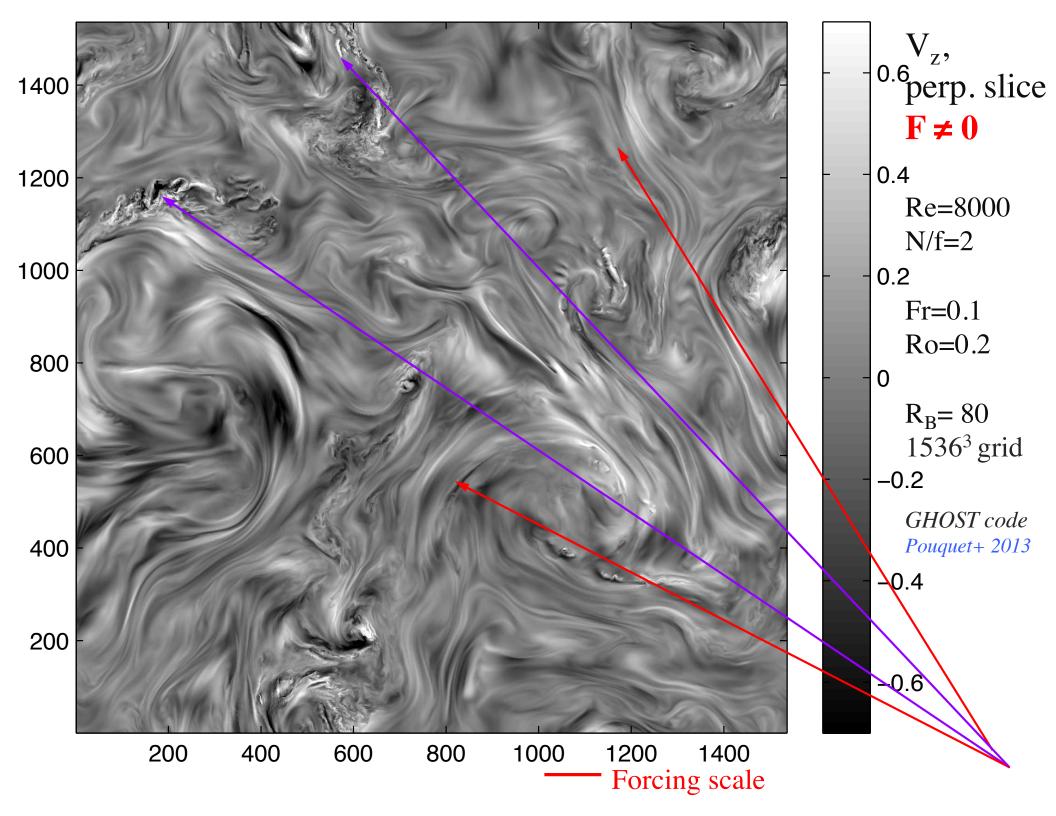
Eddies & lanes

Plot @ full 4096² res. GHOST pseudo-spectral code (DOE/titan, 2014)

Log scale

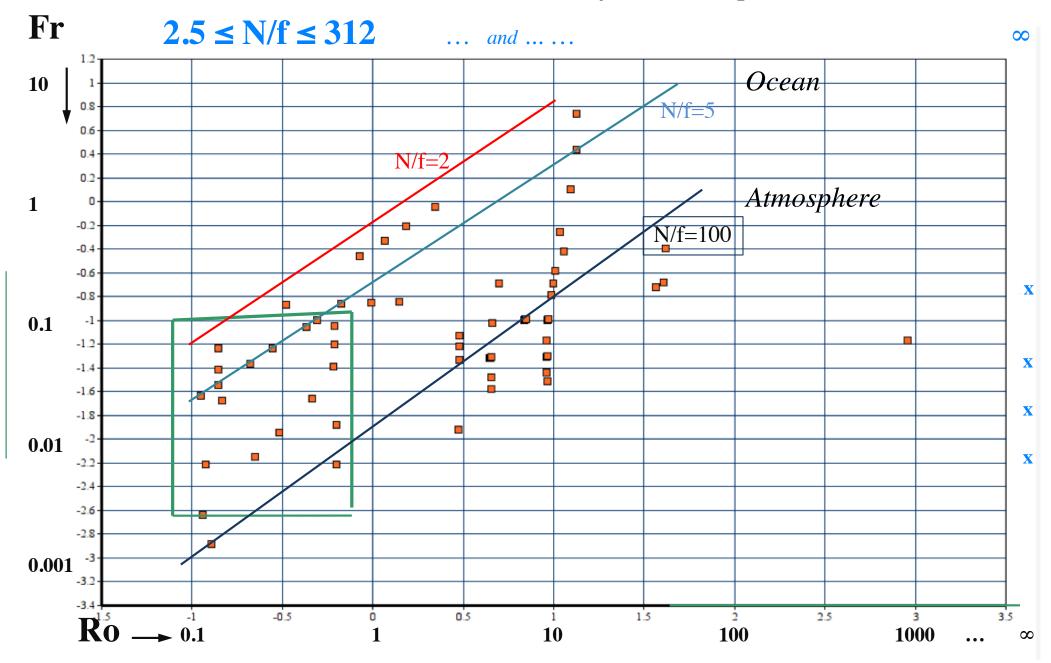
f=2.7, $\omega_{rms} \sim 17$

Re=55000 ``ocean'' Fr=0.024, N/f= 5 $R_B=32$, $k_{max}\eta \sim 2$ No forcing, $k_0\sim 2.5$ Bolgiano-Obukhov scaling Rosenberg+ 2015



THE PARAMETRIC STUDY

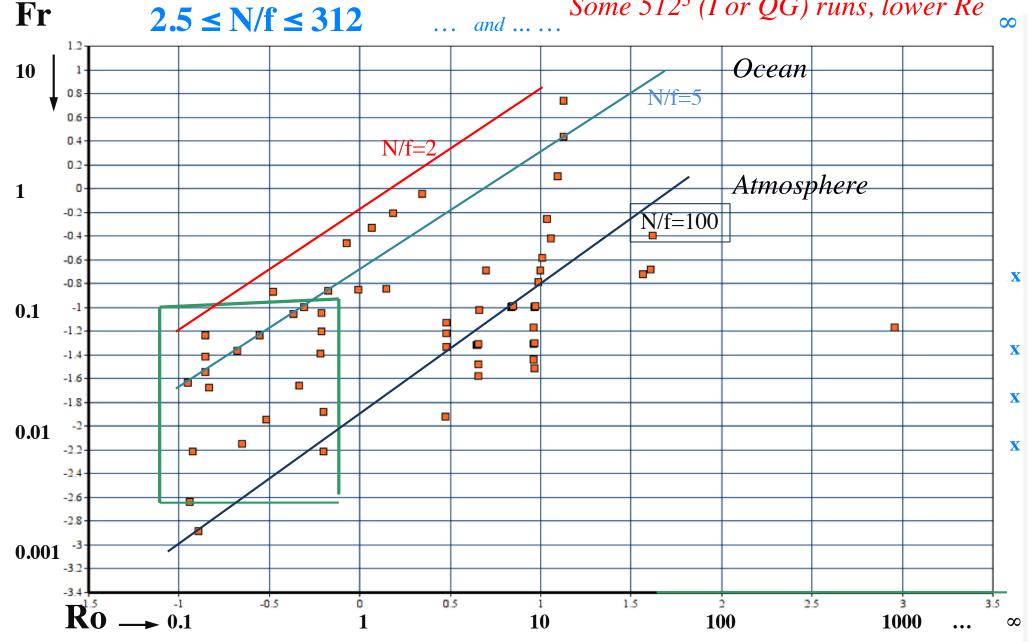
1024³, Re~1.2x10⁴, $\theta(t=0)=0$, F=0, k₀~2.5, isotropic (I); GHOST code.

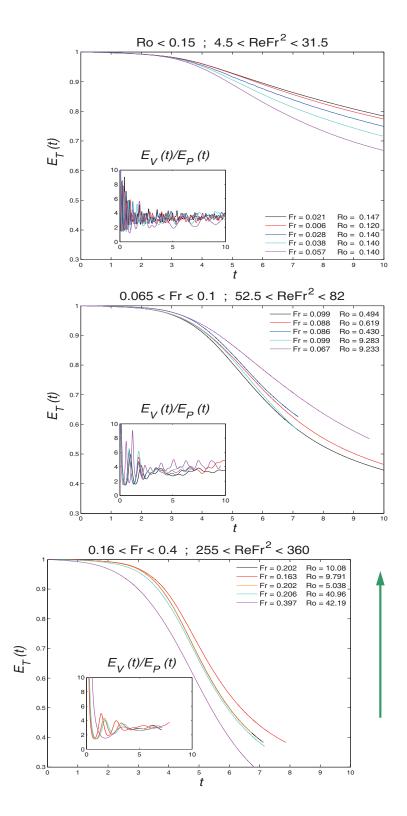


THE PARAMETRIC STUDY

 1024^3 , Re~1.2x10⁴, $\theta(t=0)=0$, F=0, k₀~2.5, isotropic (I); GHOST code.

Some 512³ (I or QG) runs, lower Re



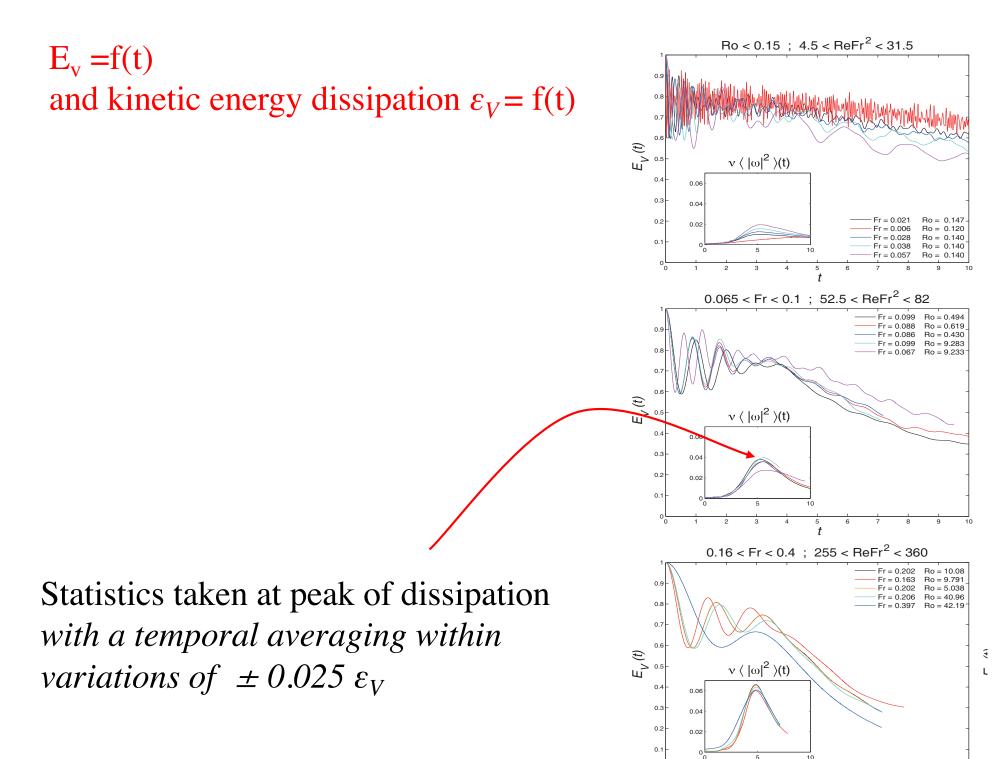


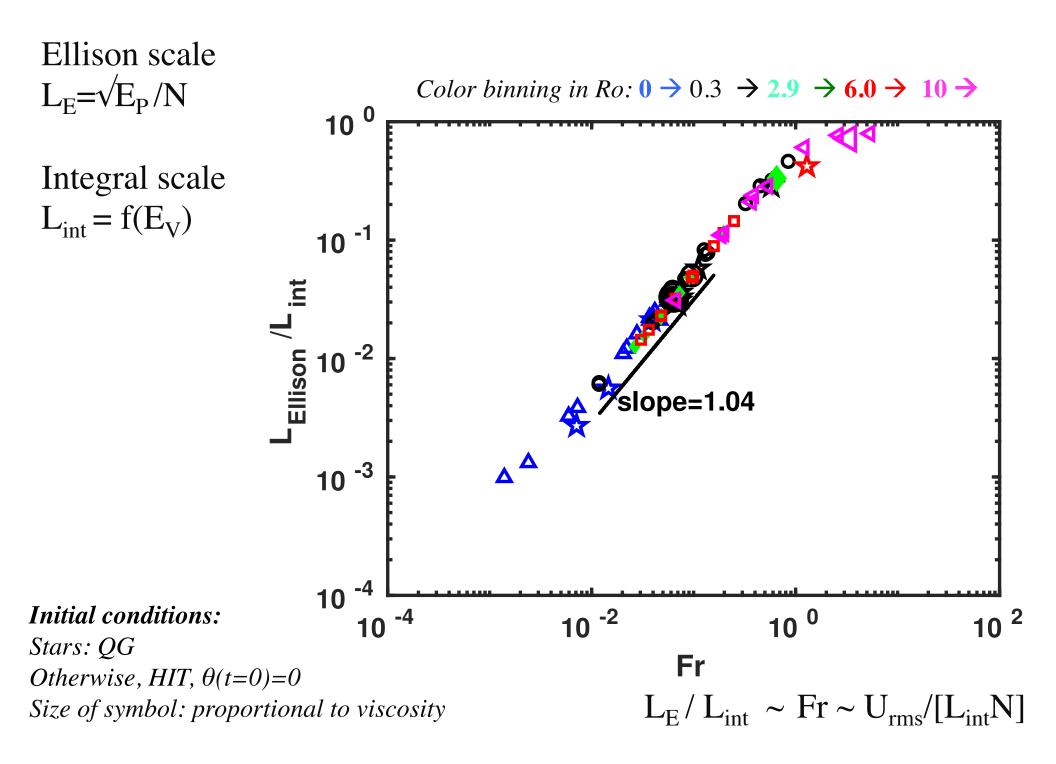
$$E_T = f(t)$$
 and
 $E_v/E_p = f(t)$

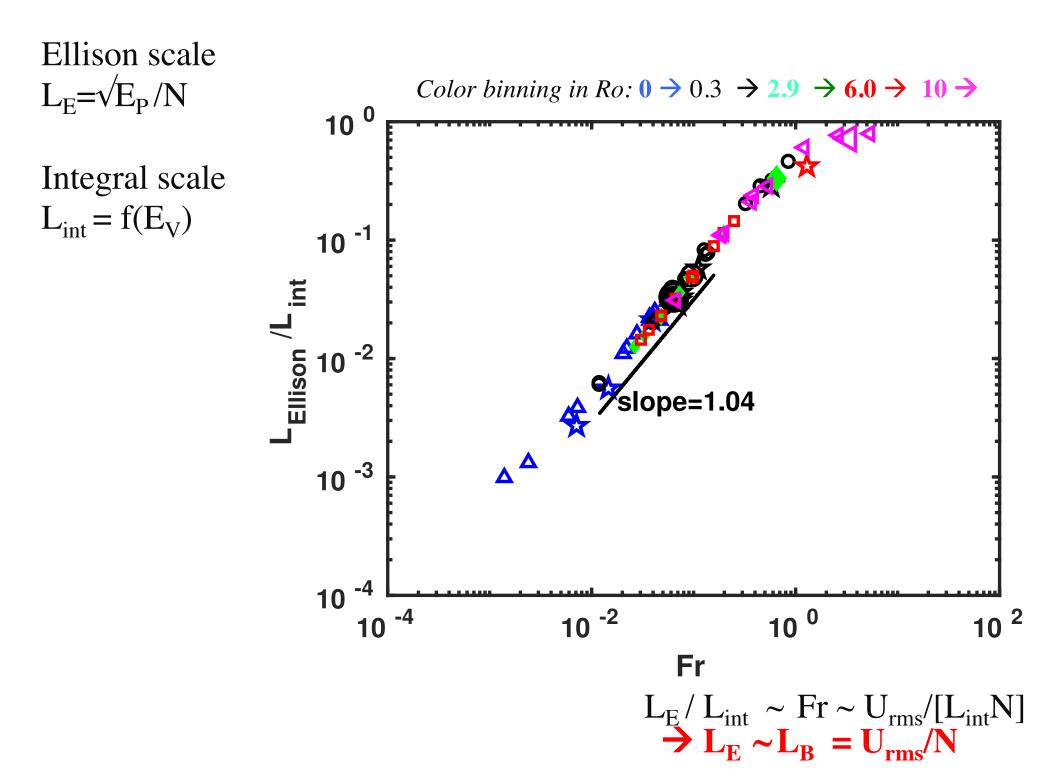
← Low Fr, low Ro Fr~0.03

← Intermediate range Fr~0.09

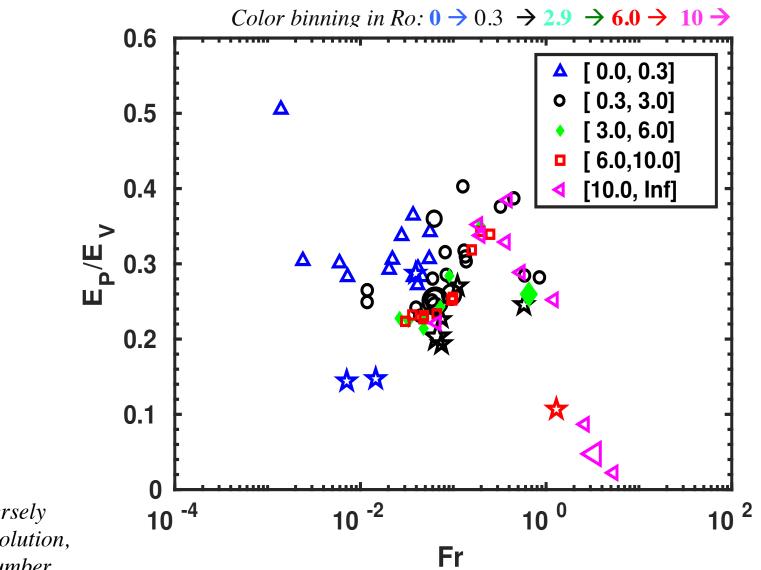
 $\leftarrow \text{High } R_B$ Fr~ 0.2







Ratio of potential to kinetic energy

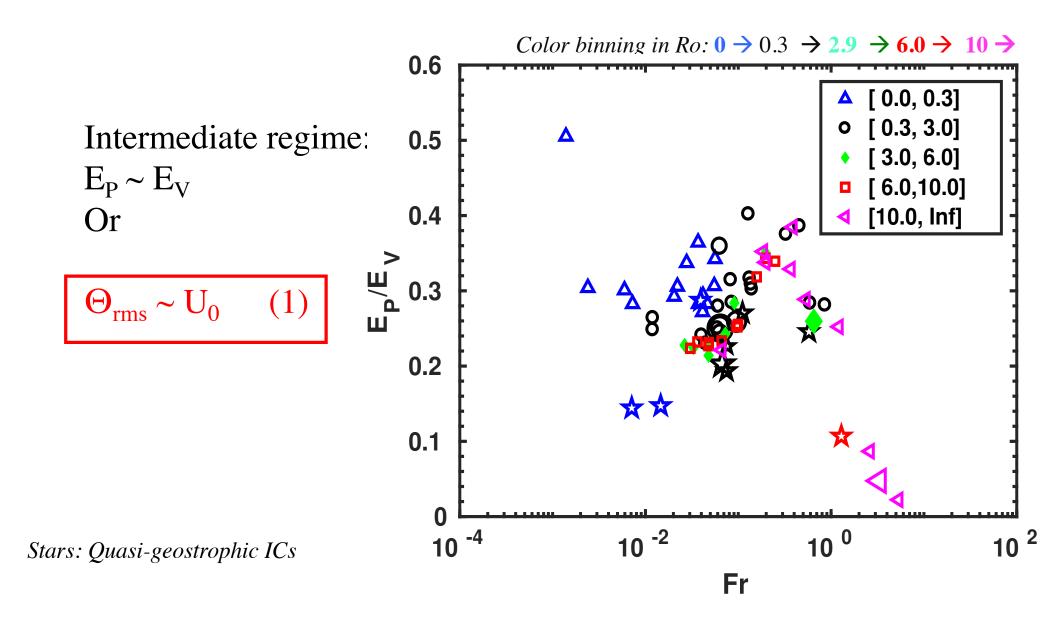


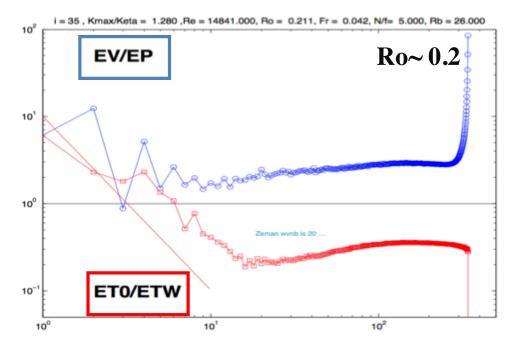
Initial conditions:

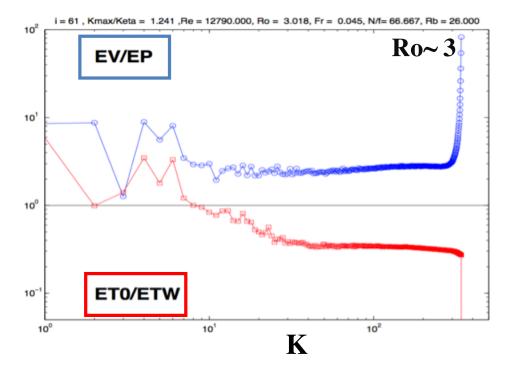
Stars: QGOtherwise, $u_{perp} \sim w$ and $\theta = 0$

Size of symbols: Roughly inversely proportional to numerical resolution, that is, in fact, to Reynolds number

Ratio of potential to kinetic energy





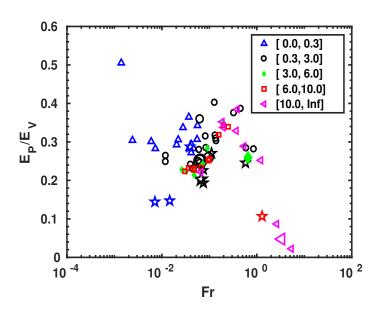


Ratios of energy spectra at peak:

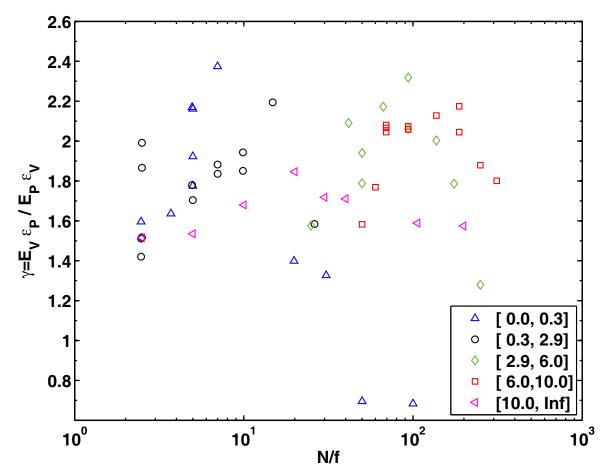
Kinetic to potential

and zero to wave mode

Both runs: Fr=0.04 , $R_B \sim 26$

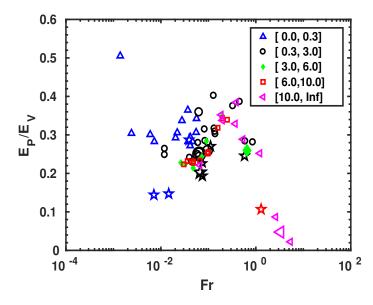


Color binning in Ro: $0 \rightarrow 0.3 \rightarrow 2.9 \rightarrow 6.0 \rightarrow 10 \rightarrow 10 \rightarrow 0.3$



Ratio of kinetic to potential energy **effective dissipation** times

$$T_V/T_P = [E_V/E_P] * [\varepsilon_P/\varepsilon_V]$$

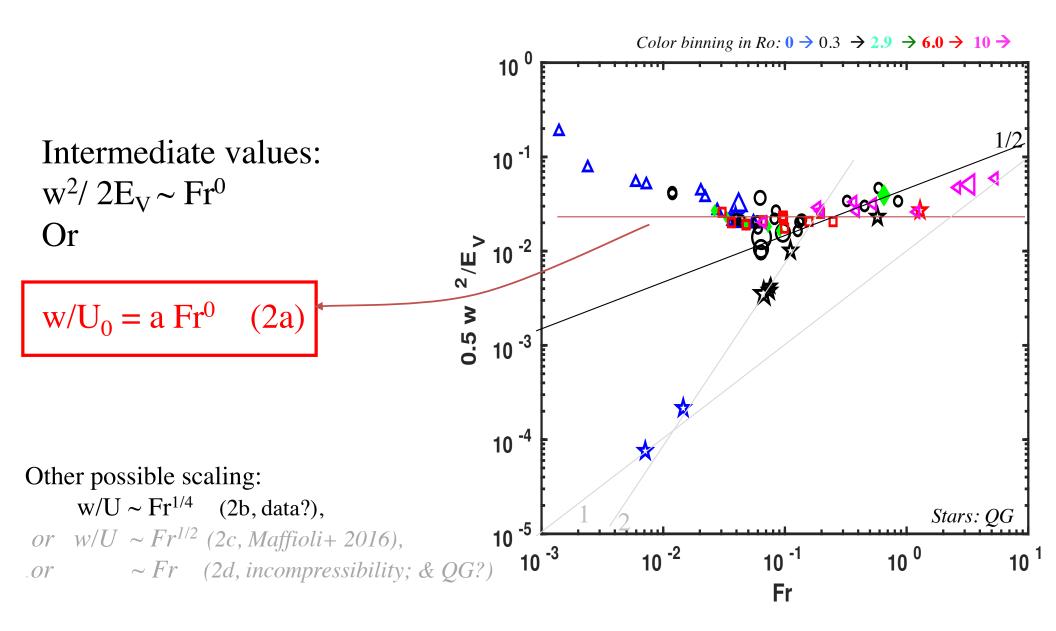


Rosenberg+ *EPJ*-*E* 2016, 2017

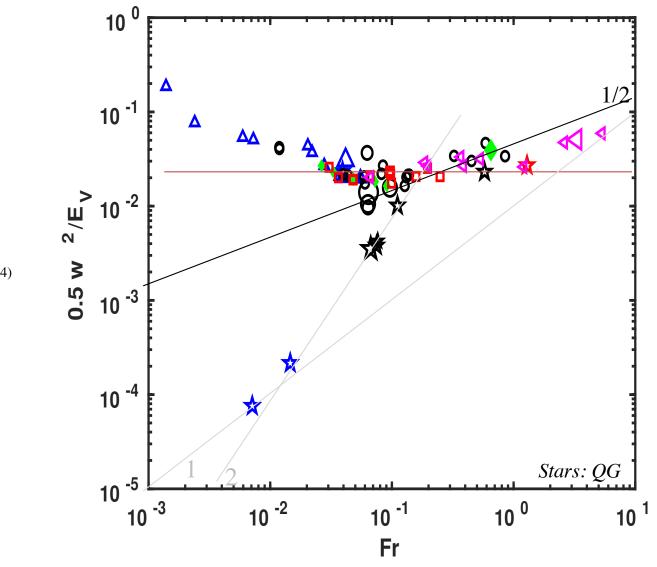
Color binning in Ro: $0 \rightarrow 0.3 \rightarrow 2.9 \rightarrow 6.0 \rightarrow 10 \rightarrow 10 \rightarrow 10$

Low Fr: influence of initial conditions

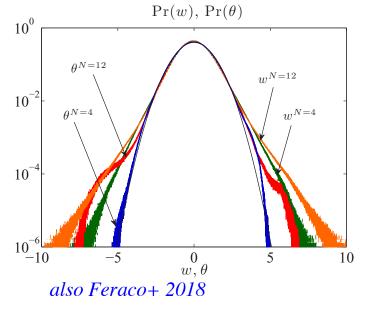
Vertical velocity *around peak of dissipation*

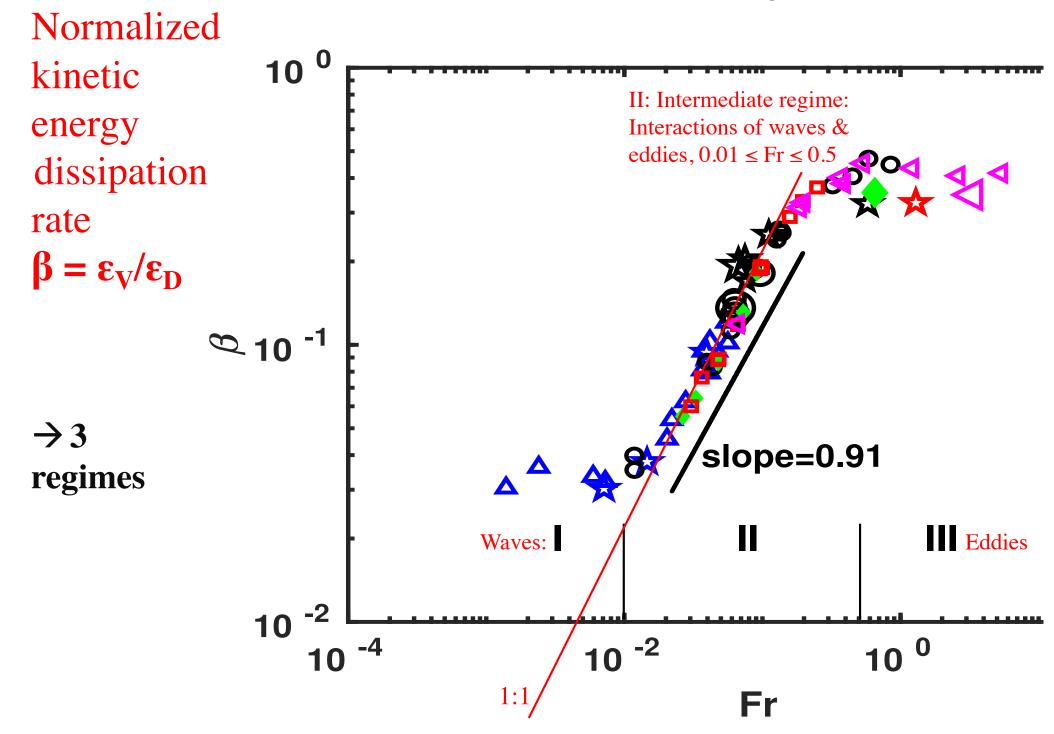


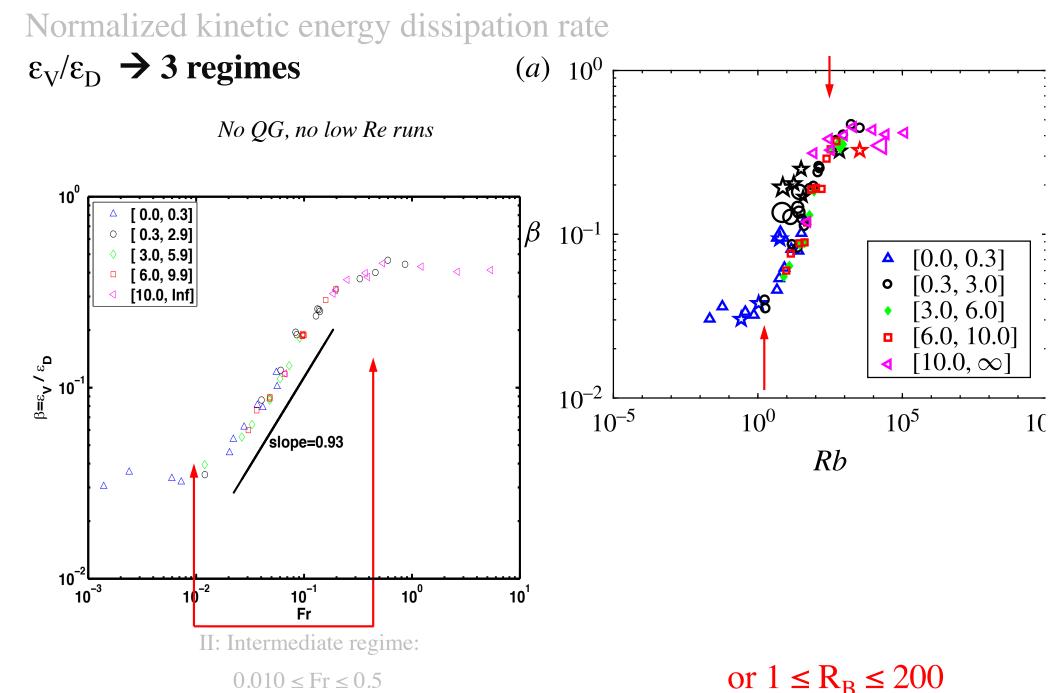
Vertical velocity *around peak of dissipation*



Rorai+ PHYSICAL REVIEW E **89**, 043002 (2014) 2048³ forced





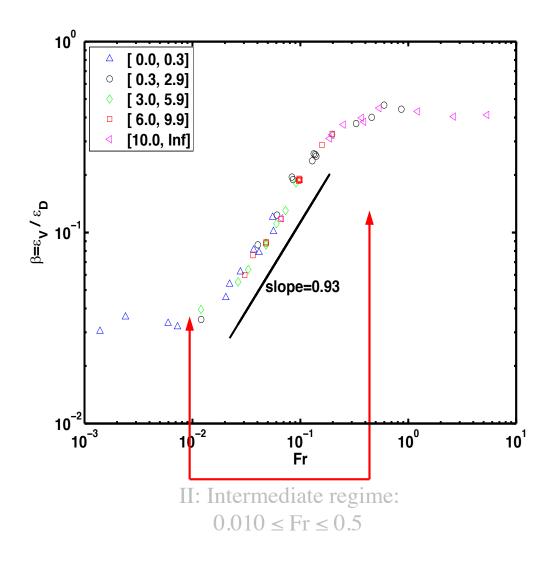


 $0.010 \le Fr \le 0.5$

Normalized kinetic energy dissipation rate

 $\varepsilon_{\rm V}/\varepsilon_{\rm D}$ \rightarrow 3 regimes

No QG, no low Re runs

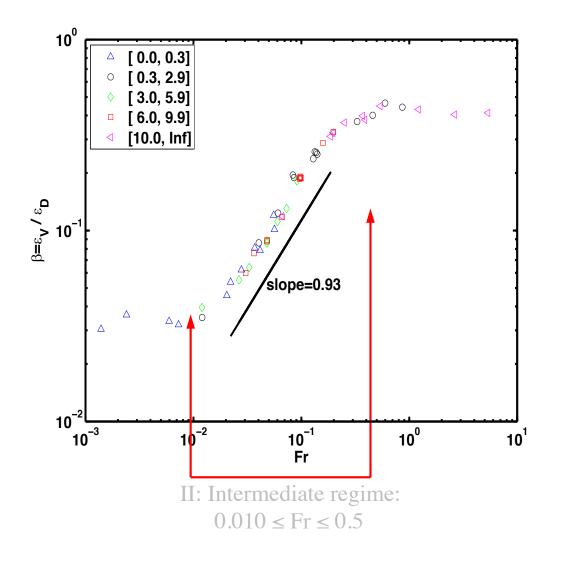


Classical model of weak, wave turbulence: energy transfer **slower** than eddy $\tau_{NL}=L_0/U_0$:

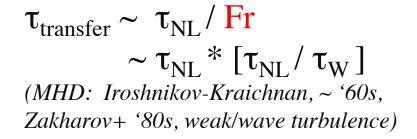
$$\tau_{\text{transfer}} \sim \tau_{\text{NL}} / Fr$$

Normalized kinetic energy dissipation rate $\epsilon_v/\epsilon_D \rightarrow 3$ regimes

No QG, no low Re runs



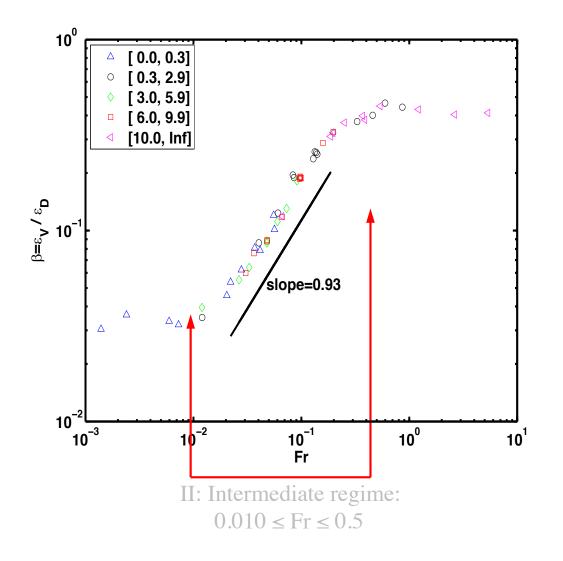
Classical model of weak, wave turbulence: energy transfer **slower** than eddy $\tau_{NL}=L_0/U_0$:



Normalized kinetic energy dissipation rate

 $\varepsilon_{\rm V}/\varepsilon_{\rm D}$ \rightarrow 3 regimes

No QG, no low Re runs



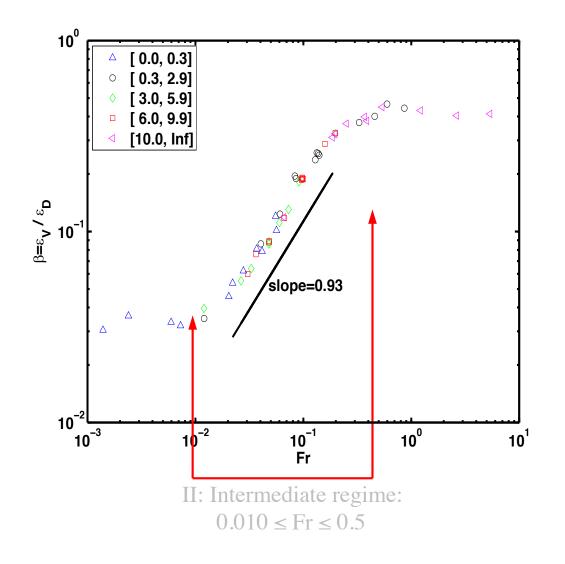
Classical model of weak, wave turbulence: energy transfer **slower** than eddy $\tau_{NL}=L_0/U_0$:

 $\tau_{\text{transfer}} \sim \tau_{\text{NL}} / \text{Fr}$ $\sim \tau_{\text{NL}} * [\tau_{\text{NL}} / \tau_{\text{W}}]$ (MHD: Iroshnikov-Kraichnan, ~ '60s, Zakharov+ '80s, weak/wave turbulence)

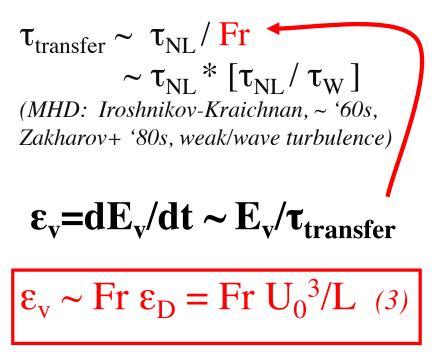
 $\varepsilon_v = dE_v/dt \sim E_v/\tau_{transfer}$

Normalized kinetic energy dissipation rate $\epsilon_v/\epsilon_D \rightarrow 3$ regimes

No QG, no low Re runs



Classical model of weak, wave turbulence: energy transfer **slower** than eddy $\tau_{NL}=L_0/U_0$:



Or: $\beta = \varepsilon_{v} \varepsilon_{D} \sim Fr \quad as \sim observed$

Role of anisotropy?

Three laws \rightarrow Energy balance & mixing: Γ_f , R_{f_i} , $\& \Gamma_D$, R_D

 $D_t E_v = -B_f + \varepsilon_v$ $D_t E_p = +B_f + \varepsilon_p$

 $B_f = \langle N \theta w \rangle$: Vertical buoyancy flux

Three laws \rightarrow Energy balance: Γ_f , R_f , & Γ_D , R_D

 $\begin{array}{l} D_t \ E_v = - \ B_f + \ \varepsilon_v \\ D_t \ E_p = + \ B_f + \ \varepsilon_p \end{array}$

 $B_f = \langle N\theta w \rangle$: Vertical buoyancy flux

$$\begin{split} & E_v = \frac{1}{2} < |\mathbf{u}|^2 > , E_p = \frac{1}{2} < \theta^2 > \\ & \varepsilon_v = v < \omega^2 > , \varepsilon_p = \varkappa < |\text{grad } \theta|^2 > , E_T = E_v + E_p , \varepsilon_T = \varepsilon_v + \varepsilon_p \end{split}$$

 $B_{f}/\varepsilon_{v} = \Gamma_{f} = R_{f}/[1-R_{f}]: \text{ Mixing efficiency} \qquad (momentum equation) \\ R_{f} = B_{f}/[B_{f}+\varepsilon_{v}]: \text{ Flux Richardson number \in [0,1]}$

 $\varepsilon_{\rm p}/\varepsilon_{\rm v} = \Gamma_{\rm D} = R_{\rm D}/[1-R_{\rm D}]$, $R_{\rm D} = \varepsilon_{\rm p}/\varepsilon_{\rm T} \ln [0,1]$ (4)

(coupled equations)

Scaling?

 $\begin{array}{l} D_t \ E_v = - \ B_f + \ \varepsilon_v \\ D_t \ E_p = + \ B_f + \ \varepsilon_p \end{array}$

 $B_f = \langle N\theta w \rangle$: Vertical buoyancy flux

$$\begin{split} E_v &= \frac{1}{2} < |\mathbf{u}|^2 > , \ E_p &= \frac{1}{2} < \theta^2 > \\ \varepsilon_v &= v < \omega^2 > , \ \varepsilon_p &= \varkappa < |grad \ \theta|^2 > , \ E_T &= E_v + E_p , \ \varepsilon_T &= \varepsilon_v + \varepsilon_p \end{split}$$

 $B_f / \varepsilon_v = \Gamma_f = R_f / [1 - R_f]$: Mixing efficiency (momentum equation) $R_f = B_f / [B_f + \varepsilon_v]$: Flux Richardson number

 $\varepsilon_{\rm p}/\varepsilon_{\rm v} = \Gamma_{\rm D} = R_{\rm D}/[1-R_{\rm D}]$, $R_{\rm D} = \varepsilon_{\rm p}/\varepsilon_{\rm T} \ln [0,1]$ (coupled equations)

High $\mathbf{R}_{\mathbf{B}}$: $\Gamma_{\mathbf{f}} = 0.2$ (Osborn-Cox '80) vs. $\Gamma_{\mathbf{f}} \sim \mathbf{R}_{\mathbf{B}}^{-1/2}$ (Lozovatsky & Fernando 2013) vs. ?

→ Prediction of scaling for mixing efficiency, flux Richardson number and dissipation in the two regimes of wave-eddy interactions and of strong eddies

using the three constitutive scaling laws for temperature, vertical velocity and dissipation efficiency versus Froude number:

$$\Theta_{\rm rms} \sim U_0 \qquad (1)$$

w/U_0 = a Fr⁰ (2a)
 $\varepsilon_{\rm v} \sim {\rm Fr} \, \varepsilon_{\rm D} = {\rm Fr} \, U_0^3 / {\rm L} \qquad (3)$

 $[0 \rightarrow \frac{1}{4}? (2b) \text{ Or } \rightarrow 1 (2d)?]$

Intermediate regime II, $Fr \leq 1$, using the 3 scaling laws:

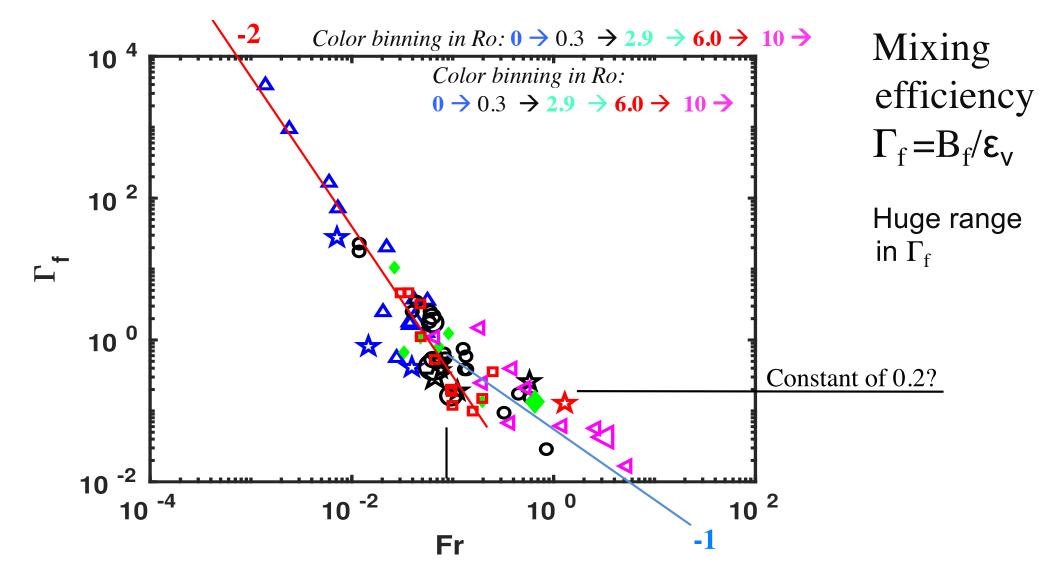
 $B_f = \langle N \theta w \rangle, \theta_{rms} \sim U_0, w \sim Fr^0 U_0, \varepsilon_v \sim Fr \varepsilon_D, \varepsilon_D \sim U_0^3/L$ $R_B > 1, Re >> 1$ but irrelevant otherwise

 $\rightarrow \Gamma_{\rm f}^{\,\,\text{II}} = B_{\rm f} / \epsilon_{\rm V} = N < w \theta > / \epsilon_{\rm V} \sim 1 / Fr^2 \sim [R_{\rm B}]^{-1}$ (observed)

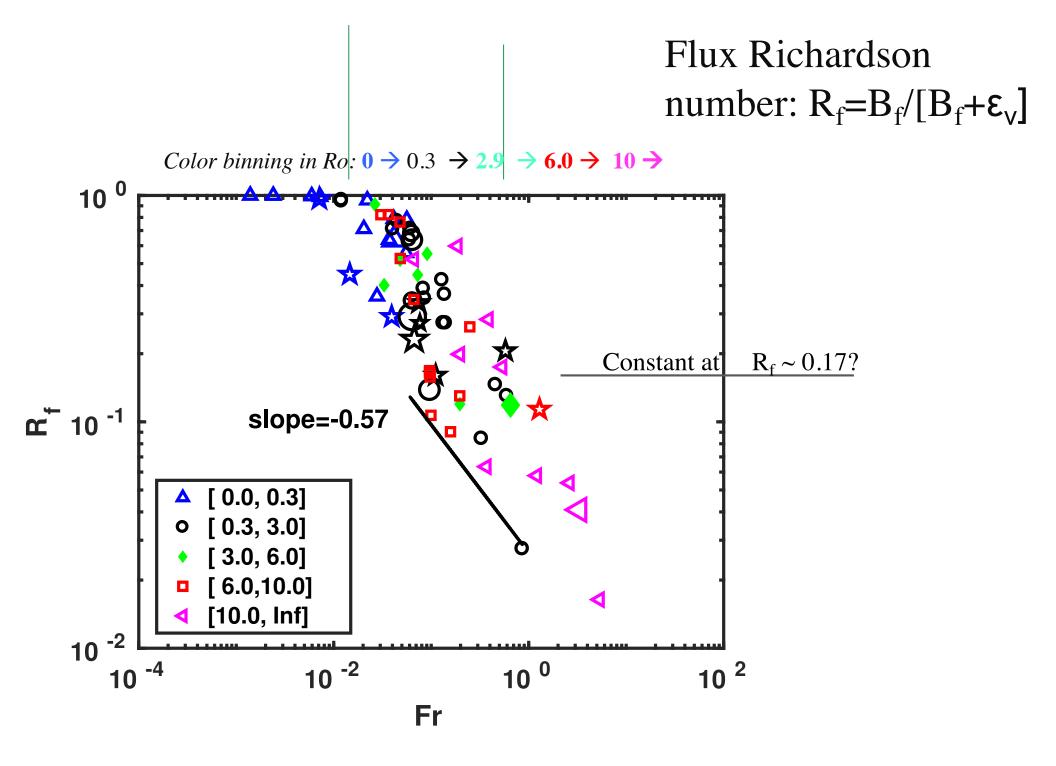
Higher regime III, Fr ≥1:

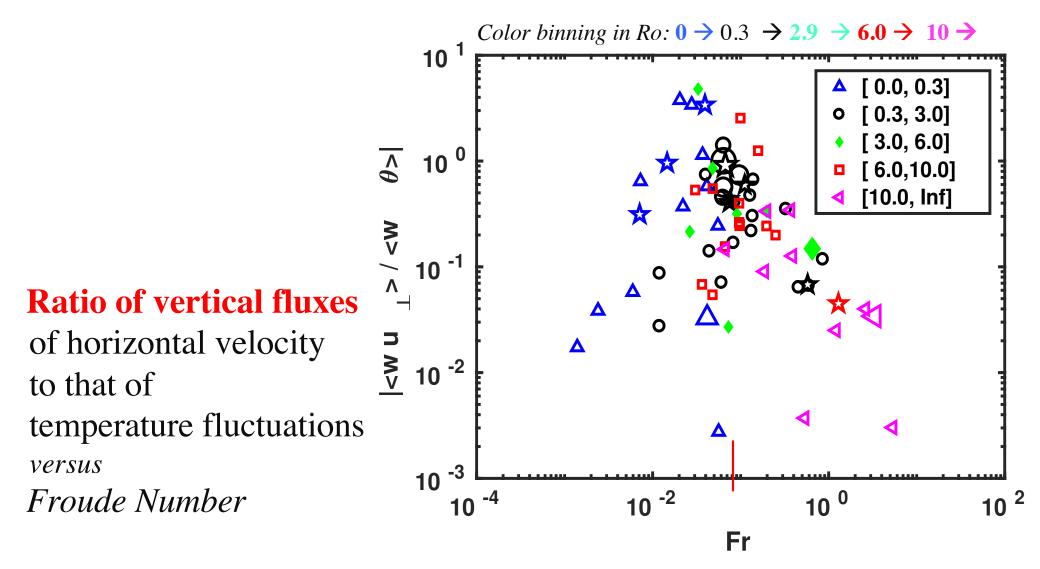
 $\theta_{\rm rms} \sim U_0$, w ~ Fr⁰U_{0, Fr=1} = U₀, $\varepsilon_{\rm v} \sim Fr \varepsilon_{\rm D}$ at Fr = 1, $\varepsilon_{\rm v} \sim \varepsilon_{\rm D}$ R_B > 1, Re>>1 but irrelevant otherwise

 $\rightarrow \Gamma_{\rm f}^{\rm III} = B_{\rm f} / \varepsilon_{\rm V} = N < w \theta > / \varepsilon_{\rm V} \sim 1/Fr \sim [R_{\rm B}]^{-1/2} \text{ (observed)}$ $\rightarrow Our numerical data?$

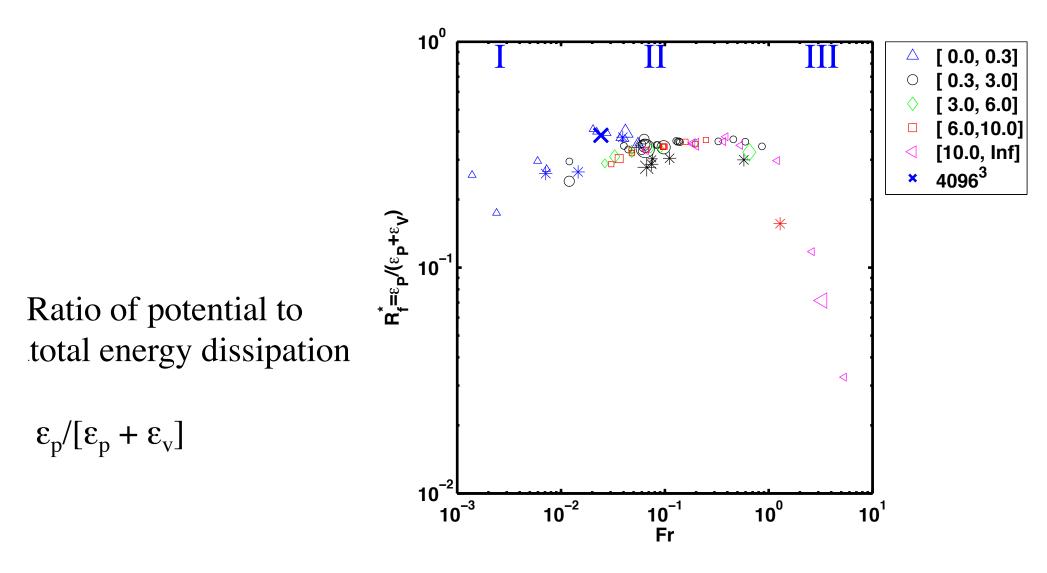


N<w θ >/ $\epsilon_V = \Gamma_f \sim 1/Fr^2 \sim [R_B]^{-1}$ or for Fr~1: $\Gamma_f \sim 1/Fr \sim [R_B]^{-1/2}$ (regime I & II?) (regime III)

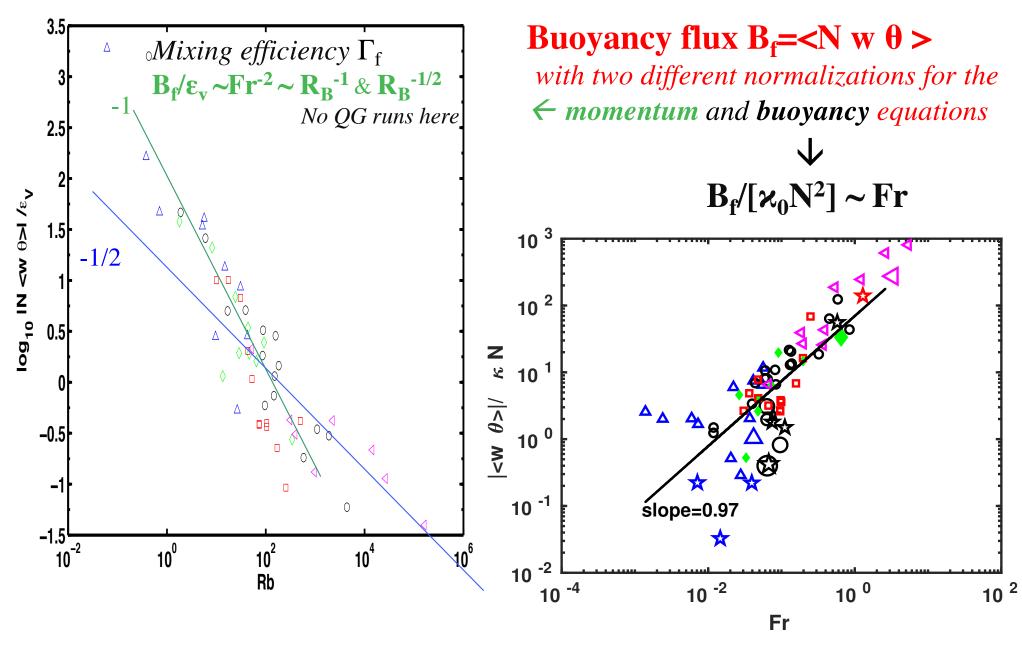




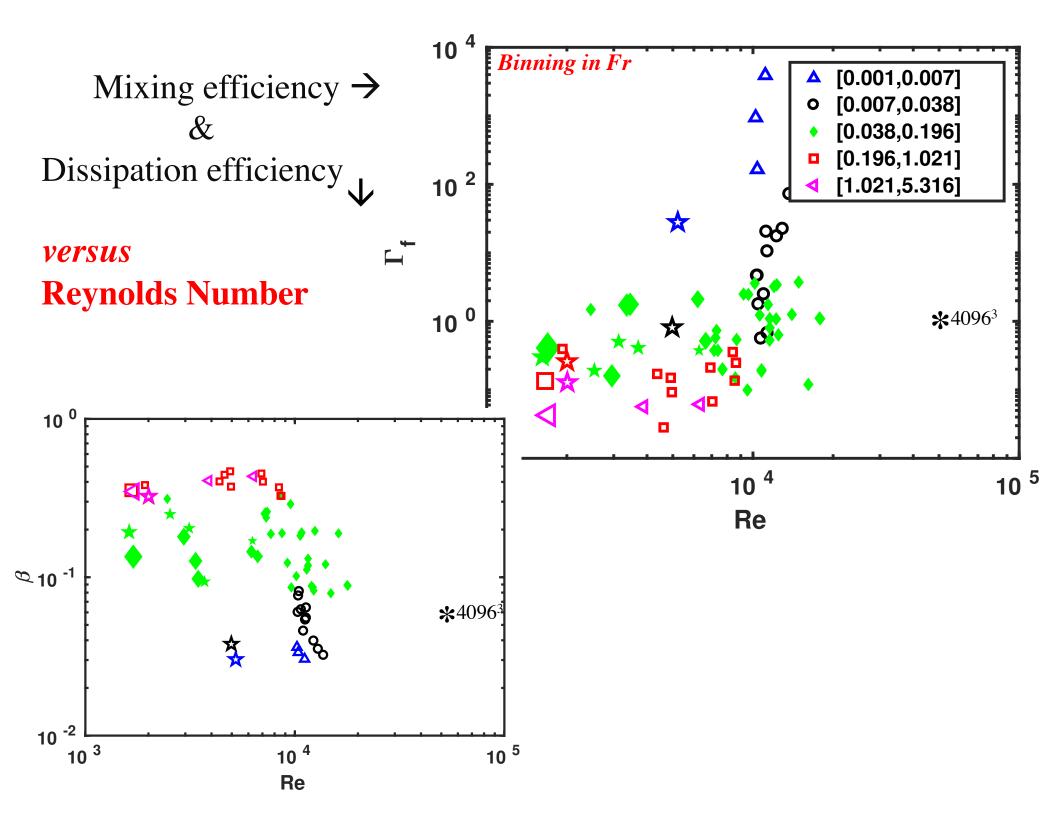
Non-monotonic, with a plateau/peak around Fr~0.07?



Color binning in Ro: $0 \rightarrow 0.3 \rightarrow 2.9 \rightarrow 6.0 \rightarrow 10 \rightarrow 0.3$



Normalized anomalous diffusivity \varkappa_{θ} $B_f/[\varkappa N^2] = \varkappa_{\theta}/\varkappa \sim Fr$ in regimes II & III, $\varkappa_{\theta} \sim U_{rms}L_{int}$ Fr



Questions and Perspectives

- Role of rotation?
- Role of $k_0 \sim 2.5$, poor large-scale statistics & weaker resonances?
- Importance of QG?
- Role of lack of stationarity due to lack of forcing?
- \rightarrow Add forcing and large-scale friction \rightarrow Temporal averaging
- \rightarrow But, what about anisotropy dispersion relation and forcing?
- Role of boundary conditions?
- Will small aspect ratio help, role of vertical shear?
- Approach through small-scale modeling: will *Artificial Intelligence* & *Machine Learning* help?

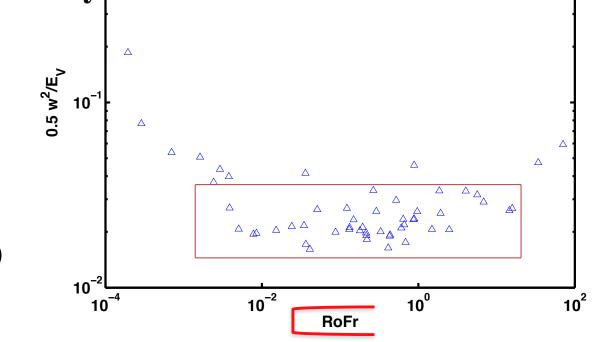
Questions and Perspectives

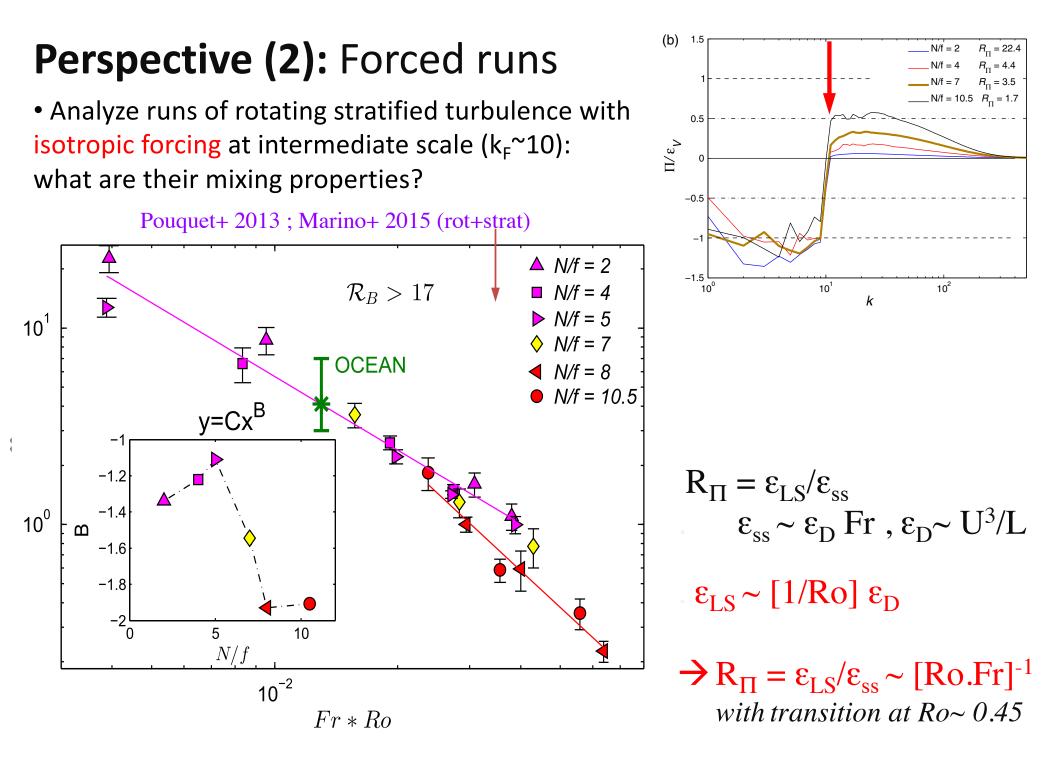
- Role of rotation?
- Role of $k_0 \sim 2.5$, poor large-scale statistics & weaker resonances?
- Importance of QG?
- Role of lack of stationarity due to lack of forcing?
- \rightarrow Add forcing and large-scale friction \rightarrow Temporal averaging
- \rightarrow But, what about anisotropy dispersion relation and forcing?
- Role of boundary conditions?
- Will small aspect ratio help, role of vertical shear?
- Approach through small-scale modeling: will *Artificial Intelligence* & *Machine Learning* help?

in the presence of rotation

Intermediate regime: w/ $U_0 \sim [\text{Ro.Fr}]^{\sim 0}$ (3b)

 $\rightarrow \Gamma_{\rm f} = < N\theta {\rm w} > / \epsilon_{\rm v} \sim {\rm Fr}^{-2}$





Perspective (3): Shallow fluids

- Explore the dynamics in match boxes:
- Example; 2048² X 256 points with Taylor-Green forcing, resulting locally in strong vertical shear, and strong dissipation, with fronts and filaments

Temperature

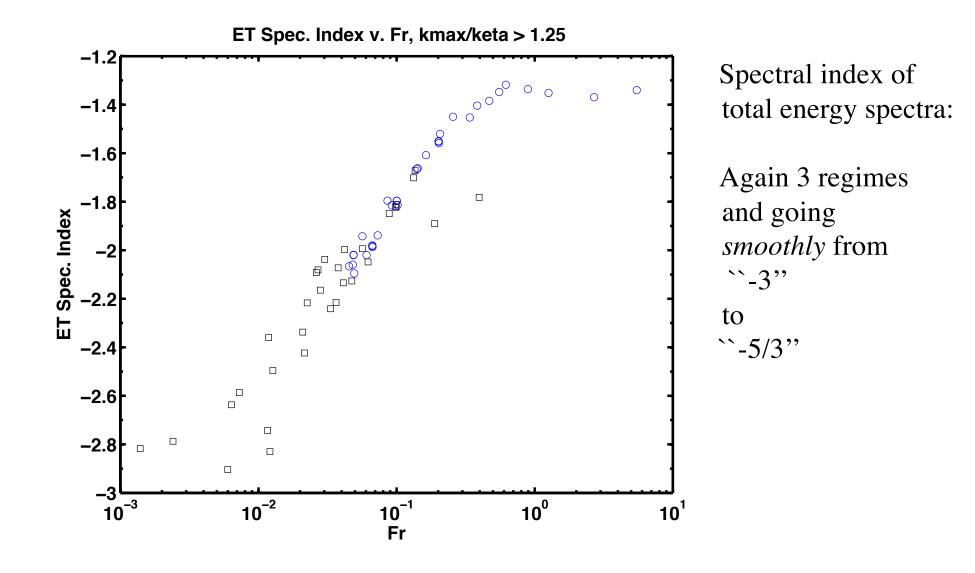
&

vorticity (Oks+, arXiv 1706.10287)



Summary and perspectives:

- → There are three distinct regimes in rotating stratified turbulence, determined by the Froude number for high enough Reynolds number, with somewhat different thresholds when analyzing different fields: Strong waves, eddywave interactions and full turbulence
- → Mixing efficiency and flux Richardson number vary measurably in the intermediate regime, $0.01 \le Fr \le 0.5$ ($1 \le R_B \le 1000$), and with scaling laws
- → Dissipation increases as Froude, ``weak'' turbulence regime, for $R_B \approx 10-10^3$
- → Lower values of mixing efficiency at high R_B → the velocity and temperature fluctuations are only weakly coupled (passive scalar regime)
- Together, large numerical resolution and large parametric study allow for some scale separation and for understanding separately the roles of some of the players
- Local instabilities and very intense local small-scale dynamics (more so than in FDT)
- Role of Reynolds number in mixing, in the intermediate regime in particular?
- Roles of I.C. or forcing (3D vs. 2D, θ or not, vortices vs. waves, balanced or not ...), of non-local interactions, of large-scale instabilities & of large-scale friction?
- Intermittency high kurtosis and non-monotonicity (*Rorai+ 2014; Feraco+ ArXiv 2018*)



Machine learning and modeling

 Use data to guess the functional form for the role of small scales in order to write sub-grid scale models

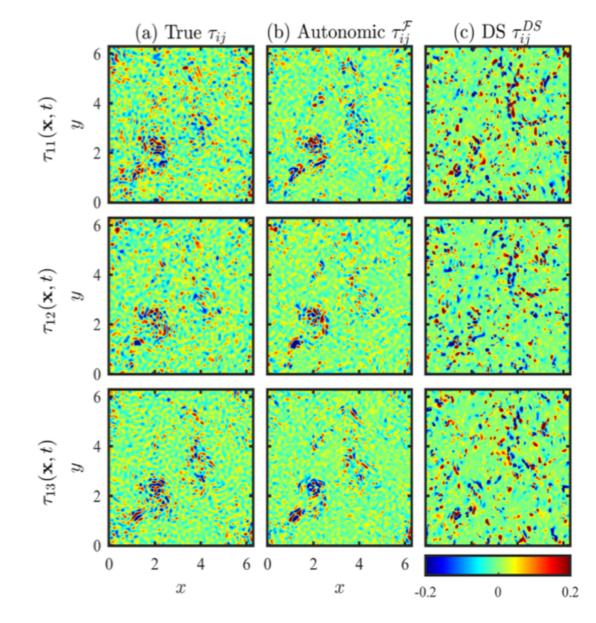
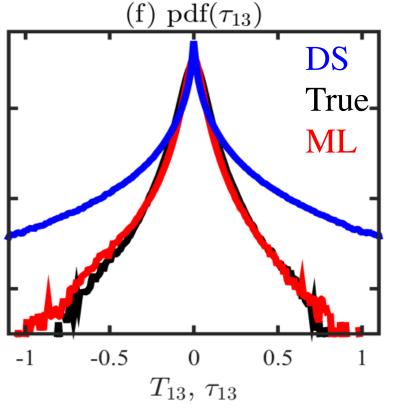


FIG. 2. Coarse-grained turbulent stress fields $\tau_{11}(\mathbf{x},t)$ (top row), $\tau_{12}(\mathbf{x},t)$ (middle row), and $\tau_{13}(\mathbf{x},t)$ (bottom row), showing results for (left column) the true stress $\tau_{ij}(\mathbf{x},t)$, (middle column) the autonomic closure $\tau_{ij}^{\mathcal{F}}(\mathbf{x},t)$, and (right column) the dynamic Smagorinsky model $\tau_{ij}^{DS}(\mathbf{x},t)$. King+2016

Machine learning and modeling

 Use data to guess the functional form for the role of small scales in order to write sub-grid scale models



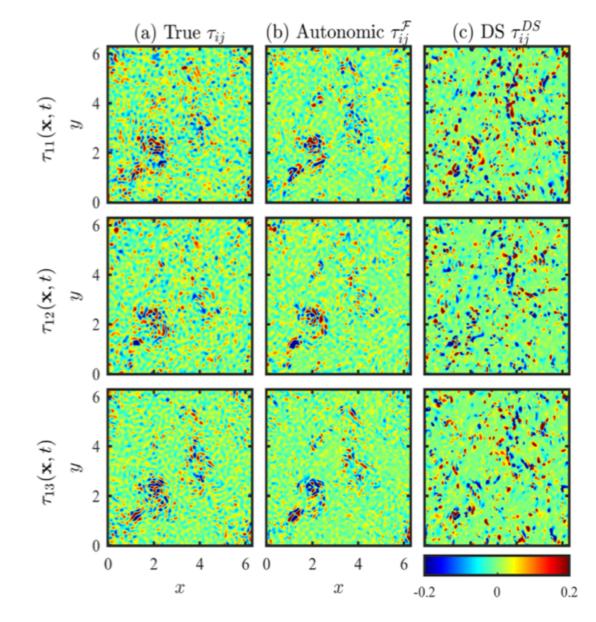
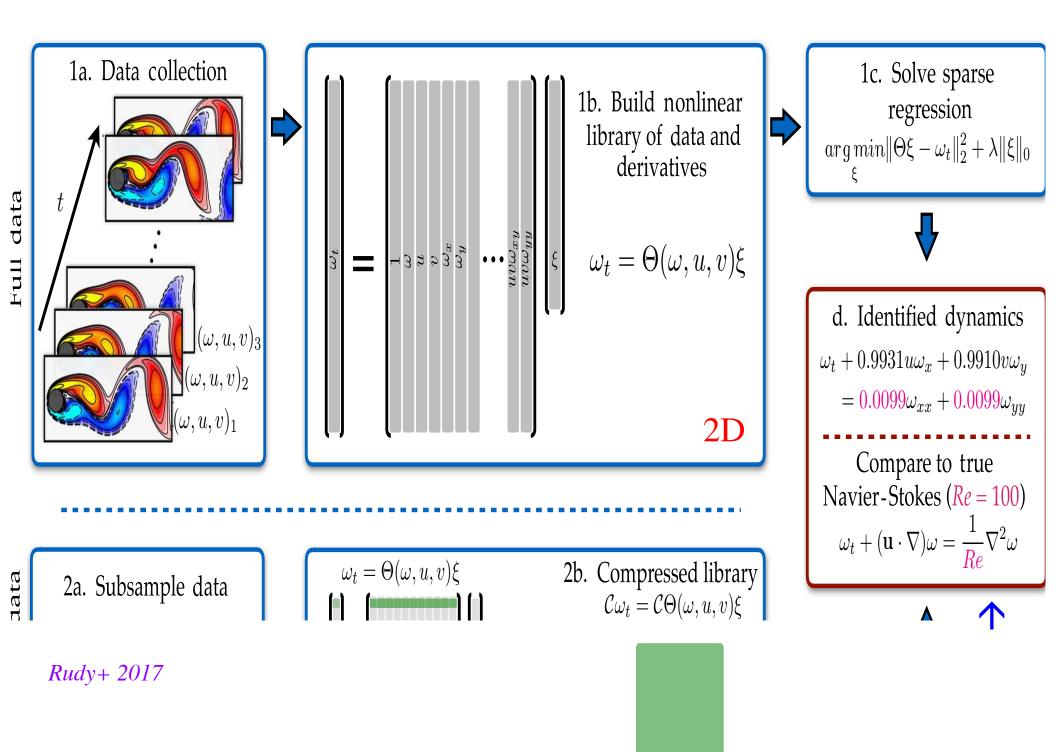


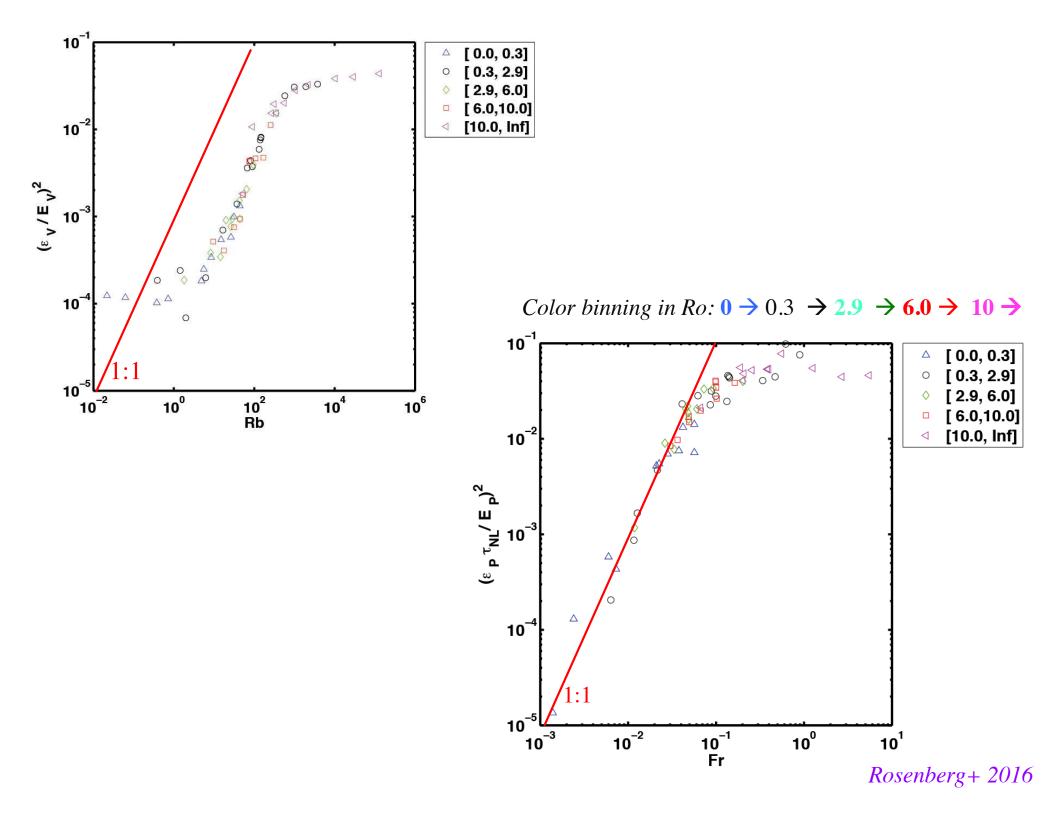
FIG. 2. Coarse-grained turbulent stress fields $\tau_{11}(\mathbf{x},t)$ (top row), $\tau_{12}(\mathbf{x},t)$ (middle row), and $\tau_{13}(\mathbf{x},t)$ (bottom row), showing results for (left column) the true stress $\tau_{ij}(\mathbf{x},t)$, (middle column) the autonomic closure $\tau_{ij}^{\mathcal{F}}(\mathbf{x},t)$, and (right column) the dynamic Smagorinsky model $\tau_{ij}^{DS}(\mathbf{x},t)$. King+2016

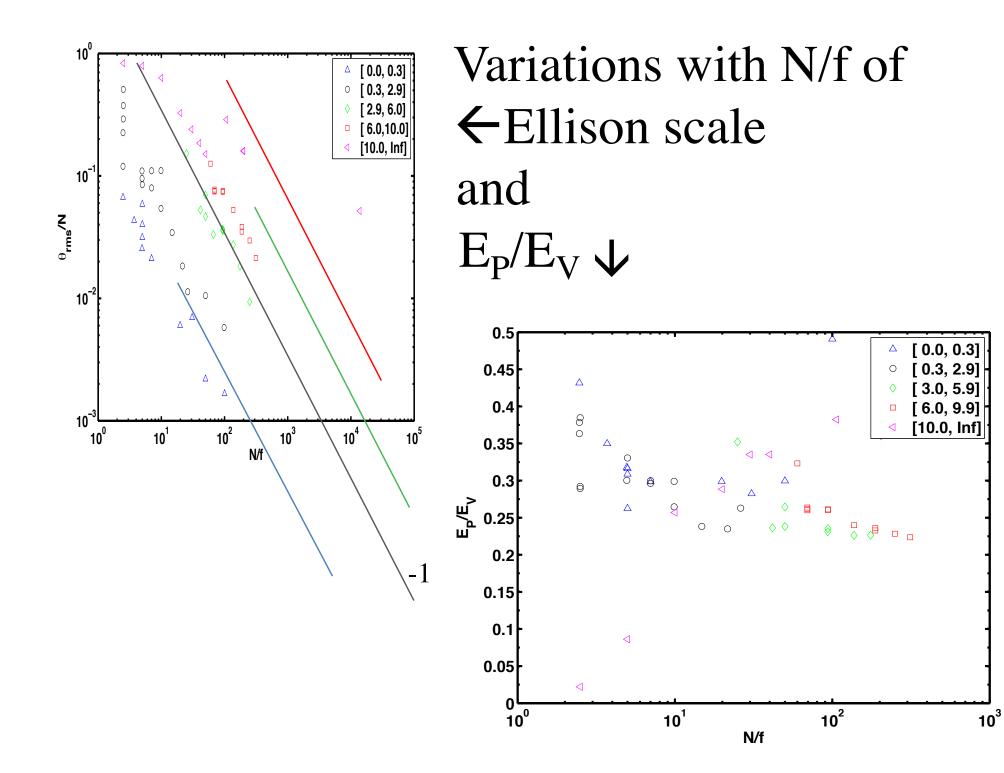


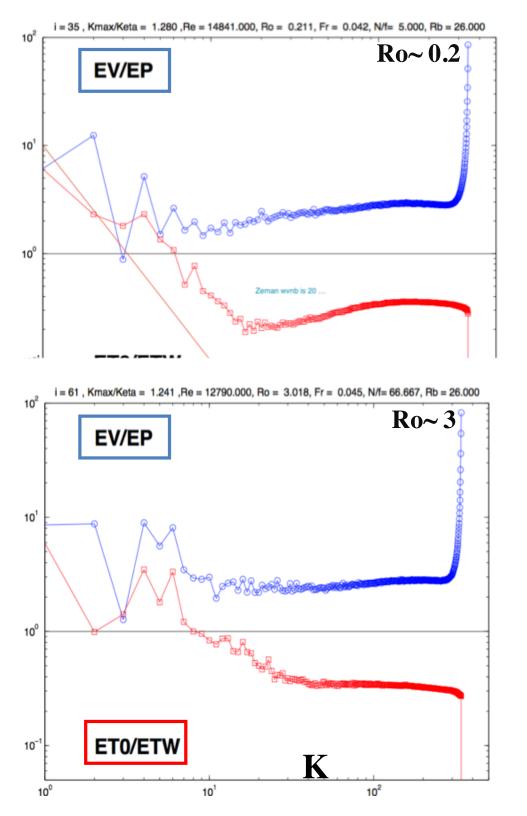
Thank you for your attention

Some references

- F. Feraco, R. Marino, A> Pumir, L. Primavera, P. Mininni, A. Pouquet & D. Rosenberg, Vertical drafts and mixing in stratified turbulence: sharp transition with Froude number. Submitted to EPL, see ArXiv/1806.00342
- Oks, P.D. Mininni and A. Pouquet, Generation of turbulence through **frontogenesis in sheared** stratified flows. Submitted to Phys. Fluids, 2018, see ArXiv Physics.flu-dyn/1706.10287v2
- A. Pouquet, D. Rosenberg, R. Marino and C. Herbert, Scaling laws for **mixing and dissipation** in unforced rotating stratified turbulence. J. Fluid Mech. **844**, 519, 2018
- D. Rosenberg, , R. Marino, C. Herbert & A. Pouquet, *Erratum to*: Variations of **characteristic time scales** in rotating stratified turbulence using a large parametric numerical study, *EuroPhys. J. E* 40, 87, 2017
- D. Rosenberg, , R. Marino, C. Herbert & A. Pouquet, Variations of characteristic time scales in rotating stratified turbulence using a large parametric numerical study, *EuroPhys. J. E* **39**, 49001, 2016
- C. Herbert, R. Marino, D. Rosenberg and A. Pouquet, Waves and vortices in the inverse cascade regime of stratified turbulence with or without rotation, *J. Fluid Mech.* **806**, 165, 2016
- R. Marino, D. Rosenberg, C. Herbert & A. Pouquet, Interplay of waves and eddies in rotating stratified turbulence and the link with kinetic-potential energy partition, *EuroPhys. Lett.* **112**, 44006 (2015)
- D. Rosenberg, A. Pouquet, R. Marino & P. Mininni, Evidence for **Bolgiano-Obukhov scaling** in rotating stratified turbulence using high-resolution direct numerical simulations, *Phys. Fluids* **27**, 055105, 2015
- R. Marino, A. Pouquet and D. Rosenberg, Resolving the paradox of oceanic large-scale balance and small-scale mixing. *Phys. Rev. Lett.*, **114**, 114504, 2015
- C. Rorai, P. Mininni and A. Pouquet, Turbulence comes in bursts in stably stratified flows, *Phys. Rev. E* 89, 043002, 2014
- A. Pouquet and R. Marino, Geophysical turbulence and the duality of the energy flow across scales, *Phys. Rev. Lett.* 111, 234501, 2013





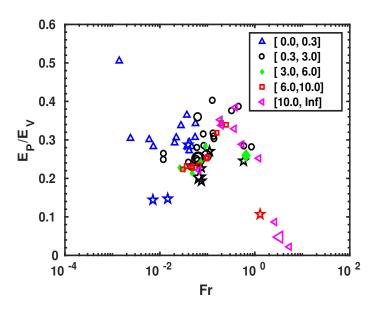


Ratios of energy spectra at peak:

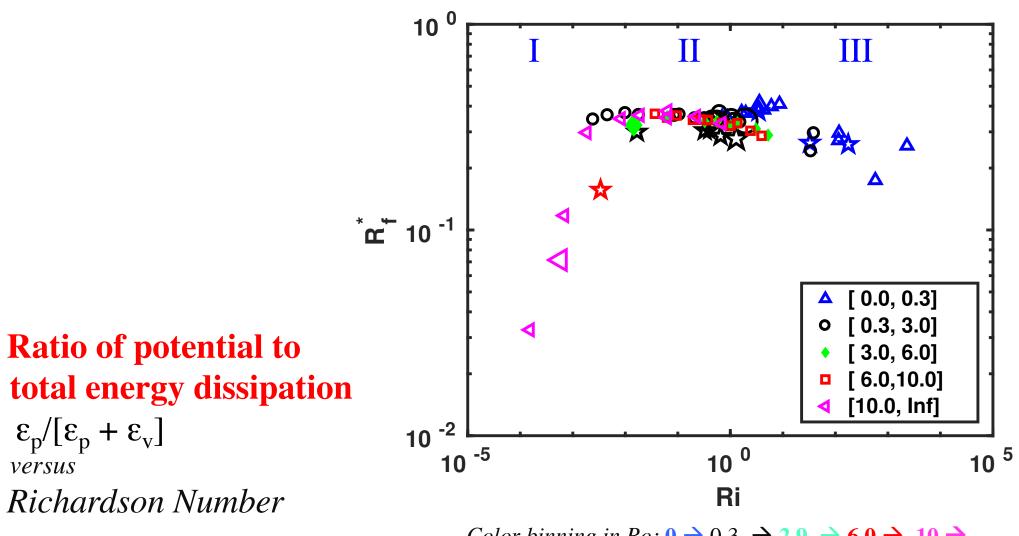
Kinetic to potential

and zero to wave mode

 \leftarrow Fr=0.04 , R_B~ 26



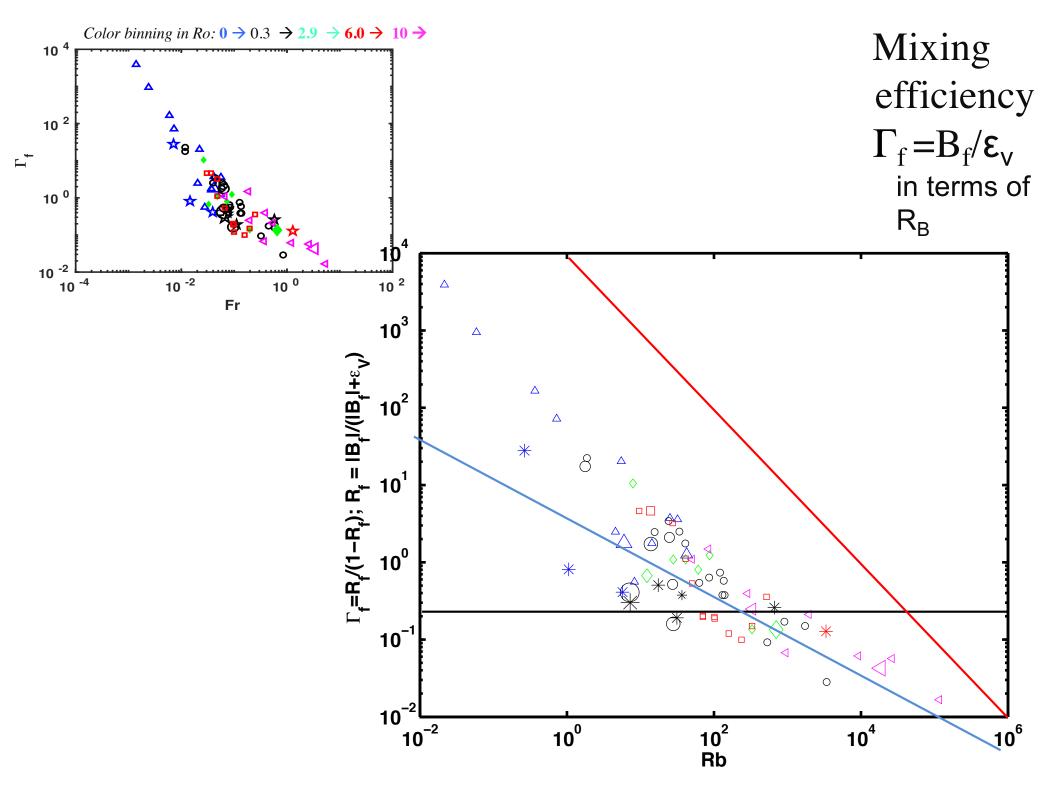
Color binning in Ro: $0 \rightarrow 0.3 \rightarrow 2.9 \rightarrow 6.0 \rightarrow 10 \rightarrow 0.3$

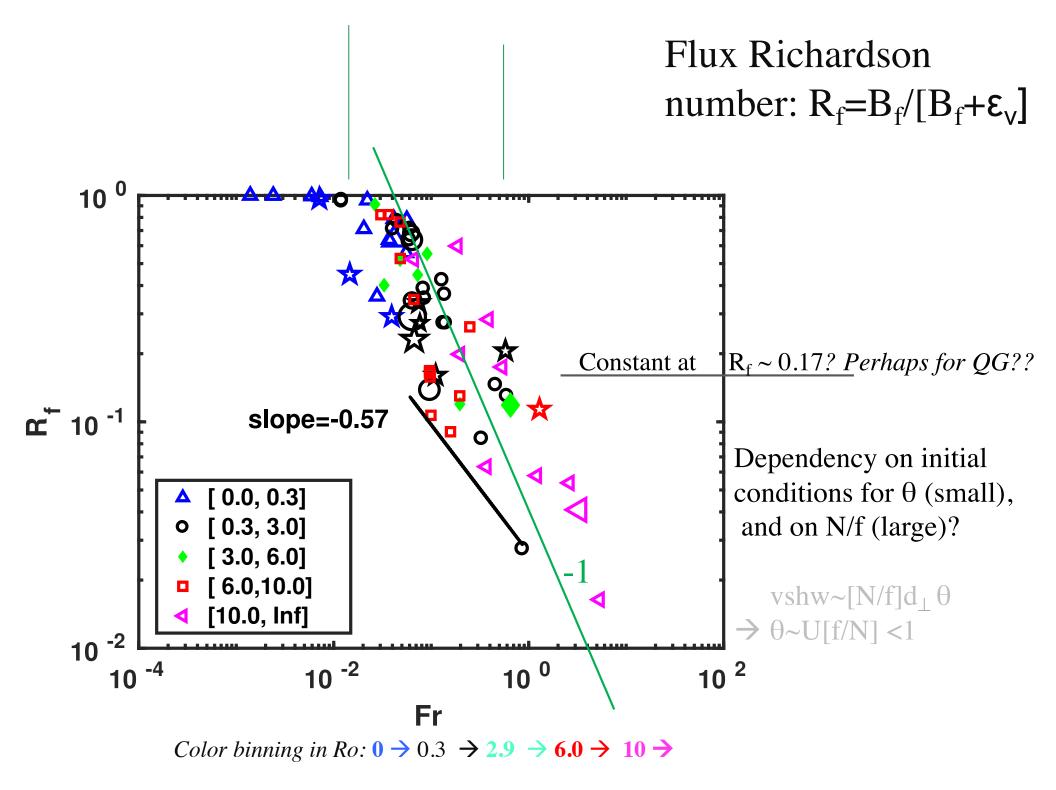


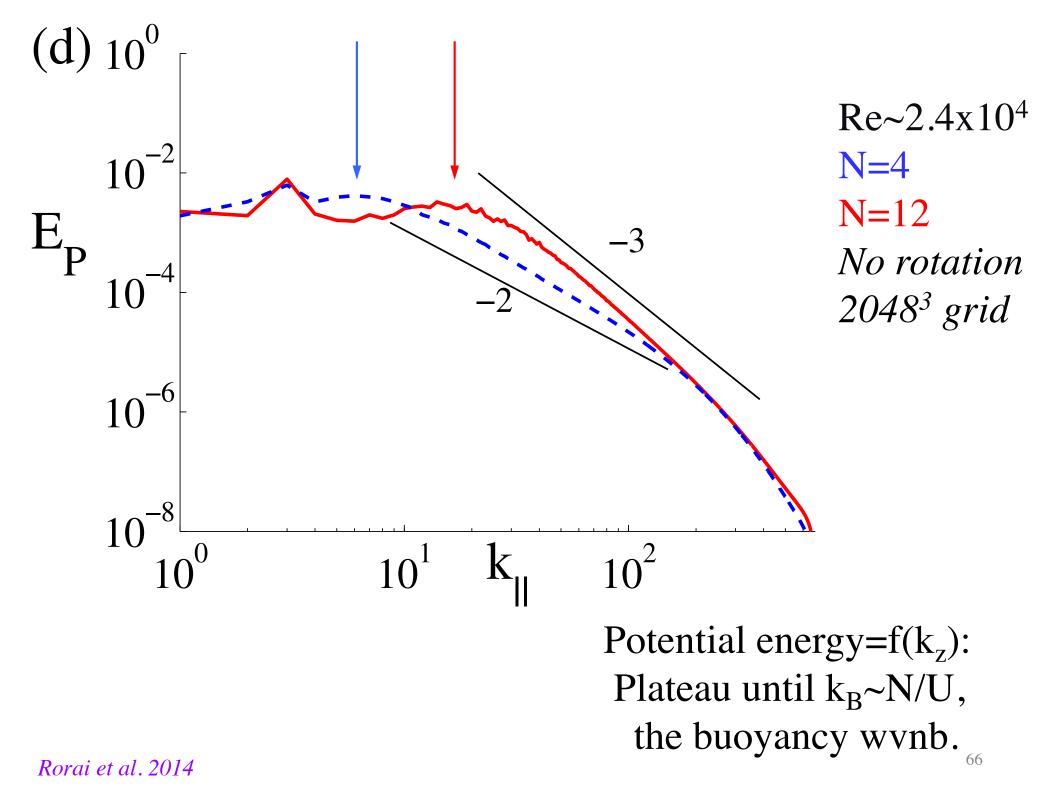
 $Ri \equiv [N/\langle \partial_z u_\perp \rangle]^2$

Color binning in Ro: $0 \rightarrow 0.3 \rightarrow 2.9 \rightarrow 6.0 \rightarrow 10 \rightarrow 0.3$

Rather constant in regime II, but slight effect of rotation (blue triangles)

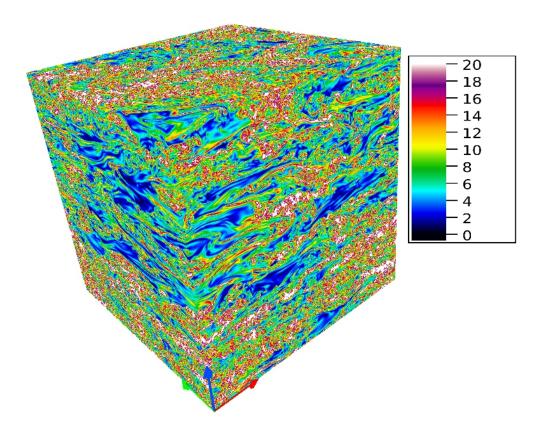




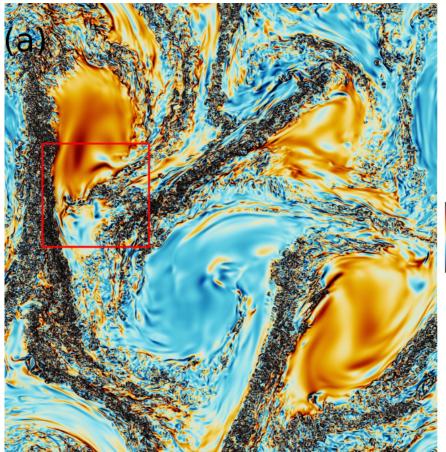


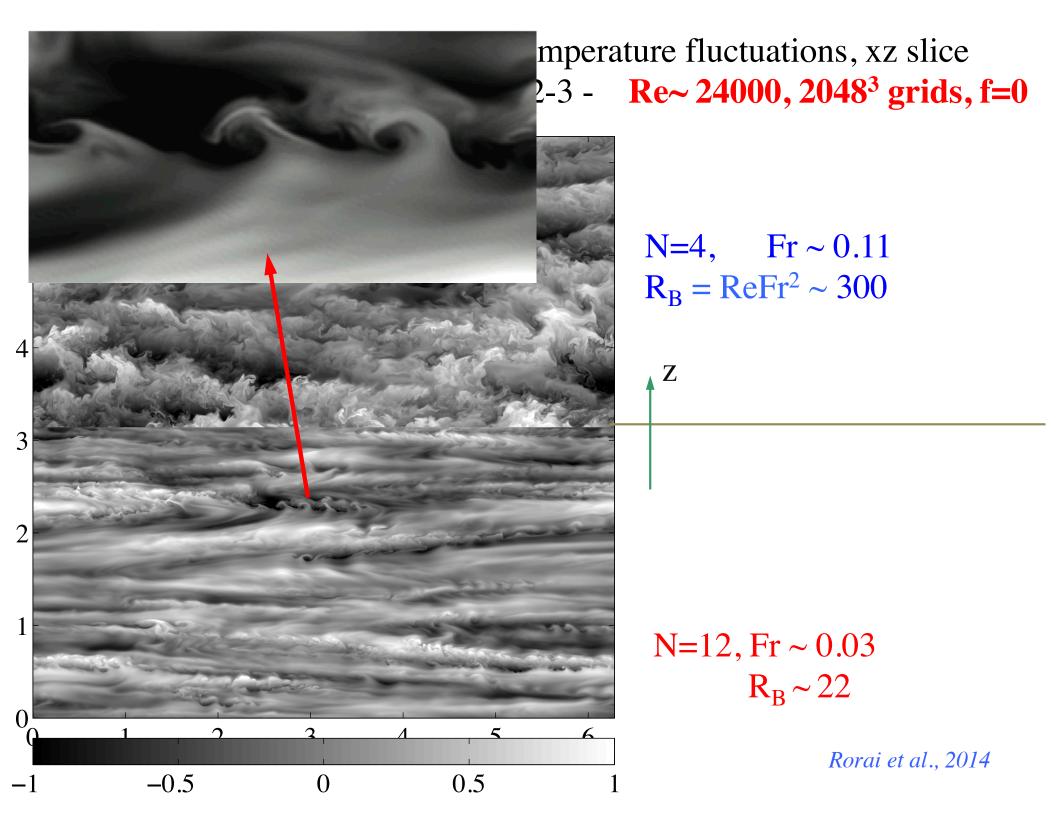
Incompressible Boussinesq equations + rotation

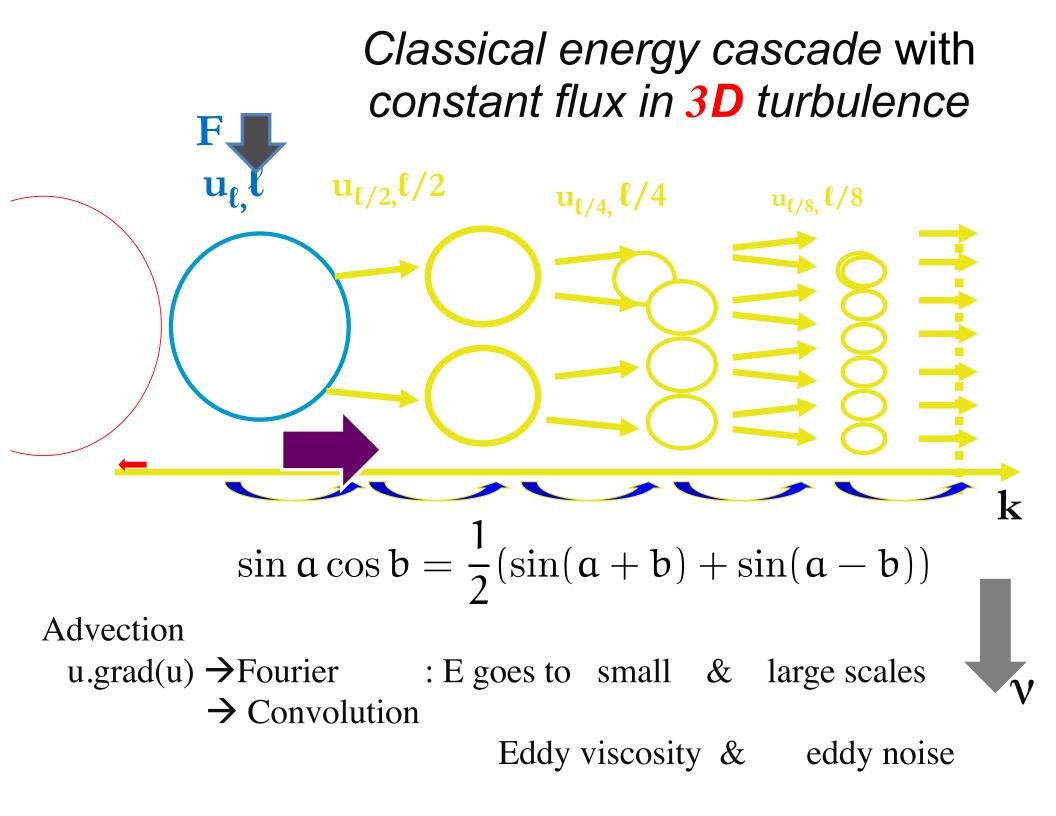
Vorticity, *3D rendering* ``*atmosphere*" **Ro** = 9.2, Fr = 0.067, Re \simeq 12000, R_B \sim 53, **N/f=137**, 1024³ grid, ... (*Rosenberg*+ 2016)

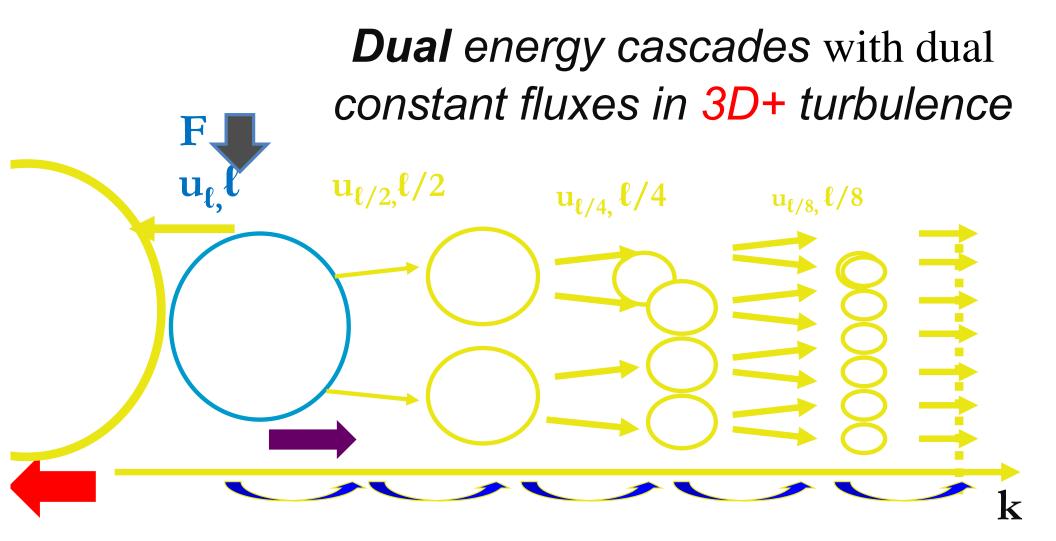


Vorticity, 2D cut, ``ocean", Ro ~ 0.12, Fr ~ 0.024, Re ~ 54000, R_B~32, N/f=5, 4096³ grid, decaying, resolved & strongly intermittent (*Rosenberg*+ 2015)









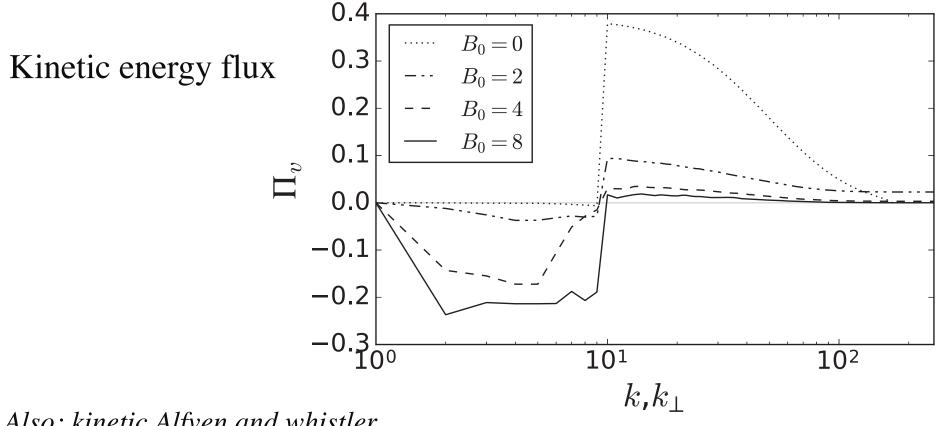
_ 🤈
= :

Rotation with or without stratification

And/or magnetic field

3D-MHD + imposed external field B_0 + F_V but with $F_M = 0$ (Alexakis 2011; Sujovolsky+ 2016)

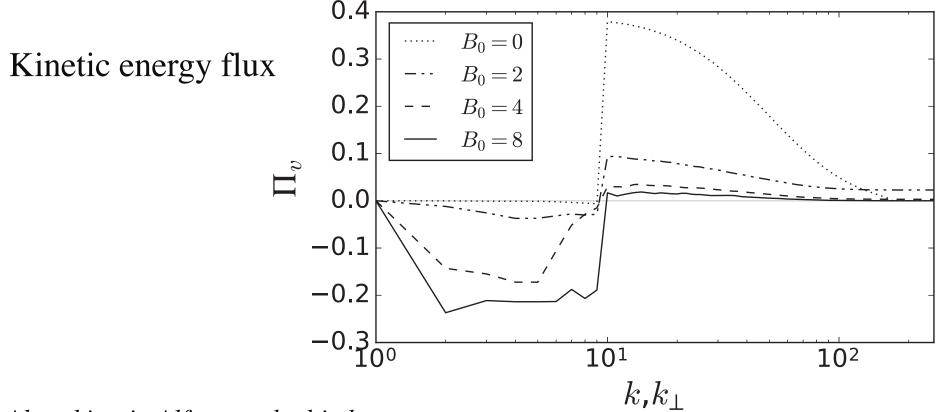
TRIDIMENSIONAL TO BIDIMENSIONAL TRANSITION IN ...



Also: kinetic Alfven and whistler waves in the ``Solar Wind'' (Che+ 2014)

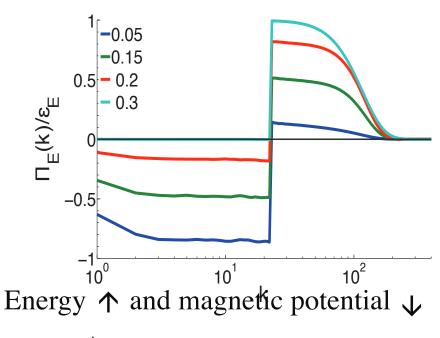
3D-MHD + imposed external field B_0 + F_V but with $F_M = 0$ (Alexakis+ 2009; Sujovolsky+ 2016)

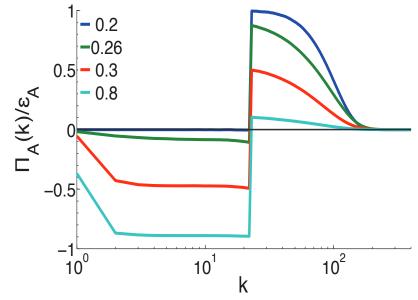
TRIDIMENSIONAL TO BIDIMENSIONAL TRANSITION IN ...



Also: kinetic Alfven and whistler waves in the ``Solar Wind'' (Che+ 2014)

Possibility of lab. experiment?





Strictly two-dimensional forced MHD Control parameter: $\mu = F_M/F_V$

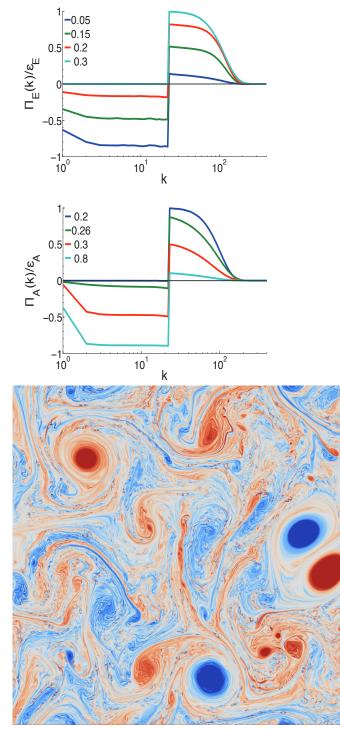
FLUXES

$$\epsilon_{E}^{-} \propto (\mu_{c} - \mu)^{\gamma_{E}}$$

 $\epsilon_{A}^{-} \propto (\mu - \mu_{c})^{\gamma_{A}}$

 $\begin{array}{c} \gamma_E \sim 0.82 \\ \gamma_A \sim 0.24 \\ \mu_c \sim 0.22 \ {}_{(E)} \ or \ 0.25 \ {}_{(A)} \end{array}$

Seshasanayan+ 2014, 2016



Vorticity, forcing scale 1/20:

Strictly 2D forced MHD, Control parameter $\mu = F_M/F_V$

 $E_{A}(k) = k^{-2} E_{M}(k)$

SESHASAYANAN, BENAVIDES, AND ALEXAKIS (2014, 2016)

