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Vertical drafts and mixing in stratified turbulence

Fig. 3: Left: Variation with height of the kurtosis of the vertical velocity computed by-plane for run 9, at fixed time (t0/⌧ : relative
maximum indicated in Fig.2), together with the rendering of w for the same run. A threshold is used to highlight the presence of
intense vertical drafts (> 3�w) which appear as large-scale structures emerging in distinct planes that correspond to those with
the largest values of the kurtosis. Right: PDF of the gradient Richardson number normalized by its variance together with the
rendering of the point-wise values Ri/�Ri smaller than 0.004, visualized with opaque colors to highlight the regions of the flow
prone to develop overturing.

time, is stronger in runs 7 to 12, resulting in the observed
non-stationarity of the instantaneous Eulerian PDFs (Fig-
ures 1, middle) and in the emergence of structures, Fig.3
(left) and 4. The intermittent behavior also a↵ects the
smallest scales of the flow: the dissipation and the gradi-
ent fields also have rare, intense structures embedded in
the quiet flow (not shown, see [15]).

Extreme updrafts and downdrafts a↵ect the vertical
transport. The product of the vertical temperature flux
with the Brunt-Väisälä frequency N is the so called buoy-
ancy flux Bf = N hw✓iV , which is routinely used to char-
acterize mixing in stably stratified flows. There are several
ways to define the mixing e�ciency (see [19,22,23] and ref-
erences therein), one possibility being to take the ratio of
the buoyancy flux to the rate of kinetic energy dissipa-
tion "V in the momentum equation. Following [24,25], we
define here the irreversible mixing e�ciency �̂ using the
potential energy dissipation rate "P = (|r✓|2) instead of
Bf , so one can write �̂ = "P /"V . This definition is based
on the assumption that the mixing e�ciency should only
account for the irreversible conversion of available poten-
tial energy into background potential energy, quantified
by "P , as argued in [25].

�̂ is plotted in Fig. 5 (bottom) against the Froude num-
ber for all the runs in table 1. Very interestingly, we find
that in a parameter space compatible with regions of the
atmosphere and the oceans, namely 0.05 < Fr < 0.3 and
RB > 10, the mixing e�ciency scales linearly with the
Froude number, �̂ / Fr, and it increases by roughly one
order of magnitude before dropping for F > 0.3, consis-
tently with [25]. This is also the range of parameters in
which maximal kurtosis of the Lagrangian vertical veloc-
ity w̃ and large-scale intermittency, attain as a result of
our study (Fig. 5, top). Note that the scaling �̂ / Fr
observed here for values of the Froude number of geo-
physical interest is di↵erent than scaling reported in [25],

(�̂ / Fr�2) obtained for weakly stratified flows (Fr > 1).
For Fr ⌧ 0.05 we find a saturation value �̂0 ⇠ 10�1, com-
patible with the proxy of the mixing e�ciency commonly
used in the ocean community (⇡ 0.2) [26]. To comple-
ment our characterization of the mixing, we finally eval-
uated for all runs the ratio of the volume-averaged ki-
netic to potential energies EV /EP , which can be linked
to wave-eddy partition [27]. This quantity is plotted in
the insert of Fig. 5 (bottom) together with the ratio of
the volume-averaged horizontal kinetic to potential ener-
gies EV?/EP . These ratios provide the simplest mea-
sure of the partition of energy between kinetic and poten-
tial modes at all scales, which is another way to estimate
the e�ciency of the mixing. Unlike �̂, both EV /EP and
EV?/EP peak in the proximity of the maximal value of
Kw̃(Fr), obtained for Fr ⇡ 0.076 (Fig. 5, top). This sug-
gests the possibility that in flows characterized by strong
large-scale intermittency, mixing enhancement occurs due
to large scale overturning, with a consequent increase of
the kinetic over potential energy (both integrated over the
volume and in the Fourier space). It is also interesting to
notice that EV /EP ⇡ EV?/EP , perhaps due to a more
e�cient generation of horizontal winds in this regime, that
makes the horizontal kinetic energy dominate the energy
ratio. In order to investigate the tendency of stratified
flows to develop local overturning and the link with the
emergence of large scale intermittency and structures, we
have analyzed the statistics of the (point-wise) the gra-
dient Richardson number Ri = N(N � @z✓)/(@zv?)2 of
the instantaneous Eulerian fields. This analysis allowed
to reveal a clear spatio-temporal correlation between pres-
ence of structures in the velocity fields � originating from
strong vertical drafts � and patches of of the flow charac-
terized by values of the point-wise Ri indicating the most
unstable regions of the domain. As an example, in Fig. 3
we propose the comparison between the rendering of the

p-5

Forced 5123 run, 
Fr~ 0.08, Re~ 3800, 

No rotation (Newton-Calabria)

K Kurtosis of vertical           
v velocity w, 
.h   horizontally averaged,
.         & visualization
.         of vertical velocity w

Strong intermittency of the vertical *velocity*
Model through the Vieillefosse system with gravity waves, forcing and dissipation

Feraco+, Vertical drafts and mixing in stratified turbulence: sharp transition with Froude number. Submitted to Eur. J. 
Phys. Lett.. ArXiv/ 1806.00342
(see also Rorai+, Turbulence comes in bursts in stably stratified flows,  Phys. Rev. E 89, 043002, 2014)



Hawaiian ridge
U=0.1m/s, L=1000m
τNL =L/U ~ 3 hrs
N=0.001s-1, Fr~ 0.1
.εV~10-6W ~ εD=U3/L
Re~ 108, RB ~ 106

a) Breaking internal tides over deep rough topography b) Breaking internal tides over tall steep topography

c) Modeled internal tide generation d) vertical structure e) consequences
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FIG. 3. a) A snapshot of baroclinic velocity (m/s) from a two-dimensional numerical simulation of internal

tides forced by M2 (semi-diurnal) tidal velocities over rough topography, for parameters corresponding to the

Brazil Basin (Nikurashin and Legg 2011); (b) observational time series of internal wave breaking over tall steep

topography; here we see northward velocity (upper) and turbulent dissipation rate (lower) oscillate twice a day

as the tide flows over Kaena Ridge, Hawaii (Klymak et al. 2008) (c) global energy flux from the M2 tide into

internal tides (in log10 W/m2) estimated using (top) the topography resolved in the SRTM30 PLUS bathymetry

data base and (bottom) a statistical representation of unresolved abyssal hill topography estimates (Melet et al.

2013b); (d) the vertical structure of dissipation from Brazil Basin observations (thick solid curve) and the Polzin

2009 (Eqn. 4) parameterization of nearfield internal tide dissipation (thin solid curve); (e) the impact of the

Polzin parameterization in the GFDL CM2G coupled climate model: (top) The Indo-Pacific meridional over-

turning streamfunction (Sv)(averaged over the final 100 years of a 1000 year simulation) using the Polzin (2009)

parameterization, (bottom) the differences in Indo-Pacific meridional overturning streamfunction (Sv) between

the simulations with the Polzin (2009) parameterization and the St. Laurent et al. (2002) parameterization as

implemented by Simmons et al. (2004b) (from Melet et al. (2013a)).
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Figure 3. Absolute value of the longitudinal component of the third-order
velocity structure function (D3l) on the left axis (blue axis and line). Orange
circles and blue pluses represent negative and positive values, respectively.
A linear power law relationship is shown as dashed gray line. Kurtosis
( <!u4 >
<!u2 >2 ), both longitudinal and transverse components, is shown in

orange on the right axis. Inset on bottom right shows the relation D3l∕2r.

where f is the Coriolis parameter and
r the separation. The transition scale
is approximately where the Ro is unity
(Figure 2b). Ro is smaller at larger
scales, indicating the flow is nearer to
geostrophic balance and hence rota-
tional [Pedlosky, 1987].

At small scales, the divergent veloc-
ity structure function, D2d , has a slope
near 2/3, as expected for an energy
range. This essentially determines the
slope of the total function, D2. Further,
the ratio of the transverse and longi-
tudinal velocity structure functions is
close to 3/5 (Figure 2b), as expected for
a divergent flow with a slope of 2/3.

From 5 to 50 km, the rotational veloc-
ity structure function is greater. Below
roughly 30 km, this has a slope of
1.5. The steeper D2r accounts for the
steepening in D2 seen above 5 km. The
deformation radius, Ld , in the Gulf of
Mexico is near 45 km [Chelton et al.,
1998], so the rotational velocity struc-
ture function resembles that for an

enstrophy cascade below Ld but has a shallower slope than 2. The ratio D2t∕D2l increases rapidly in the range
of 5–50 km to a value of 2.2 (the theoretical value for an enstrophy cascade is 3 with a slope of 2 for the velocity
structure function).

Between 40 and 100 km, D2 essentially reflects D2r . The slope in this range is near 2/3, suggestive of a 2-D
inverse energy cascade. However, the range of scales is small. The ratio D2t∕D2l is falling but is obviously not
constant (Figure 2b).

The higher-order moments provide additional insight. The longitudinal third-order velocity structure func-
tion, D3l , increases approximately linearly over all scales below 200 km (Figure 3). A linear slope is expected in
an energy cascade (section 3). D3l is positive at the larger scales but changes sign at 2 km. The negative, linear
dependence at small scales implies a forward energy cascade. A similar result was obtained previously with
atmospheric data, below 100 km, by Cho and Lindborg [2001]. The implied dissipation rate, " = D3l∕(2r) with
the sign signifying the direction, is shown in the insert in Figure (3). Below 2 km the value is approximately
5×10−8 m2/s3 and negative, which is in line with estimates of energy dissipation rate based on microstructure
measurements in the near surface ocean [Moum and Smyth, 2001].

The positive, linear D3l , seen here at the larger scales, would imply an upscale transfer in an energy cascade.
However, as the divergent and rotational components are both present in the range of 2–20 km, the result
probably represents a combination of the positive, cubic behavior expected in an enstrophy range (section 3)
with the negative contribution from the divergent motions.

The longitudinal and transverse kurtoses are shown in orange in Figure (3). The two are consistent in that the
small scales are non-Gaussian while the scales above Ld are nearer Gaussian. However, the transition scale
differs slightly for the two, occurring near 5 km for the transverse function and 20 km for the longitudinal. The
kurtosis is expected to be non-Gaussian in either an energy or enstrophy range and Gaussian at scales where
the pair motion is uncorrelated.

Homogeneity and isotropy are essential for the turbulence scaling laws and the Helmholtz decomposition
to hold. However, these assumptions are rarely, if ever, perfectly satisfied in the ocean. To test the validity
of these assumptions, we performed a binned statistical analysis on the GLAD data. This analysis showed a
higher kinetic energy away from the boundaries, presumably a result of the loop current eddies (Figure S2).

BALWADA ET AL. SCALE DEP. DIST. OF KE IN THE GOM 10,860

Surface drifters, 
Gulf of Mexico
Balwada+ 2016
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VIEWPOINT

Intermittent Turbulence in a Global
Ocean Model
A large-scale model of ocean dynamics finds intermittent behavior that may have
implications for how the ocean’s energy budget is assessed.

by Annick Pouquet⇤,†

One of the hallmarks of turbulence is intermittent
behavior, such as the sudden and unpredictable
gusts of wind in the north of Scotland. Intermit-
tency is related to the existence of intense and

sparse coherent structures, as in atmospheric fronts, hurri-
canes, and tornadoes, and to small-scale vortex filaments
in fully turbulent flows. Intermittent behavior has been
observed in the ocean, but its implications are not fully un-
derstood. This is because computer models are unable to
incorporate the full range of scales involved: from the plan-
etary scale ( ⇠ 104 km) down to the scale at which energy
is dissipated ( ⇠ 1 mm). A new numerical study of the
global ocean breaks the problem into two parts by simu-
lating the dynamics at large scales (greater than roughly 1
km) and then approximating how energy cascades to smaller
scales [1]. The researchers—Brodie Pearson and Baylor
Fox-Kemper from Brown University in Rhode Island—find
spatial intermittency in the dissipation of kinetic energy at
large scales where one would expect waves to smooth out
fluctuations in the flow. The results imply that some regions
in the ocean may dissipate much more energy than other re-
gions, which could affect how oceanographers estimate the
energy budget of the ocean from localized observations.

Intermittency, as a property of small-scale turbulence, has
been known and analyzed for a long time (see, e.g., Refs.
[2, 3]). In the case of fluid flows, intermittent behavior is
characterized by “fat wings” in the probability distribution
functions (PDFs) for velocity gradients and temperature gra-
dients in the fluid. These wings imply that sudden velocity
or temperature changes occur more often than would be pre-
dicted by a bell-shaped, or “normal,” PDF. High-resolution
spatial and temporal measurements have revealed small-
scale intermittency in many phenomena, such as the dissi-
pation of energy in the atmosphere or the ocean [4, 5], the
rain formation process [6], superfluid turbulence [7], and the

⇤Computational and Information Systems Laboratory, National Cen-
ter for Atmospheric Research, Boulder, CO 80307, USA
†University of Colorado at Boulder, Boulder, CO 80309, USA

Figure 1: The map on the left shows energy dissipation (e) along
the surface of the model ocean. The graph on the right depicts the
probability distribution function (PDF) vs the logarithm of
dissipation (log e). The different lines correspond to the dissipation
in the whole ocean (blue), the 30� by 30� box in the map (black),
and the smaller 10� by 10� box within (red). The log-normality of
energy dissipation e is evidence of intermittency at large scales.
(B. Pearson and B. Fox-Kemper/Brown University)

solar wind [8].
The presence of intermittency in a turbulent system im-

plies a process of large eddies breaking up into smaller
eddies. This energy cascade is due to a nonlinear coupling
between oscillation modes at different scales. In a sys-
tem that is three dimensional, homogeneous, and isotropic,
the cascade leads to a highly chaotic and spatially complex
state called fully developed turbulence [9]. The situation is
more complicated in the ocean, where coastlines, tides, and
winds play a role. At large scales, the flow is influenced
by waves that are generated from the Earth’s rotation and
gravity. When these waves are strong, i.e., faster than the
turbulent eddies, there arises a so-called geostrophic balance
between the Coriolis force, gravity, and pressure gradients.
Under these conditions, the fluid acceleration is zero, and
the flow should be steady, apart from fluctuations and reso-
nances between waves. And yet, in idealized models where
geostrophic balance is assumed, and the fluid motion is
stratified in largely separated horizontal layers, researchers
have found that the flow is highly intermittent, more so than
in fully developed turbulence [10]. In this case, the fat-wing
PDFs occur in the vertical velocity and temperature fluctua-

physics.aps.org c� 2018 American Physical Society 26 February 2018 Physics 11, 21
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Incompressible Boussinesq equations + rotation
3D cubic box, periodic boundary conditions

Evidence for Bolgiano-Obukhov scaling in rotating stratified turbulence using
high-resolution direct numerical simulations

D. Rosenberg1, A. Pouquet2, R. Marino3 and P.D. Mininni4
1National Center for Computational Sciences, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831, USA.

2Laboratory for Atmospheric and Space Physics, CU, Boulder, CO, 80309-256 USA.
3NCAR, P.O. Box 3000, Boulder, Colorado 80307-3000, USA.

4Departamento de F́ısica, Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires, Ciudad Universitaria, 1428, Buenos Aires, Argentina.

We report results on rotating stratified turbulence in the absence of forcing, with large-scale
isotropic initial conditions, using direct numerical simulations computed on grids of up to 40963

points. The Reynolds and Froude numbers are respectively equal to Re = 5.4⇥104 and Fr = 0.0242.
The ratio of the Brunt-Väisälä to the inertial wave frequency, N/f , is taken to be equal to 4.95,
a choice appropriate to model the dynamics of the southern abyssal ocean at mid latitudes. This
gives a global buoyancy Reynolds number RB = ReFr2 = 32, a value su�cient for some isotropy
to be recovered in the small scales beyond the Ozmidov scale, but still moderate enough that
the intermediate scales where waves are prevalent are well resolved. We concentrate on the large-
scale dynamics, for which we find a spectrum compatible with the Bolgiano-Obukhov scaling, and
confirm that the Froude number based on a typical vertical length scale is of order unity, with strong
gradients in the vertical. Two characteristic scales emerge from this computation, and are identified
from sharp variations in the spectral distribution of either total energy or helicity. A spectral break
is also observed at a scale at which the partition of energy between the kinetic and potential modes
changes abruptly, and beyond which a Kolmogorov-like spectrum recovers. Large slanted layers are
ubiquitous in the flow in the velocity and temperature fields, with local overturning events indicated
by small Richardson numbers, and a small large-scale enhancement of energy directly attributable
to the e↵ect of rotation is also observed.

I. INTRODUCTION

Rotating stratified flows are particularly important in the understanding of the dynamics of our planet and the
Sun. Several of the key concepts needed in order to progress in predictions of the weather and in the global evolution
of the climate depend crucially on a fundamental understanding of these flows. At di↵erent scales, di↵erent physical
regimes become salient, and yet all scales interact. The nonlinear advection produces steepening, albeit slowly in
the presence of strong waves. Thus, these fronts and turbulent eddies lead to enhanced dissipation and dispersion
of particles and tracers, a↵ecting the global energetic behavior of the atmosphere and climate systems, for example
for atmospheric synoptic scales, and for oceanic currents, in the latter case modifying the meridional circulation. In
the atmosphere, such e↵ects on energetics can in turn impair assessments of whether a given super-cell can spawn
a tornado, and they a↵ect both the evaluation of hurricane intensity and of climate variability. Rotating stratified
turbulence (RST hereafter) thus plays a crucial role in the dynamics of the atmosphere and oceans, with nonlinear
interactions–responsible for the complexity of turbulent flows–having to compete with the waves due to rotation and
stratification.

All of this takes place in the presence of a variety of other phenomena, including reactive chemical transport,
biological or hydrological processes, as well as large-scale shear and bounday layers for example. One common
approach is to tackle the problem in its entirety and construct a succession of models with increasing degrees of
complexity. Conversely, one can take the simplest problem with what may be the most essential ingredients and
examine the dynamics of such flows from a fundamental point of view, an approach taken in this paper. One of the
inherent di�culties is the fact that such flows are represented, in the dry Boussinesq framework, by four independent
dimensionless parameters, the Reynolds, Froude, Rossby and Prandtl numbers defined as:

Re =
U0L0

⌫
, F r =

U0

L0N
, Ro =

U0

L0f
, Pr =

⌫


, (1)

where U0 and L0 are, respectively, a characteristic velocity and length scale, ⌫ and  are the kinematic viscosity
and scalar di↵usivity (taken to be equal, Pr = 1), N is the Brunt-Väisälä frequency, and finally f = 2⌦ with ⌦
the rotation frequency. Other dimensionless parameters, combinations or variants of these basic ones, are commonly
defined as well (see §II C).

A number of studies have shown, at least in the absence of rotation, that the buoyancy Reynolds number RB =
ReFr2 needs to be large enough for vigorous turbulence to develop in the small scales (see for example the review in
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N/f = Ro/Fr > 2.5 (ocean, atmosphere)
Gradient Richardson number: Rig= N2/[∂zu^]2    (vertical shear)

055105-3 Rosenberg et al. Phys. Fluids 27, 055105 (2015)

and constant energy flux and to large scales with again a constant but negative energy flux,22,23 in
accordance with oceanic data.24

Noticing the scarcity of high-resolution DNS for turbulence in the presence of both rotation
and stratification to date and considering the geophysical relevance of flows with moderate values of
N/ f , we thus now analyze results from two runs with a numerical resolution using up to 40963 grid
points at the peak of dissipation for the first one, and 5123 points for an initially balanced run used
to study the e↵ect of varying the initial conditions. In Sec. II are given the equations, the numerical
procedure, and the overall parameters. Sections III and IV provide, respectively, the temporal and
spectral dynamics of the flow, Sec. V describes the physical structures that develop, and finally,
Sec. VI o↵ers a brief discussion and our conclusions.

II. NUMERICAL SETUP

A. Equations

The Boussinesq equations in the presence of solid body rotation for a fluid with velocity u and
vertical velocity component w are

@u
@t
+ ! ⇥ u + 2⌦ ⇥ u = �N#êz � rP + ⌫r2u, (1)

@#

@t
+ u · r# = Nw + r2#, (2)

together with r · u = 0 assuming incompressibility. P is the total pressure, N is the Brunt-Väisälä
frequency, f = 2⌦ with ⌦ the rotation frequency, and ⌫ and  are the kinematic viscosity and scalar
di↵usivity (taken to be equal, for a Prandtl number equal to unity, Pr = 1). Finally, êz is the unit
vector in the vertical direction, which is in the direction of the imposed rotation and opposed to the
imposed gravity, g; therefore, ⌦ = ⌦ẑ. Note that the normalized temperature fluctuation #, that ap-
pears in the equations for momentum and mass conservation, derives from the standard Boussinesq
formulation (see, e.g., Ref. 25) in terms of the density fluctuations about a stable background state,

⇢ = �d⇢
dz

z + ⇢0, (3)

by way of a change of variables,

⇢0 =
N ⇢0

g
#. (4)

Here, N2 = �(g/⇢0)(d⇢/dz) is a measure of the (constant) background stratification, ⇢0 is the
mean density, ⇢ is the total density, and ⇢0 stands for the fluctuation around the background state.
The “temperature” thus has units of velocity, and kinetic and potential energies are immediately
comparable.

Equations (1) and (2) are then written in dimensionless units. A unit length scale and a unit
r.m.s. velocity are used to dimensionalize all quantities. With this choice, for a characteristic ve-
locity U0 = 1 and a characteristic length L0 = 1, the turnover time is T0 = L0/U0 = 1, which we
use as unit of time. ⌦ and N are then measured in units of the inverse of time T0. The periodic
domain has length �0 = 2⇡, resulting in integer wavenumbers and in a minimum wave number
kmin = 2⇡/�0 = 1.

The initial conditions for the velocity are centered on the large scales; all individual Fourier
modes with 2  |k|0  3 are given an equal non-zero amplitude, with a total energy such that at
t = 0, urms = 1. There is as much energy as in the three directions (isotropy is assumed), and the
phases are chosen at random. In the first of the two runs considered (“run A”), we take #(t = 0) = 0,
so the potential energy is initially zero (EP =

1
2

⌦
#2↵ = 0). These initial values are standard in turbu-

lence computations that focus on the nonlinear transfer of energy across scales. However, in order
to check whether the specific initial conditions described above are responsible for the development
of the features observed in this paper and in particular for Bolgiano-Obukhov (BO) scaling, we have

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded
to  IP:  128.117.236.46 On: Tue, 19 May 2015 15:40:58



SCALES: Purely stratified flow (f=0):   Fr  = U0/[NL0] < 1

Scale at which Fr =1?                



Purely stratified turbulence (f=0):   Fr  = U0/[NL0] < 1

Scale at which Fr =1?                
à LB = U0/N       ,  buoyancy scale 



Purely stratified turbulence (f=0):   Fr  = U0/[NL0] < 1

Scale at which Fr =1?                
à LB = U0/N       ,  buoyancy scale 

l ? such that Fr(l)=1, for a Kolmogorov spectrum: u(l) ~ εv
1/3l1/3

à .l = lOz= [εv/N3]½ ,  Ozmidov scale  



Purely stratified turbulence (f=0):   Fr  = U0/[NL0] < 1

Scale at which Fr =1?                
à LB = U0/N       ,  buoyancy scale 

l ? such that Fr(l)=1, for a Kolmogorov spectrum: u(l) ~ εv
1/3l1/3

à .l = lOz= [εv/N3]½ ,  Ozmidov scale  ,          LB / lOz ~ Fr -1/2



Purely stratified turbulence (f=0):   Fr  = U0/[NL0] < 1

Scale at which Fr =1?                
à LB = U0/N       ,  buoyancy scale 

l ? such that Fr(l)=1, for a Kolmogorov spectrum: u(l) ~ εv
1/3l1/3

à .l = lOz= [εv/N3]½ ,  Ozmidov scale  ,          LB / lOz ~ Fr -1/2

Buoyancy Reynolds number: RB≡ εv/[νN2] = [lOz/η]4/3 

RB = 1 for lOz = η = [εv/ν3]-1/4         (η: Kolmogorov dissipation scale)



Purely stratified flow (f=0):   Fr  = U0/[NL0] < 1

Scale at which Fr =1?                
à LB = U0/N       ,  buoyancy scale 

l ? such that Fr(l)=1, for a Kolmogorov spectrum: u(l) ~ εv
1/3l1/3

à .l = lOz= [εv/N3]½ ,  Ozmidov scale  ,          LB / lOz ~ Fr -1/2

Buoyancy Reynolds number: RB≡ εv/[νN2] = [lOz/η]4/3 

RB = 1 for lOz = η = [εv/ν3]-1/4         (η: Kolmogorov dissipation scale)

Numerical conendrum: large RB, small Fr for geophysical flows
With rotation: Ro also small; Ro/Fr= N/f ~ 5 (ocean) or 100 (atmosphere)



Purely stratified flow (f=0):   Fr  = U0/[NL0] < 1

Scale at which Fr =1?                
à LB = U0/N       ,  buoyancy scale 

l ? such that Fr(l)=1, for a Kolmogorov spectrum: u(l) ~ εv
1/3l1/3

à .l = lOz= [εv/N3]½ ,  Ozmidov scale  ,          LB / lOz ~ Fr -1/2

Buoyancy Reynolds number: RB≡ εv/[νN2] = [lOz/η]4/3 

RB = 1 for lOz = η = [εv/ν3]-1/4         (η: Kolmogorov dissipation scale)

Numerical conendrum: large RB, small Fr for geophysical flows
With rotation: Ro also small; Ro/Fr= N/f ~ 5 (ocean) or 100 (atmosphere)

Note: RB = Re Fr2 only for dEV/dt ≡	εv = εD = U0
2/[L0/U0] = U0

3/L0



Purely stratified flow (f=0):   Fr  = U0/[NL0] < 1

Scale at which Fr =1?                
à LB = U0/N       ,  buoyancy scale 

l ? such that Fr(l)=1, for a Kolmogorov spectrum: u(l) ~ εv
1/3l1/3

à .l = lOz= [εv/N3]½ ,  Ozmidov scale  ,          LB / lOz ~ Fr -1/2

Buoyancy Reynolds number: RB≡ εv/[νN2] = [lOz/η]4/3 

RB = 1 for lOz = η = [εv/ν3]-1/4         (η: Kolmogorov dissipation scale)

Numerical conendrum: large RB, small Fr for geophysical flows
With rotation: Ro also small; Ro/Fr= N/f ~ 5 (ocean) or 100 (atmosphere)

Note: RB = Re Fr2 only for dEV/dt ≡	εv = εD = U0
2/[L0/U0] = U0

3/L0



N=4,      Fr ~ 0.11
RB = ReFr2 ~ 300

z

Stratification, no rotation, large scale forcing, Re~ 24000, 20483 grid: 
Temperature fluctuations, xz slice
Re ~ 24000, 20483 grids, kF ~2-3                  

Rorai et al., 2014

N=12, Fr ~ 0.03
RB ~ 22

 

 

0 1 2 3 4 5 6
0

1

2

3

4

5

6

ï1 ï0.5 0 0.5 1



Vertical vorticity
.at peak of dissipation 
(ωz-mag , horizontal cut):

Eddies & lanes 

Plot @ full 40962 res.
GHOST pseudo-spectral
.code (DOE/titan, 2014)

Log scale

f=2.7, ωrms ~17

Re=55000 ``ocean’’
Fr=0.024, N/f= 5
RB=32, kmaxη ~2

No forcing, k0~2.5
Bolgiano-Obukhov scaling

Rosenberg+ 2015 

wmag.0370-z1843-gray-log.png (PNG Image, 4096 × 4096 pixels) http://web.ornl.gov/ftp_out/uP22YJjYGvdw/wmag.0370-z1843...

1 of 1 1/29/15 4:02 PM



Vz, 
perp. slice
F ≠ 0

Re=8000 
N/f=2 

Fr=0.1
Ro=0.2

RB= 80
15363 grid     

GHOST code
Pouquet+ 2013

 

 

200 400 600 800 1000 1200 1400

200

400

600

800

1000

1200

1400

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Forcing scale



Fr
10

1

0.1

0.01

0.001

Ro       0.1                                 1                                10                               100                    1000      …       ∞

. x

x

x

x

2.5 ≤ N/f ≤ 312        …   and ... …                                                                    ∞ 

N/f=2

N/f=5

N/f=100

10243, Re~1.2x104, θ(t=0)=0, F=0,
k0~2.5, isotropic (I); GHOST code.

THE PARAMETRIC STUDY

Ocean

Atmosphere



Fr
10

1

0.1

0.01

0.001

Ro       0.1                                 1                                10                               100                    1000      …       ∞

. x

x

x

x

2.5 ≤ N/f ≤ 312        …   and ... …                                                                    ∞ 

N/f=2

N/f=5

N/f=100

10243, Re~1.2x104, θ(t=0)=0, F=0,
k0~2.5, isotropic (I); GHOST code.
Some 5123 (I or QG) runs, lower Re

THE PARAMETRIC STUDY

Ocean

Atmosphere



Page 6 of 12 Eur. Phys. J. E (2016) 39: 8

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 t

 E
V
 (

t)

Ro < 0.15  ;  4.5 < ReFr 2 < 31.5

 

 

Fr = 0.021     Ro =  0.147
Fr = 0.006     Ro =  0.120
Fr = 0.028     Ro =  0.140
Fr = 0.038     Ro =  0.140
Fr = 0.057     Ro =  0.140

0 5 10
0

0.02

0.04

0.06

   | |2 (t)

0 1 2 3 4 5 6 7 8 9 10
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 t

  E
T
 (

t)
Ro < 0.15  ;  4.5 < ReFr 2 < 31.5

 

 

Fr = 0.021     Ro =  0.147
Fr = 0.006     Ro =  0.120
Fr = 0.028     Ro =  0.140
Fr = 0.038     Ro =  0.140
Fr = 0.057     Ro =  0.140

0 5 10
0

2

4

6

8

10

 E
V
 (t)/E

P
 (t)

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 t

 E
V
 (

t)

0.065 < Fr < 0.1  ;  52.5 < ReFr 2 < 82

 

 

Fr = 0.099    Ro = 0.494
Fr = 0.088    Ro = 0.619
Fr = 0.086    Ro = 0.430
Fr = 0.099    Ro = 9.283
Fr = 0.067    Ro = 9.233

0 5 10
0

0.02

0.04

0.06

   | |2 (t)

0 1 2 3 4 5 6 7 8 9 10
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 t

  E
T
 (

t)

0.065 < Fr < 0.1  ;  52.5 < ReFr 2 < 82

 

 

Fr = 0.099    Ro = 0.494
Fr = 0.088    Ro = 0.619
Fr = 0.086    Ro = 0.430
Fr = 0.099    Ro = 9.283
Fr = 0.067    Ro = 9.233

0 5 10
0

2

4

6

8

10

 E
V
 (t)/E

P
 (t)

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 t

 E
V
 (

t)

0.16 < Fr < 0.4  ;  255 < ReFr 2 < 360

 

 

Fr = 0.202    Ro = 10.08
Fr = 0.163    Ro = 9.791
Fr = 0.202    Ro = 5.038
Fr = 0.206    Ro = 40.96
Fr = 0.397    Ro = 42.19

0 5 10
0

0.02

0.04

0.06

   | |2 (t)

0 1 2 3 4 5 6 7 8 9 10
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 t

  E
T
 (

t)

0.16 < Fr < 0.4  ;  255 < ReFr 2 < 360

 

 

Fr = 0.202    Ro = 10.08
Fr = 0.163    Ro = 9.791
Fr = 0.202    Ro = 5.038
Fr = 0.206    Ro = 40.96
Fr = 0.397    Ro = 42.19

0 5 10
0

2

4

6

8

10

 E
V
 (t)/E

P
 (t)

Fig. 3. Left: Temporal evolution of kinetic energy (and of its dissipation in the insert) for three sets of runs. Top: Constant and
low Ro < 0.15, with Bu = Ro/Fr varying between ≈ 2.5 and 20; runs ID are 3, 9, 13, 17 and 27 in ascending Froude number
(see table 1). Middle: Relatively constant Fr at low values, with resulting moderate RB (0.065 < Fr < 0.1, 50 < RB < 100,
runs 31, 33, 34, 36 and 38). Bottom: Same as above but with higher Fr and RB (0.16 < Fr < 0.4, 200 < RB < 400, runs 46,
48–50, 54). Right: Evolution of the total energy and of the ratio of kinetic to potential energy in the insert, for the same runs
as in the left column. Note the relatively constant EV /EP ratios throughout the runs with rather different parameter values,
as it settles at the time of maximum dissipation, after initial oscillations due to the early dominance of the waves.

Left: Ev =f(t) and 
.enstrophy Zv= f(t)

Right: ET =f(t) and 
Ev/Ep =f(t) and 

ß Low Fr, low Ro
Fr~0.03

ß Intermediate range
Fr~0.09

ß High RB
Fr~ 0.2
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Fig. 3. Left: Temporal evolution of kinetic energy (and of its dissipation in the insert) for three sets of runs. Top: Constant and
low Ro < 0.15, with Bu = Ro/Fr varying between ≈ 2.5 and 20; runs ID are 3, 9, 13, 17 and 27 in ascending Froude number
(see table 1). Middle: Relatively constant Fr at low values, with resulting moderate RB (0.065 < Fr < 0.1, 50 < RB < 100,
runs 31, 33, 34, 36 and 38). Bottom: Same as above but with higher Fr and RB (0.16 < Fr < 0.4, 200 < RB < 400, runs 46,
48–50, 54). Right: Evolution of the total energy and of the ratio of kinetic to potential energy in the insert, for the same runs
as in the left column. Note the relatively constant EV /EP ratios throughout the runs with rather different parameter values,
as it settles at the time of maximum dissipation, after initial oscillations due to the early dominance of the waves.

Ev =f(t) 
.and kinetic energy dissipation εV = f(t)

Statistics taken at peak of dissipation
with a temporal averaging within 
variations of � 0.025 εV
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Fig. 2. γ = Evϵp/[Epϵv] = F (Ri) (top) and F (N/f) (bottom).

Finally, a misprint in the captions for the kinetic and potential energies and dissipations is that in the original paper
the authors plot twice these energies and half these dissipations. The overall variations with dimensionless parameters
as displayed in the figures remain, of course, identical.
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B. Overall statistics

Figure 2 gives the total energy spectrum in terms of vertical
wave number when N = 12 for different times; it is found to be
compatible, after the peak of dissipation, with a ∼k−3

z scaling
for wave numbers larger than ≈ 20, whereas at larger scales a
flat spectrum is obtained, as found in other studies [25,26]. This
flat spectrum is associated with the accumulation of stratified
layers in the vertical and ends for wave numbers larger than the
so-called buoyancy wave number kB ∼ N/U ≈ 15 for U ≈
0.8. This characteristic scale is thought to be of the order of
the thickness of the stratified layers in the vertical direction
(see, e.g., [25]).

In Fig. 2 we also show the time evolution of the kinetic and
potential energies in both runs, defined here as EK = ⟨|u|2⟩
and EP = ⟨θ2⟩, respectively. The run with stronger stratifica-
tion shows oscillations associated with internal gravity waves.
The time evolution of the potential energy at different wave
numbers is given in the middle and bottom panels of Fig. 2. At
the smallest scales (small ℓ ∼ 1/k, i.e., larger wave numbers),
the time series of the run with N = 12 is more bursty than for
the run with N = 4. By measuring the standard deviation of the
time series, we verified that the time series at large scales in the
run with N = 4 have larger fluctuations than for N = 12 (i.e.,
stratification smooths the evolution for sufficiently large ℓ),
while at small scales the opposite happens, in agreement with
the qualitative behavior observed in the model. In particular,
note that at k = 30 and 40, the potential energy as a function
of time is almost constant after t ≈ 10 in the run with N = 4,
while it shows bursts and fluctuations in the run with N = 12.
In other words, there is measurably more excitation at small
scale in the potential energy for the higher value of N .

C. Extreme values and internal intermittency

We examine now more closely the occurrence of extreme
events in these high-resolution runs. As stratification increases,
the flow is expected to become more stable and predictable,
developing weaker events in the velocity and temperature.
However, the opposite is observed. A better quantification
of the strength of these events can be obtained from spatial
information.

In Fig. 3 we show the PDFs for vertical velocity and
temperature fluctuations and their vertical gradients for one
snapshot of the fields in a time shortly after the peak of
dissipation. We observe that (i) for a given field, the more
stratified case is more bursty, as illustrated by the heavy tails
of the histograms, which indicate a larger probability of the
fields taking extreme values; (ii) the vertical velocity can take
larger extreme values than the temperature; and conversely,
(iii) the spatial derivative of the temperature takes larger
extreme values than the derivative of the vertical velocity.
Although non-Gaussian tails have been reported in PDFs of
the field gradients of stratified flows, both numerically [27]
as well as observationally [28,29], note that here the PDFs
of the fields themselves are non-Gaussian, with the pointwise
temperature and vertical velocity taking extreme values.

The non-Gaussianity in the PDFs of the field gradients is
often associated with the usual internal intermittency observed
in turbulent flows. However, the non-Gaussian tails in the PDFs
of θ and w indicate the development of extreme values in the
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FIG. 3. (Color online) The top plot shows normalized histograms
(in semilogarithmic coordinates) evaluated shortly after the peak of
dissipation, for the temperature fluctuations θ and for the vertical
component of the velocity w for high-resolution simulations of a
stratified flow with Froude number Fr ≈ 0.1 (N = 4) and Fr ≈ 0.03
(N = 12). A normal distribution is shown (inner black curve) as a
reference. The bottom plot shows PDFs of vertical derivatives for
the same quantities. In all cases, the more strongly stratified flow
with N = 12 has larger probability of developing extreme events, as
illustrated by the wider wings in the PDFs. For the fields themselves,
the velocity has stronger tails than the temperature and the converse
is true for their vertical derivatives.

amplitudes of the fields. These values are less extreme for
the fields than for their gradients: At a probability of 10−5,
one can observe gradients ≈20 times the mean at this value
of Reynolds number, but for the velocity one obtains a more
modest fivefold increase, which nevertheless represents a huge
acceleration of the flow. Such an increase is compatible with
results from numerical simulations of frontal dynamics in the
framework of the California current system [30].

Note also that the PDFs of the fields display asymmetries
and bumps in the tails that may be the result of transient
phenomena right after the peak of dissipation is reached. To
verify this and improve statistical convergence of the data, we
studied the PDFs at different times and computed PDFs of θ
and w integrated over three snapshots of the fields between
t ≈ 10 and 16. The individual PDFs are similar to those
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(b) [NTL]�2; (c) Re (see § A.1 for a discussion of NTL = NEV/✏V). Note the scaling
� ⇠ [NTL]�1/2 in (b).

8. Discussion, conclusion and perspectives
A parametric study of mildly rotating stratified turbulence without forcing leads to a

rather systematic quantitative assessment of its mixing and dissipative properties which
depend on the Froude number provided the Reynolds number is high enough. Three
different regimes are observed, in agreement with previous studies of purely stratified
flows. These regimes are also identifiable in terms of the interaction parameter RI .
The three basic laws illustrated in figure 1 are compatible with an intermediate regime
characterized by the dynamics of waves and eddies interacting nonlinearly weakly,
even though the full weak turbulence formalism leading to a set of closed integro–
differential equations in terms of energy spectra cannot work for stratified flows when
the Froude number in the vertical is of order unity (Billant & Chomaz 2001). It is
thus somewhat remarkable that the simple phenomenology embodied in the parameter
� ⇠ Fr, i.e. the efficiency of the turbulent dissipation, based on a ratio of characteristic
time scales (see (A 4)), may still apply on average for such flows.

Together with ✓rms ⇠ urms and a scaling for w/u? going as a quasi-constant at
intermediate Fr, these laws imply that the mixing efficiency �f ⇠ Fr�2 as soon as
Fr > 0.01, and �f ⇠ Fr�1 ⇠R�1/2

B for Fr . O(1). We emphasize that the actual values
of the control parameter for the change of regimes may depend on the geometry and
topology of such flows. In the intermediate regime, � ⇠ Fr, showing the connection
between buoyancy flux and nonlinear transfer leading to dissipation, with �f �

2 ⇠ 1.
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Dt Ev = - Bf + εv
Dt Ep = +Bf + εp

Bf = <Nθw> : Vertical buoyancy flux

Three laws àEnergy balance & mixing: Γf, Rf; &ΓD, RD



Dt Ev = - Bf + εv
Dt Ep = +Bf + εp

Bf = <Nθw> : Vertical buoyancy flux

Ev =½<|u|2> , Ep =½<θ2>
εv = ν<ω2>    , εp =κ<|grad θ|2>  ,  ET = Ev + Ep , εT = εv + εp

Bf /εv =Γf = Rf/[1-Rf] :  Mixing efficiency               (momentum equation)
Rf = Bf /[Bf+εv]: Flux Richardson number \in [0,1]

εp/εv = ΓD= RD/[1-RD]  ,  RD = εp/εT \in [0,1]              (coupled equations)

Three laws àEnergy balance: Γf, Rf; &ΓD, RD



Dt Ev = - Bf + εv
Dt Ep = +Bf + εp

Bf = <Nθw> : Vertical buoyancy flux

Ev =½<|u|2> , Ep =½<θ2>
εv = ν<ω2>    , εp =κ<|grad θ|2>  ,  ET = Ev + Ep , εT = εv + εp

Bf /εv =Γf = Rf/[1-Rf] :  Mixing efficiency               (momentum equation)
Rf = Bf /[Bf+εv]: Flux Richardson number 

εp/εv = ΓD= RD/[1-RD]  ,  RD = εp/εT \in [0,1]              (coupled equations)

High RB: Γf= 0.2 (Osborn-Cox ‘80)   vs. Γf ~ RB
-1/2  (Lozovatsky & Fernando 2013)  vs. ?    

Scaling?



à Prediction of scaling for mixing efficiency, flux 
Richardson number and dissipation in the two regimes    
of wave-eddy interactions and of strong eddies

using the three constitutive scaling laws for 
temperature, vertical velocity and dissipation efficiency 
versus Froude number:

Θrms ~ U0 (1)

w/U0 = a Fr0 (2a)                   [0 à ¼?  (2b)  Or à 1 (2d)?]

εv ~ Fr εD = Fr U0
3/L     (3)

i



Intermediate regime  II, Fr ≤ 1, using the 3 scaling laws:

Bf = <Nθw>, θrms ~ U0 , w ~ Fr0U0  , εv ~ Fr εD ,  εD ~ U0
3/L 

RB > 1, Re>>1 but irrelevant otherwise

àΓf
II =  Bf/εV = N<w θ>/εV ~  1/Fr2 ~  [RB]-1 (observed)

Higher regime III, Fr ≥1: 

θrms ~ U0 , w ~ Fr0U0, Fr=1 = U0 , εv ~ Fr εD at Fr =1, εv ~ εD
RB > 1, Re>>1 but irrelevant otherwise

àΓf
III = Bf/εV = N<w θ>/εV ~  1/Fr  ~  [RB]-1/2 (observed)

à Our numerical data?



Mixing 
.efficiency
Γf =Bf/εv

Huge range
.in Γf

N<w θ>/εV = Γf ~ 1/Fr2  ~  [RB]-1 or for Fr~1: Γf ~ 1/Fr ~ [RB]-1/2

(regime I & II?)                                         (regime III)
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Flux Richardson 
number: Rf=Bf/[Bf+εv]
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Ratio of vertical fluxes
.of horizontal velocity
.to that of
.temperature fluctuations 
.versus
Froude Number

Non-monotonic, with a
.plateau/peak around Fr~0.07 ?

10 -4 10 -2 10 0 10 2

Fr

10 -3

10 -2

10 -1

10 0

10 1

|<
w

 u
>

 /
 <

w
 

>
|

[ 0.0, 0.3]

[ 0.3, 3.0]

[ 3.0, 6.0]

[ 6.0,10.0]

[10.0, Inf]

Color binning in Ro: 0 à 0.3  à 2.9 à 6.0 à 10 à



Ratio of potential to
.total energy dissipation

εp/[εp + εv]
.

I                II                III

Color binning in Ro: 0 à 0.3  à 2.9 à 6.0 à 10 à

10−3 10−2 10−1 100 10110−2

10−1

100

Fr

R
f* =ε

P/(ε
P+ε

V)

 

 
[ 0.0, 0.3]
[ 0.3, 3.0]
[ 3.0, 6.0]
[ 6.0,10.0]
[10.0, Inf]
40963



3

10−2 100 102 104 106−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Rb

lo
g

1
0
 |

N
 <

w
 θ

>
| 

/ε
V

10−2 100 102 104 106
10−4

10−3

10−2

10−1

100

Rb
L
E
ll
is
o
n
/L
in
t

10−4 10−2 100 102 10410−4

10−3

10−2

10−1

100

Ri

L
E

ll
is

o
n
/L

in
t

 

 

[ 0.0, 0.3]
[ 0.3, 2.9]
[ 2.9, 6.0]
[ 6.0,10.0]
[10.0, Inf]

10−2 100 102 104 106
10−2

10−1

100

101

Rb

L E
lli
so
n/
L O

z

10−4 10−2 100 102 10410−2

10−1

100

101

Ri

L El
lis

on
/L

O
z

 

 

[ 0.0, 0.3]
[ 0.3, 2.9]
[ 2.9, 6.0]
[ 6.0,10.0]
[10.0, Inf]

FIG. 2: Left: Buoyancy flux normalized by the kinetic energy dissipation versus RB , with binning in Ro. It is not
constant, as would be expected in a steady state. We could add this in Fig. 5 or Fig. 6 which show B or ⇢.
Middle and right, top: Lell/Lint vs RB and Ri, in log-log.
Bottom: Lell/LOz vs RB and Ri, in log-log. I think this is the best scaling we have for all variables. Do they all scale
with a ±1/2 power in Fr
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Questions and Perspectives

• Role of rotation?
• Role of k0 ~ 2.5, poor large-scale statistics & weaker resonances?
• Importance of QG?
• Role of lack of stationarity due to lack of forcing?
à Add forcing and large-scale friction à Temporal averaging

à But, what about anisotropy – dispersion relation and – forcing?

• Role of boundary conditions?

• Will small aspect ratio help, role of vertical shear?

• Approach through small-scale modeling: will Artificial Intelligence
& Machine Learning help?
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Perspective (1): Vertical velocity

.in the presence of rotation

Intermediate regime:
w/ U0 ~ [Ro.Fr]~0           (3b)

à Γf = <Nθw>/ εv ~ Fr -2
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Perspective (2): Forced runs
• Analyze runs of rotating stratified turbulence with 
isotropic forcing at intermediate scale (kF~10): 
what are their mixing properties?

b)

RΠ = εLS/εss
. εss ~ εD Fr , εD~ U3/L

. εLS ~ [1/Ro] εD

àRΠ = εLS/εss ~ [Ro.Fr]-1 

with transition at Ro~ 0.45
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Pouquet+ 2013 ; Marino+ 2015 (rot+strat)



Perspective (3): Shallow fluids

• Explore the dynamics in match boxes:
• Example; 20482 X 256 points with Taylor-Green forcing, resulting locally in 

strong vertical shear, and strong dissipation, with fronts and filaments 

Temperature                     &              vorticity (Oks+, arXiv 1706.10287)

13

FIG. 9: Three-dimensional rendering of temperature (first three rows) and of vorticity (next three rows), at the time
the first front is created, t = 4.3 (left), and at later times, namely t = 4.8 (middle) and t = 15. (right). True? Green,

red and blue arrows are respectively the x, y and z axis. Top row is a perspective rendering, middle row is a top
view, and in the bottom row is displayed a blow-up zooming on the top left corner [??] . Note the vertically slanted

destabilizing fronts. Also note in the vorticity at the earliest time, the slanted but mostly vertical quasi-parallel
vortex tubes, down to the middle of the box.

13

FIG. 9: Three-dimensional rendering of temperature (first three rows) and of vorticity (next three rows), at the time
the first front is created, t = 4.3 (left), and at later times, namely t = 4.8 (middle) and t = 15. (right). True? Green,

red and blue arrows are respectively the x, y and z axis. Top row is a perspective rendering, middle row is a top
view, and in the bottom row is displayed a blow-up zooming on the top left corner [??] . Note the vertically slanted

destabilizing fronts. Also note in the vorticity at the earliest time, the slanted but mostly vertical quasi-parallel
vortex tubes, down to the middle of the box.



Summary and perspectives:

à There are three distinct regimes in rotating stratified turbulence, determined 
by the Froude number for high enough Reynolds number, with somewhat 
different thresholds when analyzing different fields: Strong waves, eddy-
wave interactions and full turbulence

à Mixing efficiency and flux Richardson number vary measurably in the 
intermediate regime, 0.01 ≤ Fr ≤ 0.5  (1 ≤ RB ≤ 1000), and with scaling laws

à Dissipation increases as Froude, ``weak’’ turbulence regime, for RB ≈ 10-103

à Lower values of mixing efficiency at high RB à the velocity and temperature 
fluctuations are only weakly coupled (passive scalar regime)

• Together, large numerical resolution and large parametric study allow for some 
scale separation and for understanding separately the roles of some of the players

• Local instabilities and very intense local small-scale dynamics (more so than in FDT)
• Role of Reynolds number in mixing, in the intermediate regime in particular?
• Roles of I.C. or forcing (3D vs. 2D, θ or not, vortices vs. waves, balanced or not …), of 

non-local interactions, of large-scale instabilities & of large-scale friction?
• Intermittency high kurtosis and non-monotonicity (Rorai+ 2014; Feraco+ ArXiv 2018)
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Machine learning and 
modeling

• Use data to guess the 
functional form for the role of 
small scales in order to write 
sub-grid scale models

King+

King+2016
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FIG. 3. Probability densities of turbulent stress components at the test-filter scale (top row) and coarse-grain scale (bottom row), showing
results for T11 and τ11 (left column), T12 and τ12 (middle column), and T13 and τ13 (right column), showing densities for the true stresses from
DNS (black lines), stresses from the autonomic closure (red lines), and stresses from the dynamic Smagorinsky model (blue lines).

test stresses and the test-filtered variables is far less able to
represent features in Tij (x,t) than the autonomic closure.

Figure 2 shows corresponding results for the coarse-grained
turbulent stress field τij (x,t) to allow comparison with the auto-
nomic closure representation τF

ij (x,t), which uses the same hij

determined at the test filter scale in Fig. 1. Also shown for com-
parison are corresponding results τDS

ij (x,t) from the DS model.
It is apparent that τF

ij (x,t) from the autonomic closure provides

FIG. 4. Kinetic energy flux fields at the test-filter scale (top
row) and coarse-grain scale (bottom row), showing results for the
true flux fields P̃ (x,t) (left), the fields P̃ F (x,t) resulting from the
autonomic closure (center), and the fields P̃ DS(x,t) from the dynamic
Smagorinsky model. Even this simple implementation of autonomic
closure is far more accurate than the prescribed closure in the dynamic
Smagorinsky model.

a remarkably accurate representation of the true stress τij (x,t),
especially in view of the global optimization used here, while
τDS
ij (x,t) has nearly no correlation with features in τij (x,t).

Figure 3 uses probability densities to compare test stress
values Tij with T F

ij and T DS
ij , and coarse-grained turbulent

stress values τij with τF
ij and τDS

ij . The distributions T F
ij and

τF
ij from the autonomic closure agree remarkably well with

the true stress distributions Tij and τij , while those from the
DS model greatly overpredict the occurrence of large positive
and negative stress values.

Figure 4 similarly compares the kinetic energy flux be-
tween resolved and unresolved scales, P̃ (x,t) = τij S̃ij , with
corresponding results P̃F (x,t) from the autonomic closure and
P̃ DS(x,t) from the DS model, each obtained from their corre-

FIG. 5. Probability densities of kinetic energy fluxes (a) P̂ at
the test-filter scale and (b) P̃ at the coarse-grain scale, showing
distributions of the true fluxes from DNS (black lines), fluxes from
the autonomic closure (red lines), and fluxes from the dynamic
Smagorinsky model (blue lines).
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Thus, given the large collection of candidate terms for constructing
PDEs, we use sparse regression methodologies to determine which
right-hand-side terms are contributing to the dynamics without an in-
tractable (np-hard) combinatorial brute-force search across all possible
term combinations.

Upon discretization, the right hand side of Eq. 1 can be expressed
as a function of U, which is the discrete version of u(x, t) and its de-
rivatives, through the matrix Q(U, Q), where the column vector Q
contains any additional input terms to the right hand side. Each col-
umn of the library Q(U, Q) corresponds to a specific candidate term
for the governing equation, as shown in Fig. 1 (1b). The PDE evolu-
tion can be expressed in this library as follows

Ut ¼ QðU; QÞx ð2Þ

Each nonzero entry in x corresponds to a term in the PDE, and for
canonical PDEs, the vector x is sparse, meaning that only a few
terms are active. We explicitly show in Materials and Methods how
to construct Q(U, Q) and solve for the vector x, thus identifying the
terms in the PDE.

Discovering the Navier-Stokes equations
Figure 1 demonstrates the algorithmic procedure for successfully
identifying the correct PDE dynamics for a given set of measurements
from a physical system. Specifically, fluid flow around a cylinder is
simulated at a given Reynolds, and measurements of the vorticity
and velocity can be densely or sparsely sampled to correctly recon-
struct the well-known Navier-Stokes equations. Remarkably, the coef-
ficients of the PDE and Reynolds number are identified within a

fraction of a percent accuracy. This figure represents our innovative
mathematical structure that combines sparse regression, a library of
potential functional forms, and parsimonious model selection.

Figure 1 also demonstrates that, for large data sets, such as those
generated from two- and three-dimensional problems, PDE-FIND
can be effectively used on subsampled data. This distinction is funda-
mentally important because full-state measurements are often compu-
tationally and experimentally prohibitive to collect and may also make
the regression needlessly expensive. We randomly select a set of spatial
points and uniformly subsample in time, resulting in the use of only a
fraction of the data set. Mathematically, this amounts to ignoring a
fraction of the rows in the linear system Ut = Q(U, Q)x, as illustrated
in Fig. 1 (2a and 2b). Although we only use a small fraction of the
spatial points in the linear system, nearby points are needed to eval-
uate the derivative terms in the library. The derivatives are computed
using a small number of spatially localized points near each mea-
surement position via polynomial interpolation. Therefore, whereas
subsampling uses only a small fraction of the points in the regression,
we are using local information around each measurement.

Previous sparse identification algorithms (16) faced a number of
challenges: They were not able to handle subsampled spatial data,
and the algorithm did not scale well to high-dimensional measure-
ments. Standard model reduction techniques such as proper orthogonal
decomposition (POD) were used to overcome the high-dimensional
measurements, allowing for a lower-order ODE model to be con-
structed on energetic POD modes. This procedure resembles the
standard Galerkin projection onto POD modes (18). In contrast, the
PDE-FIND algorithm identifies a PDE directly from subsampled mea-
surement data.
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Fig. 1. Steps in the PDE functional identification of nonlinear dynamics (PDE-FIND) algorithm, applied to infer the Navier-Stokes equations from data. (1a)
Data are collected as snapshots of a solution to a PDE. (1b) Numerical derivatives are taken, and data are compiled into a large matrix Q, incorporating candidate terms
for the PDE. (1c) Sparse regressions are used to identify active terms in the PDE. (2a) For large data sets, sparse sampling may be used to reduce the size of the problem.
(2b) Subsampling the data set is equivalent to taking a subset of rows from the linear system in Eq. 2. (2c) An identical sparse regression problem is formed but with
fewer rows. (d) Active terms in x are synthesized into a PDE.

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Rudy et al., Sci. Adv. 2017;3 : e1602614 26 April 2017 2 of 6

 o
n
 M

a
rc

h
 2

4
, 2

0
1
8

h
ttp

://a
d
v
a
n
c
e
s
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m
 

Rudy+ 2017

2D

à



Thank you for your attention



Some references                                                                                                           pouquet@ucar.edu

• F. Feraco, R. Marino, A> Pumir, L. Primavera, P. Mininni, A. Pouquet & D. Rosenberg, Vertical drafts and mixing in 
stratified turbulence: sharp transition with Froude number. Submitted to EPL, see ArXiv/1806.00342

• Oks, P.D. Mininni and A. Pouquet, Generation of turbulence through frontogenesis in sheared stratified flows. 
Submitted to Phys. Fluids, 2018, see ArXiv Physics.flu-dyn/1706.10287v2

• A. Pouquet, D. Rosenberg, R. Marino and C. Herbert, Scaling laws for mixing and dissipation in unforced rotating 
stratified turbulence. J. Fluid Mech. 844, 519, 2018

• D. Rosenberg, , R. Marino, C. Herbert & A. Pouquet, Erratum to: Variations of characteristic time scales in rotating 
stratified turbulence using a large parametric numerical study, EuroPhys. J. E 40, 87, 2017

• D. Rosenberg, , R. Marino, C. Herbert & A. Pouquet, Variations of characteristic time scales in rotating stratified 
turbulence using a large parametric numerical study, EuroPhys. J. E 39, 49001, 2016

• C. Herbert, R. Marino, D. Rosenberg and A. Pouquet, Waves and vortices in the inverse cascade regime of stratified 
turbulence with or without rotation, J. Fluid Mech. 806, 165, 2016

• R. Marino, D. Rosenberg, C. Herbert & A. Pouquet, Interplay of waves and eddies in rotating stratified turbulence and 
the link with kinetic-potential energy partition, EuroPhys. Lett. 112, 44006 (2015)

• D. Rosenberg, A. Pouquet, R. Marino & P. Mininni, Evidence for Bolgiano-Obukhov scaling in rotating stratified 
turbulence using high-resolution direct numerical simulations, Phys. Fluids 27, 055105, 2015

• R. Marino, A. Pouquet and D. Rosenberg,  Resolving the paradox of oceanic large-scale balance and small-scale mixing. 
Phys. Rev. Lett.,114, 114504, 2015

• C. Rorai, P. Mininni and A. Pouquet, Turbulence comes in bursts in stably stratified flows, Phys. Rev. E 89, 043002, 2014
• A. Pouquet and R. Marino, Geophysical turbulence and the duality of the energy flow across scales, Phys. Rev. Lett. 

111, 234501, 2013

i



Page 8 of 12 Eur. Phys. J. E (2016) 39: 8

Fig. 5. Time scale variations: T−2

V
(top) and T−2

P
(bottom) as a

function of buoyancy Reynolds number RB , with TV = EV /ϵV

and TP = EP /ϵP as defined in eq. (10). Data is binned as in
fig. 4, but using now the Rossby number Ro (see inserts).

R2
λ = U0TV Re/L0. With TV being found in a range ≈ 5

to 100 according to fig. 5 (see below), we can immediately
deduce that Rλ varies from roughly 200 to 800 for this
parametric study, with higher Rλ at lower Froude num-
bers because TV is larger or equivalently ϵV is smaller, as
in weak turbulence for which ϵV = ϵDFr. In that case,
Rλ =

√

Re/Fr = L0/ℓN where ℓN =
√

ν/N is a length
scale associated with the thickness of the vertical layers.
Finally note that the total energy and its dissipation, ET

and ϵT , can also be used to define γ (instead of EV , ϵV )
as done in [30]. The two definitions may not result in very
different estimates since both the dissipation and, to a
lesser extent the energy, are dominated by the velocity
field except at high Richardson numbers.

A word of caution here is that TV is not necessar-
ily equal to the eddy turn-over time τNL = L0/U0 since,
in a weak turbulence regime, the energy dissipation rate
may be smaller than the Kolmogorov (dimensional) esti-
mate ϵD by a factor proportional to the Froude number
for stratified flows and to the Rossby number for rotat-
ing flows [17]. Furthermore, the ratio γ can be related to

Fig. 6. Top: [τNL/TV ]2, as a function of Richardson number.
Bottom: Same as above, for the time associated with the tem-
perature field, [τNL/TP ]2, as a function of Froude number Fr
(see eq. (10)). The binning is done in Ro as in fig. 5.

the instantaneous scalar turbulent diffusivity κturb in the
following way:

κturb = κ⟨∥∇θ∥2⟩/[∂z θ̄]
2 = γL2

E/TV , (11)

with LE being the (vertical) Ellison scale; it is defined as
L2

E = EP /[∂zθ]2, where ∂z θ̄ is related to the Brunt-Väisälä
frequency (see eq. (3)). Thus, LE is a scale similar to
a mixing length but now associated with the vertical vari-
ations of density or temperature fluctuations. It is found
to be useful in analyzing oceanic data for example, since
it can be directly measured in turbulent flows, thus allow-
ing for a determination of the energy dissipation rate, a
key ingredient in the dynamics of rotating stratified tur-
bulence.

The variation of the relative anomalous scalar diffusiv-
ity Cκ = κturb/κ, also called the Cox number, with the
buoyancy Reynolds number is known to display several
regimes in terms of RB [51,52]. Here, anomalous is meant
in the sense that the Cox number can differ from unity, or
in other words the dissipation can be enhanced by nonlin-
ear coupling of waves such as when the vortical mode plays

1:1
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FIG. 4: Left: Variation, in log-log coordinates, of the scale LE/2⇡ =
p

EP /N with N/f with binning in Rossby number.
Middle and right: Variation of the Ellison scale LE normalized by the integral scale Lint, with now binning in Froude
number, as a function of Rossby number (middle), and of buoyancy Reynolds number RB (right). In the log-log plot,
it looks like there is a 1/x, x=N/f=Ro/Fr, scaling with a coe�cient that depends on Ro ... Do you agree?

a low plateau, the stratification being strong enough
to prevent vertical motions (although not vertical gra-
dients). A similar reduction in vertical velocity for
rapidly rotating flows in the absence of stratification
was observed in laboratory experiments [105], together
with a weaker overall dissipation.

As turbulence strengthens with increasing RB , the
vertical motions begin to develop significantly; indeed,
in the fully turbulent regime, isotropy is expected with
w ⇠ u?. However, we note that there is no discernible
trend when looking at variations with N/f [89]. We
recall here that the vertical velocity w is also a direct
measure of wave activity since, in a wave-vortex de-
composition as performed in [4, 84] (see also [31, 32]),
vortical modes have vanishing w, hence an inherent
ambiguity to such a decomposition when one moves
away from the linear regime. It can nevertheless be
concluded that the fact that the vertical to total ki-
netic energy ratio goes up with increasing RB in that
regime is consistent with a wave-vortex analysis. As
RB increases, at a given Fr, the small-scale turbulent
motions govern the vertical velocity, which increases
as a fraction of the total kinetic energy, the return
to isotropy now dominating the e↵ect of waves. Also

playing a role is the tendency toward equipartition be-
tween the two wave modes and the zero mode (which
is the two-dimensional vorticity mode without vertical
velocity), as one moves to smaller scales. Finally, in
Fig. 3 (right) is shown the same ratio but this time
the di↵erent symbols indicate di↵erent resolving power
of the small scales: black squares have kM⌘  1.1,
whereas for blue circles kM⌘ > 1.1. No trend is res-
olution is observed. [Duane: please check; is it
really the runs at highest RB that are best re-
solved?]

Similarly to characteristic time-scales, one can also
examine characteristic length scales. A comparison
of the Thorpe and Ellison length scales in stratified
turbulence is performed in [59] (see also [20]). The
Thorpe length scale LT corresponds to the vertical
distance a parcel of fluid must be moved to produce
a stable density profile, suppressing inversions, and as
such gives an idea of the size of local mixing struc-
tures in the fluid. In [59] (see also [28]), LT is found
to be strongly linearly correlated with the Ellison
scale LE = N

�1
p

EP ; note that in [94], the Ellison
scale is found to be proportional to the Prandtl mix-
ing length for RB > 100 (see also [107]). Further-
more, the Thorpe length normalized by the Ozmidov
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Ratio of potential to
.total energy dissipation
εp/[εp + εv]

.versus
Richardson Number

Rather constant in regime II,
.but slight effect of rotation (blue triangles)
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strength of nonlinear interactions relative to dissipation, rotation and stratification; they
are the Reynolds (Re), Rossby (Ro) and Froude (Fr) numbers, defined as usual as:

Re =
urmsLint

⌫

, Ro =
urms

fLint
, F r =

urms

NLint
, (2.6)

with the Prandtl number Pr = ⌫/ taken equal to unity. The buoyancy Reynolds number,
the Richardson number, and the turbulent intensity are defined as:

RB ⌘ ReFr

2
, Ri ⌘ [N/ h@zu?i]2 , RI ⌘ ✏V /[⌫N

2] . (2.7)

Ri is based on a shear time computed on vertical gradients of the horizontal wind, namely
⌧shear = [h@zu?i]�1. All these parameters are discussed further in Appendices §9.1, §9.2.
In the presence of stratification, a variety of length-scales can be relevant (Thorpe 1987;
Mater & Venayagamoorthy 2014), e.g.

LB = 2⇡
p

EV /N , LEll = 2⇡
p

EP /N , `Oz = 2⇡
p

✏V /N
3
, (2.8)

or the buoyancy, Ellison and Ozmidov scales. In purely stratified flows, LB is the scale
for which the vertical Froude number becomes of order one (Billant & Chomaz 2001);
it measures the thickness of the vertical layers. On the other hand, the Ellison scale
corresponds to the vertical distance traveled by a particle of fluid before being completely
mixed, and it is thought to be significantly smaller than the integral scale in strongly
stratified flows, as we shall show later (see Fig. 6b). LB and LEll vary as 1/N , but di↵er
by a field-amplitude ratio,

p
EV /EP . Finally, the Ozmidov scale is the scale beyond

which isotropy is thought to be recovered together with a classical Kolmogorov range.

3. Global behavior and scaling

3.1. Overview of the runs

Runs with an emphasis on realistic parameters for the mesosphere and lower thermo-
sphere, and which overlap with the present data base, were investigated for the energy
partition between waves and slow modes and the link with kinetic-potential energy
exchanges in Marino et al. (2015b), as well as for parametric characteristic time-scale
variations in (Rosenberg et al. 2016) (see also Rosenberg et al. (2017)). Here, the runs on
grids of 10243 points cover the following parameter ranges (see Table 1): 0.11 6 Ro 6 41,
1985 6 Re 6 18590, 0.001 6 Fr 6 5.5, 0.02 < RB < 1.2 ⇥ 105 and 2.47 6 N/f 6 312.
Two purely stratified runs are included as well. Note that, even though the ratio in values
of Reynolds numbers across all these runs is close to ten, most runs are within a factor
⇡ 4 of each other in Re, with as high a value as can be realized on the chosen grid, thus
breaking large-scale balance toward isotropization, as studied already in Herring (1980)
using a closure model of turbulence (see Pumir et al. (2016); Rubinstein et al. (2017)
and Iyer et al. (2017) for recent references).
Two other small series of runs at lower resolutions have been performed (see Table

2). The first study (Q runs) is focused on the role of initial conditions, taking now
geostrophically balanced fields at t = 0, which should radiate waves much less initially.
The second small set of (Z) runs deals with the variation of e↵ective dissipation � defined
in equation (2.5) with Reynolds number at fixed N/f = 5, with Re varying by a factor
in excess of 10, between 1650 and 18590, when including runs of Table 1.
All statistics are computed dynamically around the peak of dissipation, when the flow

is most developed and starts its self-similar temporal decay. This is in contrast to what
is done in Stretch et al. (2010), where the data for mixing is taken when more than
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FIG. 6. (Color online.) Total energy spectra (a) as a function of isotropic wavenumber and (b,c) as a function of parallel
and perpendicular wave numbers respectively. (d) and (e) give the potential energy spectra again as a function of kk and k?.
Power-law solid lines are added for reference. The buoyancy scale is identifiable as a break in kk in the potential energy spectra.
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Incompressible Boussinesq equations + rotation
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C. Other dimensionless parameters

As mentioned in the introduction, a variety of dimensionless combinations of relevant physical parameters can be
defined for rotating stratified turbulence, beyond those written in Eq. (1). One of the central limitations to a better
understanding of such flows is the need to unravel what the key parameters are that govern the dynamics. Beyond
the Reynolds, Froude, Rossby and Prandtl numbers, one also considers the ratio N/f , as well as the Froude number
based on a characteristic vertical length scale,

Fz = U0/(`ZN) .

Moreover, the combined e↵ect of turbulent eddies and waves can be encompassed in the buoyancy and rotational
Reynolds numbers, mentioned previously and respectively defined as

RB = ReFr2, R⌦ = ReRo2 . (11)

When RB � 1 in a stratified flow, isotropy recovers beyond the so-called Ozmidov scale. Similarly, in a purely rotating
flow, isotropy recovers beyond the Zeman scale for R⌦ � 1 [2].

The partition of energy between kinetic and potential modes can be measured by their ratio, EV /EP , which is one
possible definition of the Richardson number. Another definition is simply to measure the relative strength of the
buoyancy to the inertial forces, or

Ri = 1/Fr2 .

However, in order to emphasize the role of the development of small scales in mixing, one can also define a (local)
Richardson number based on velocity gradients, Rig, as:

Rig = N(N � @z⇢)/(@zu?)
2 . (12)

This definition suggests that a su�ciently large vertical gradient locally leads to negative values of Rig, which is
consistent with the intuitive picture of overturning when a denser parcel of fluid lies atop a less dense parcel.

D. Run parameters and general characterization

We use N/f = 4.95 with N = 13.2 and ⌦ = f/2 = 1.33 (thus, f = 2.66). The viscosity is chosen to have the
simulation well resolved: ⌫ = 4 ⇥ 10�5. In dimensionless units, the resulting overall energetics of the flow lead to
several scales that are of interest, and to a characterization of the flow in terms of the dimensionless parameters.
Considered at the peak of enstrophy, the characteristic velocity is U0 ⇡ 0.83 and the integral length scale, computed
from Lint = 2⇡

R
EV (k)dk/

R
kEV (k)dk ⇡ 2.6, very close as expected to the scale at which the energy spectrum

initially peaks, namely L0 = 2⇡/k0 ⇡ 2.5. The dissipation rate of kinetic energy is taken from a computation of
kinetic enstrophy at the peak of dissipation: "V = ⌫

⌦
|!|2

↵
⇡ 0.0124 (see Fig. 1(b)). Note that in the isotropic case,

"V = ✏K41 = U3
0 /Lint ⇡ 0.22, but this relation does not hold in the highly anisotropic system we are investigating.

Rather, we can take an estimate coming from weak turbulence, namely ✏K41 ⇤ Fr ⇡ 0.005, within a factor of two
of the measured rate of energy dissipation. The Kolmogorov dissipation wavenumber is computed at the peak of
dissipation to be k⌘ ⇡ 660. The Zeman and Ozmidov wavenumbers are therefore found to be, respectively, k⌦ ⇡ 39
and kOZ ⇡ 431. The buoyancy wavenumber is kB = 2⇡/LB ⇡ 16; the lack of scale separation between k⌦ and kB
suggests that it will be di�cult to distinguish as separate e↵ects those due to rotation and those due to stratification.
The Reynolds number is thus found to be Re ⇡ 5.4⇥ 104, the Froude number Fr ⇡ 0.0242, and the Rossby number
Ro ⇡ 0.12. Consequently, the buoyancy and rotational Reynolds numbers are RB ⇡ 32, and R⌦ ⇡ 775. The
Richardson number is determined to be Ri ⇡ 1700, so the flow is, indeed, found to be strongly stratified.

Finally, we can define a Taylor Reynolds number as R� = U0�/⌫, with � = 2⇡[
R
EV (k)dk/

R
k2EV (k)dk]1/2 the

Taylor scale. In classical homogeneous isotropic turbulence (HIT) R� measures the degree of development of small
scales. At peak of dissipation, � ⇡ 0.31, leading to a rather large R� ⇡ 6400, quite high compared to similar
computations in HIT (e.g., R� ⇡ 1200 in a HIT run at similar grid resolution [7, 8]). This is linked to the fact that, in
the presence of strong waves, the transport of energy to small scales is hindered and not as e�cient, and the energy
spectrum becomes steeper at least at large scales, resulting in a larger Taylor scale for the same viscosity. It is worth
noticing that in the atmosphere the Taylor Reynolds number is estimated to be R� ⇡ 20000, and it may be the case
that realistic simulations of stratified and rotating atmospheric turbulence may be feasible in the near future as a
result of this e↵ect. Finally, note also that the value of R� puts the present computation above the di↵erent thresholds

f=2Ω , 

Buoyancy 
Reynolds number

Vorticity, 2D cut, ``ocean’’, Ro ~ 0.12, 
Fr ~ 0.024, Re ~ 54000 , RB~32, N/f=5, 
40963 grid, decaying, resolved & strongly
.intermittent (Rosenberg+ 2015)
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FIG. 8. Perspective volume renderings of a thin sub-volume in x, with full size in the y-z plane, at t = 5.54 (close to the peak
of enstrophy); the slab thickness in the x (depth) direction is 0.04 times the box size. All renderings were made using the
VAPOR visualization system.56 The y-axis is directed horizontally and the z-axis, vertically. Presented are (a) perpendicular
and (b) vertical velocity with identical color mapping. Note that the perpendicular velocity is dominant in magnitude (see
also Fig. 2(a)). This and subsequent visualizations are from run A.

FIG. 9. (a) Color image of the vertical component of the vorticity at t = 5.54 (close to the peak of enstrophy) for the full box
in a horizontal plane located at 0.45 times the vertical box length. The x-axis is directed horizontally and the y-axis, vertically.
A resolution of 2048⇥2048 is shown, reduced from the full original resolution of 4096⇥4096. The red box indicates the area
zoomed in upon in (b) at full resolution. Note that !rms⇡ 17.5 and !max⇡ 840 (to be compared with f = 2.66). Note also
the simultaneous presence of large vortices and elongated vortex lanes made up of intense local vortices which once zoomed
upon (as in (b)) display an intricate and convoluted network of small-scale structures (see also Fig. 10 for a zoom on structures
for a vertical cut).

well-resolved in this run and are composed of a convoluted network of vortices, originating from
many local instabilities that develop in this flow. The large-scale vortices seen in this slice are
observed at most other flow planes, but it is unclear if they represent cross sections of coherent
columns such as the Taylor-like columns seen in pure rotating flows. They are, however, related
to the role played by rotation, as already noted when examining the energy flux. In previous
studies, the aspect ratio of the vortices has been found to depend on the global value of N/ f
through, for example, the variation of correlation length scales.9,66 It also depends on local values,
as determined, for example, by the local rotation of the vortex.67

Additionally, in Fig. 10 are presented several renderings of a thin x-z slab, zooming in on an
area of 0.12 ⇥ 0.1 times the box size, comparable to the vertical Taylor scale. Note that `OZ is
about 1/3 of this slab size. These visualizations show scales at which overturning can occur and
demonstrate the clear onset of Kelvin-Helmholtz instabilities due to shear layers. In both Figs. 8
and 10, the thickness of the layers being visualized is 0.01 in terms of the box size, roughly one
Kolmogorov (dissipation) length.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded
to  IP:  128.117.236.46 On: Tue, 19 May 2015 15:40:58

Vorticity, 3D rendering ``atmosphere’’
Ro = 9.2, Fr = 0.067, Re ≃ 12000,  RB~53, 
N/f=137, 10243 grid, … (Rosenberg+ 2016)



N=4,      Fr ~ 0.11
RB = ReFr2 ~ 300

z

Stratification, no rotation: Temperature fluctuations, xz slice
Re ~ 24000, 20483 grids, KF ~2-3 - Re~ 24000, 20483 grids, f=0

Rorai et al., 2014
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Classical energy cascade with
constant flux in 3D turbulence
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Formules d’addition Formules de duplication
cos(a + b) = cosa cosb − sin a sinb cos(2a) = cos2 a − sin2 a
cos(a − b) = cosa cosb + sin a sinb = 2 cos2 a − 1

sin(a + b) = sin a cosb + sinb cosa = 1 − 2 sin2 a
sin(a − b) = sin a cosb − sinb cosa sin(2a) = 2 sin a cosa

tan(a + b) =
tan a + tan b

1 − tan a tanb
tan(2a) =

2 tan a

1 − tan2 a

tan(a − b) =
tan a − tan b

1 + tan a tanb

Formules de linéarisation

cosa cosb =
1

2
(cos(a − b) + cos(a + b)) cos2 a =

1 + cos(2a)

2

sin a sinb =
1

2
(cos(a − b) − cos(a + b)) sin2 a =

1 − cos(2a)

2

sin a cosb =
1

2
(sin(a + b) + sin(a − b))

Formules de factorisation cos x, sin x et tan x Divers
en fonction de t=tan(x/2)

cosp + cosq = 2 cos
p + q

2
cos

p − q

2
cos x =

1 − t2

1 + t2
1 + cos x = 2 cos2 x

2

cosp − cosq = −2 sin
p + q

2
sin

p − q

2
sin x =

2t

1 + t2
1 − cos x = 2 sin2 x

2

sin p + sin q = 2 sin
p + q

2
cos

p − q

2
tan x =

2t

1 − t2
cos(3x) = 4 cos3 x − 3 cos x

sin p − sin q = 2 sin
p − q

2
cos

p + q

2
sin(3x) = 3 sin x − 4 sin3 x

Résolution d’équations
cos x = cosa ⇔ sin x = sin a ⇔ tan x = tana ⇔

∃k ∈ Z/ x = a + 2kπ ∃k ∈ Z/ x = a + 2kπ ∃k ∈ Z/ x = a + kπ
ou ou
∃k ∈ Z/ x = −a + 2kπ ∃k ∈ Z/ x = π − a + 2kπ

Exponentielle complexe

∀x ∈ R, eix = cos x + i sin x.

Valeurs usuelles

e0 = 1, eiπ/2 = i, eiπ = −1, e−iπ/2 = −i, e2iπ/3 = j = −
1

2
+ i

√
3

2
,
√

2eiπ/4 = 1 + i.

Propriétés algébriques

∀x ∈ R, |eix| = 1.

∀(x, y) ∈ R2, eix × eiy = ei(x+y),
eix

eiy
= ei(x−y),

1

eix
= e−ix = eix

Formules d’Euler

∀x ∈ R, cos x =
eix + e−ix

2
et eix + e−ix = 2 cos x.

∀x ∈ R, sin x =
eix − e−ix

2i
et eix − e−ix = 2i sin x.

Formule de Moivre

∀x ∈ R, ∀n ∈ Z, (eix)n = einx.

c⃝ Jean-Louis Rouget, 2008. Tous droits réservés. 2 http ://www.maths-france.fr
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3D-MHD + imposed external field B0  
+ FV but with FM = 0     (Alexakis 2011; Sujovolsky+ 2016) 

Also: kinetic Alfven and whistler
waves in the ``Solar Wind’’ (Che+ 2014)

TRIDIMENSIONAL TO BIDIMENSIONAL TRANSITION IN . . .

FIG. 5. Top: Flux of kinetic energy for runs in set A (without helicity), for different values of B0, and
time-averaged for long times on the inverse cascade scales. Bottom: Same for runs in set B (with helicity). The
flux is shown as a function of k for run A0 and as a function of k⊥ for all other runs. In both cases, !+ decreases
as B0 is increased, negative values of the flux are observed for k < kf for large values of B0, and "! decreases
towards zero.

shows the ratio of the direct helicity flux !+
h to the direct energy flux !+

v , as a function of B0 for
all the runs with helicity. To have a dimensionless ratio, and considering the Schwarz inequality, the
direct helicity flux !+

h is normalized by the helicity (and energy) injection wave number kf , such

FIG. 6. Ratio of maximum direct helicity flux !+
h to the maximum of direct kinetic energy flux !+

v

normalized by kf , as a function of B0.
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3D-MHD + imposed external field B0  
+ FV but with FM = 0     (Alexakis+ 2009; Sujovolsky+ 2016) 

Also: kinetic Alfven and whistler 
waves in the ``Solar Wind’’ (Che+ 2014)

TRIDIMENSIONAL TO BIDIMENSIONAL TRANSITION IN . . .

FIG. 5. Top: Flux of kinetic energy for runs in set A (without helicity), for different values of B0, and
time-averaged for long times on the inverse cascade scales. Bottom: Same for runs in set B (with helicity). The
flux is shown as a function of k for run A0 and as a function of k⊥ for all other runs. In both cases, !+ decreases
as B0 is increased, negative values of the flux are observed for k < kf for large values of B0, and "! decreases
towards zero.

shows the ratio of the direct helicity flux !+
h to the direct energy flux !+

v , as a function of B0 for
all the runs with helicity. To have a dimensionless ratio, and considering the Schwarz inequality, the
direct helicity flux !+

h is normalized by the helicity (and energy) injection wave number kf , such

FIG. 6. Ratio of maximum direct helicity flux !+
h to the maximum of direct kinetic energy flux !+

v

normalized by kf , as a function of B0.
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Possibility of lab. experiment?  
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FIG. 14. Contour plots of the vorticity ω (top) and the current j

(bottom) are shown for a value µ
NL

< µf < µc with kf L = 4. Both
large- and small-scale structures are found due to the dual cascade of
energy and square vector potential.

Finally Fig. 16 shows the magnetic energy Eb and the vector
potential for a value µf ! µ

Ac and kf L = 64. The kinetic
energy (not shown) does not show any large-scale structure.
The magnetic energy is clearly small scale with a filamentary
structure. However, the current filaments are arranged so that
the vector potential forms large-scale islands.

B. Spatial statistics

To be able to quantify the qualitative description given in
the previous section we calculate distribution of differences
of velocity δu

L
(x,r,t) and vector potential δa(x,r,t) between

two points x and x + r. Here subscript L denotes longitudinal
component of the vector δu

L
= δu

L
· r̂ . Studies of 2D HD

[16,28,29] have suggested that the inverse cascade in 2D
turbulence is self-similar (and possibly conformal invariant
[30]) in the sense that the pdfs of velocity difference from two

FIG. 15. Contour plots of the kinetic energy field (top) and the
magnetic energy field (bottom) are shown for a value µf " µ

Ec with
kf L = 64.

points at distance r (that lies in the inverse inertial range) take
the form ∝ f (δu

L
/rα) for some exponent α.

The probability distribution function (pdf) of the
normalized longitudinal velocity difference δu

L
(x,r,t)/

⟨δu2
L
(x,r,t)⟩1/2 and the normalized vector potential difference

δa(x,r,t)/⟨δa2(x,r,t)⟩1/2 for different values of r are shown
in Fig. 17. The pdfs were calculated using the results from
the resolution runs in Table I. Different values of the control
parameter µf are shown by successive vertical shifts in the
y axis. Different colors corresponding to different values
of r ranging from r−1 = 0.9 × kf to 0.1 × kf correspond
to the inverse cascade range. Black curves correspond to a
normalized Gaussian curve of unit variance. For all the values
of r the pdfs collapse on each other, indicating self-similarity.
This is seen to be consistent across transition as the value of
µf varies from 0.05 − 0.5 with µc ∼ 0.23 and kf L = 16;
see Table I. Similar behavior is observed for larger values of

013104-10

Vorticity, forcing scale 1/20:   _
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< µf < µc with kf L = 4. Both
large- and small-scale structures are found due to the dual cascade of
energy and square vector potential.

Finally Fig. 16 shows the magnetic energy Eb and the vector
potential for a value µf ! µ

Ac and kf L = 64. The kinetic
energy (not shown) does not show any large-scale structure.
The magnetic energy is clearly small scale with a filamentary
structure. However, the current filaments are arranged so that
the vector potential forms large-scale islands.
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To be able to quantify the qualitative description given in
the previous section we calculate distribution of differences
of velocity δu

L
(x,r,t) and vector potential δa(x,r,t) between

two points x and x + r. Here subscript L denotes longitudinal
component of the vector δu
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FIG. 15. Contour plots of the kinetic energy field (top) and the
magnetic energy field (bottom) are shown for a value µf " µ

Ec with
kf L = 64.

points at distance r (that lies in the inverse inertial range) take
the form ∝ f (δu

L
/rα) for some exponent α.

The probability distribution function (pdf) of the
normalized longitudinal velocity difference δu

L
(x,r,t)/

⟨δu2
L
(x,r,t)⟩1/2 and the normalized vector potential difference

δa(x,r,t)/⟨δa2(x,r,t)⟩1/2 for different values of r are shown
in Fig. 17. The pdfs were calculated using the results from
the resolution runs in Table I. Different values of the control
parameter µf are shown by successive vertical shifts in the
y axis. Different colors corresponding to different values
of r ranging from r−1 = 0.9 × kf to 0.1 × kf correspond
to the inverse cascade range. Black curves correspond to a
normalized Gaussian curve of unit variance. For all the values
of r the pdfs collapse on each other, indicating self-similarity.
This is seen to be consistent across transition as the value of
µf varies from 0.05 − 0.5 with µc ∼ 0.23 and kf L = 16;
see Table I. Similar behavior is observed for larger values of
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