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MOTIVATION AND CONCEPT

* Use CE2/QL to model 3D planetary boundary layer turbulence
* Work towards a general subgrid modeling framework

* Efficiency:
* choose horizontally homogeneous cases
* use horizontal averaging (to start): “HQL” / “HCE2”
* still need further reduction

* Cases of developing turbulence:

e Thermal Convection (Ait-Chaalal et al. 2015)
* Langmuir Turbulence (McWilliams et al. 1997)



THERMAL CONVECTION
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Flows. New Journal of Physics, 18, 2016




LANGMUIR TURBULENCE
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REDUCTION #2: MODEL REDUCTION

TRUNCATED BASIS

Choose an energetically
optimized basis

Proper Orthogonal
Decomposition (POD)

Cij = {(qiq;)

Co; = Aiop;

Note: POD modes are
horizontal Fourier modes



REDUCTION #2: MODEL REDUCTION

TRUNCATED BASIS

(2}
o

L
o
S

Choose an energetically
optimized basis

N N =
a o o
o O O

meters along Z

W
o
o

Proper Orthogonal
Decomposition (POD)

Cij = {(qiq;)

Cop; = \ich
A '} >

%-30

Note: POD modes are 20

horizontal Fourier modes w0

-60

W in the X-Z Plane
at Y = 30 meters. {ipod:m,|,kz} = {78:125,5,1} - Thermal

200 400 600 800 1000 1200
meters along X

W in the X-Z Plane
at Y = 9 meters. {ipod:m,|,kz} = {5:2,2,1} - Langmuir

.o‘o’

50 100 150 200 250
meters along X

x10™

78th
: POD
mode



REDUCED MODEL PROCESS

12 runs of Galerkin
Projection of EOMs on
new basis (RM HQL)

24 HQL “DNS” runs
on the MITgcm'
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Results



RESULTS: VERTICAL VELOCITY FIELDS
LANGMUIR TURBULENCE

t = 54h
z = -7.2m
Top View

meters along Y

meters along Y

T
= — s =]
= - ot
D__- — - -
- - = - -i
— L
o ey, - -,

mr[;weters ;iong X -
HQL DNS

—

—

- —
DB

100 150 20
meters along X

- 0.03

=)
Meters per Second

-
&
=
w

J. C. McWilliams, P. P. Sullivan, and C. Moeng. Langmuir Turbulence in the Ocean. Journal of Fluid

Mechanics,

334, 1997.
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RESULTS: VERTICAL VELOCITY FIELDS

LANGMUIR TURBULENCE
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RESULTS: VERTICAL VELOCITY FIELDS

LANGMUIR TURBULENCE
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RESULTS: VERTICAL PROFILES AND ERRORS
LANGMUIR TURBULENCE
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THERMAL CONVECTION RESULTS

 Similar to Langmuir, except the performance
first gets better, around 500 modes, and then

worse, around 5000 modes.




CONCLUSIONS & OPEN QUESTIONS

Key Conclusions:

* RM HQL exhibits nonuniform convergence
* RM HQL can perform better than HQL “DNS”




HQL CONCLUSIONS & OPEN QUESTIONS

Key Conclusions:
* RM HQL exhibits nonuniform convergence

* RM HQL can perform better than HQL “DNS”

Open Questions:

* Can we determine optimal basis truncation?
* Can we predict quality of representation?
* Can we capture localized coherent structures?




Ensemble Averaging



IMPROVEMENTS WITH

ENSEMBLE AVERAGING?

Challenge with horizontal averaging:
» cannot capture coherent structures

ensemble averaging, EQL/ECE2:

 Fields are larger in memory

* Execution is more expensive

* Mean fields can have coherent structures

Horizontal Averaging Ensemble Averaging
@(m:O,z) ﬁ(m,z)
¢'(m+0,z) ¢ (m, 2)



IMPROVEMENTS WITH

ENSEMBLE AVERAGING?

* Homogenous IC’s, runs the same as HQL/HCE2
 Single instance IC’s, runs the same as NL

. . 5 .
* Inhomogeneous noise in IC’s, inhomogeneous
mean field can emerge.

Horizontal Averaging Ensemble Averaging
@(m:O,z) ﬁ(m,z)
¢'(m+0,z) ¢ (m, 2)
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EQL MEAN FIELDS
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RM EQL PROFILES

Langmuir Thermal
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EQL CONCLUSIONS AND QUESTIONS

* Very different mean-field behavior that
depends on structure symmetries.

 Strong mean-field emergence results in NL-
like EQL DNS solutions.

e There is a tradeoff between mean-field
emergence and efficient RM modeling.

* Question: How can we predict or control
mean-field emergence?




NEXT STEPS

Path Forward:

* Develop means of predicting,
stimulating, and suppressing mean-field
emergence in EQL

* Discerning non-local from local subgrid
effects

* Plug this into an overlying model
somehow
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