PLANETARY BOUNDARY-LAYER TURBULENCE MODELING WITH DIRECT STATISTICAL SIMULATION

JOSEPH SKITKA¹

BRAD MARSTON¹

BAYLOR FOX-KEMPER²

- 1. BROWN UNIVERSITY, DEPARTMENT OF PHYSICS
- 2. Brown University, Department of Earth, Environmental, and Planetary Science

KAVLI INSTITUTE FOR THEORETICAL PHYSICS PROGRAM ON PLANETARY BOUNDARY LAYERS

MOTIVATION AND CONCEPT

- Use CE2/QL to model 3D planetary boundary layer turbulence
- Work towards a general subgrid modeling framework

MOTIVATION AND CONCEPT

- Use CE2/QL to model 3D planetary boundary layer turbulence
- Work towards a general subgrid modeling framework
- Efficiency:
 - choose horizontally homogeneous cases
 - use horizontal averaging (to start)
 - still need further reduction

MOTIVATION AND CONCEPT

- Use CE2/QL to model 3D planetary boundary layer turbulence
- Work towards a general subgrid modeling framework
- Efficiency:
 - choose horizontally homogeneous cases
 - use horizontal averaging (to start): "HQL" / "HCE2"
 - still need further reduction
- Cases of developing turbulence:
 - Thermal Convection (Ait-Chaalal et al. 2015)
 - Langmuir Turbulence (McWilliams et al. 1997)

THERMAL CONVECTION

Non-Hydrostatic Boussinesq Equations:

$$\partial_{t}\mathbf{u} + (\mathbf{u} \cdot \nabla)\mathbf{u} + \mathbf{f} \times \mathbf{u} =$$

$$-\frac{1}{\rho_{0}}\nabla p + g\rho_{0}\alpha (T - T_{0}) + \nu\nabla^{2}\mathbf{u}$$

$$\partial_{t}T + (\mathbf{u} \cdot \nabla)T = w + \kappa\nabla^{2}T$$

$$\nabla \cdot \mathbf{u} = 0$$

Regular Cartesian (128x128x48) domain:

LANGMUIR TURBULENCE

$$\partial_{t}\mathbf{u} + (\mathbf{u} \cdot \nabla)\mathbf{u} + \mathbf{f} \times (\mathbf{u} + \mathbf{u}_{s}) = -\frac{1}{\rho_{0}}\nabla\left(p + \frac{\rho_{0}}{2}|\mathbf{u} + \mathbf{u}_{s}|^{2} - |\mathbf{u}|^{2}\right) + \nu\nabla^{2}\mathbf{u} + \mathbf{u}_{s} \times \nabla \times \mathbf{u} + \frac{\tau}{\rho_{0}} + g\rho_{0}\alpha\left(T - T_{0}\right)$$

$$\partial_{t}T + \left(\left(\mathbf{u} + \mathbf{u}_{s}\right) \cdot \nabla\right)T = w + \kappa\nabla^{2}T$$

$$\nabla \cdot \mathbf{u} = 0$$

Stokes drift:

$$\mathbf{u_s} = u_s e^{2k_s z} \hat{\mathbf{x}}$$

REDUCTION #2: MODEL REDUCTION TRUNCATED BASIS

Choose an energetically optimized basis

Proper Orthogonal Decomposition (POD)

$$C_{ij} = \langle q_i q_j \rangle$$

$$C\phi_i = \lambda_i \phi_i$$

Note: POD modes are horizontal Fourier modes

REDUCTION #2: MODEL REDUCTION TRUNCATED BASIS

Choose an energetically optimized basis

Proper Orthogonal Decomposition (POD)

$$C_{ij} = \langle q_i q_j \rangle$$

$$\mathsf{C}oldsymbol{\phi}_i = \lambda_i oldsymbol{\phi}_i$$

Note: POD modes are horizontal Fourier modes

REDUCED MODEL PROCESS

24 HQL "DNS" runs on the MITgcm¹

Proper Orthogonal Decomposition (POD)

$$\mathsf{C}_{ij} = \langle q_i q_j \rangle$$

$$C = \frac{1}{M} \sum_{1 \le s \le M} \boldsymbol{q_s} \boldsymbol{q_s}^{\mathsf{T}}$$

$$\mathsf{C}\boldsymbol{\phi}_i = \lambda_i \boldsymbol{\phi}_i$$

12 runs of Galerkin Projection of EOMs on new basis (RM HQL)

Results

RESULTS: VERTICAL VELOCITY FIELDS

NL DNS

meters along X

RESULTS: VERTICAL VELOCITY FIELDS LANGMUIR TURBULENCE

RESULTS: VERTICAL VELOCITY FIELDS LANGMUIR TURBULENCE

t = 54h z = -7.2mTop View

RESULTS: VERTICAL VELOCITY FIELDS LANGMUIR TURBULENCE

RESULTS: VERTICAL PROFILES AND ERRORS LANGMUIR TURBULENCE

THERMAL CONVECTION RESULTS

• Similar to Langmuir, except the performance first gets better, around 500 modes, and then worse, around 5000 modes.

CONCLUSIONS & OPEN QUESTIONS

Key Conclusions:

- RM HQL exhibits nonuniform convergence
- RM HQL can perform better than HQL "DNS"

HQL CONCLUSIONS & OPEN QUESTIONS

Key Conclusions:

- RM HQL exhibits nonuniform convergence
- RM HQL can perform better than HQL "DNS"

Open Questions:

- Can we determine optimal basis truncation?
- Can we predict quality of representation?
- Can we capture localized coherent structures?

Ensemble Averaging

IMPROVEMENTS WITH ENSEMBLE AVERAGING?

Challenge with horizontal averaging:

> cannot capture coherent structures

ensemble averaging, EQL/ECE2:

- Fields are larger in memory
- Execution is more expensive
- Mean fields can have coherent structures

Horizontal Averaging

$$\overline{q} (\mathbf{m} = \mathbf{0}, z)$$
 $q' (\mathbf{m} \neq \mathbf{0}, z)$

Ensemble Averaging

$$\overline{q}(\mathbf{m},z)$$
 $q'(\mathbf{m},z)$

IMPROVEMENTS WITH ENSEMBLE AVERAGING?

- Homogenous IC's, runs the same as HQL/HCE2
- Single instance IC's, runs the same as NL
- Inhomogeneous noise in IC's, inhomogeneous mean field can emerge.

Horizontal Averaging

$$\overline{q} (\mathbf{m} = \mathbf{0}, z)$$
 $q' (\mathbf{m} \neq \mathbf{0}, z)$

Ensemble Averaging

$$\overline{q}(\mathbf{m},z)$$
 $q'(\mathbf{m},z)$

EQL FIELDS (W TOP-DOWN)

EQL MEAN FIELDS

RM EQL PROFILES

EQL CONCLUSIONS AND QUESTIONS

- Very different mean-field behavior that depends on structure symmetries.
- Strong mean-field emergence results in NL-like EQL DNS solutions.
- There is a tradeoff between mean-field emergence and efficient RM modeling.

• Question: How can we predict or control mean-field emergence?

NEXT STEPS

Path Forward:

- Develop means of predicting, stimulating, and suppressing mean-field emergence in EQL
- Discerning non-local from local subgrid effects
- Plug this into an overlying model somehow

THANK YOU; REFERENCES

Background Reading

- [1] Ait-Chaalal, F., Schneider, T., Meyer, B. and Marston, J.B., Cumulant expansions for atmospheric Flows. New Journal of Physics 18.2 (2016): 025019.
- [2] Allawala, A., Tobias, S.M. and Marston, J.B. Dimensional Reduction of Direct Statistical Simulation. arXiv preprint arXiv:1708.07805 (2017).
- [3] Bakas, N.A. and Ioannou, P.J. Emergence of large scale structure in barotropic β-plane turbulence. Physical review letters 110.22 (2013): 224501.
- [4] Herring, J. R., Investigation of problems in thermal convection. Journal of Atmospheric Sciences, 20 (4), p. 325-338. 1963.
- [5] Large, W.G., McWilliams, J.C. and Doney, S.C., Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics 32.4 (1994)
- [6] Skitka, J. M., Marston, J. B. and Fox-Kemper, B. Reduced-Order Quasilinear Ocean Boundary-Layer Turbulence Modeling. In Preparation, 2018.

NSF-GCE-1350795 NSF DMR-1306806