

Virology

journal homepage: www.elsevier.com/locate/yviro

How many *Coccolithovirus* genotypes does it take to terminate an *Emiliania huxleyi* bloom?

Andrea Highfield ^a, Claire Evans ^b, Anthony Walne ^c, Peter I. Miller ^c, Declan C. Schroeder ^{a,c,*}

21-27 July 2006

9-15 August 2006

21-27 August 2006

E. huxleyi ~4 μm in diameter virus particle ~180 nm

Keith Ryan & Willie Wilson

Ken Haste Andersen

Weitz et al, 2015

Consider a simple system

- Phytoplankton eat nutrients
- Zooplankton eat phytoplankton
- Zooplankton die

Diffusion alone

Reactive waves: $c\sim(\beta^*\kappa)^{1/2}$

Stirring

Filament width: $w_f \sim (\beta^* \kappa)^{1/2} / \lambda$

The estimated 10³⁰ viruses in the ocean, if stretched end to end, would span farther than the nearest 60 galaxies ... (Curtis Suttle)

One million **viral particles** can be found in a teardrop of seawater ... (A. Culley)

Including marine viruses

$$\frac{\partial P_s}{\partial t} = \text{Growth} - \text{Grazing} - \beta P_s V$$

$$\frac{\partial P_i}{\partial t} = \beta P_s V - \text{Grazing} - \text{Mortality}$$

$$\frac{\partial V}{\partial t} = \gamma P_i - \text{Mortality}$$

Days to extinction

Co-existence through temporal variability of forcing

 β =0.02

β=0.05

β=0.05

Spatial variability: diffusion

$$c \sim \sqrt{\kappa \beta}$$

Varying stirring strength

- Time to reach equilibrium solution can be very long
- Co-existence of virus and zooplankton can occur with time varying forcing (nutrient/light input)
- Fluid flow acts as a transmission "vehicle" enhancing the spread of the epidemic
- Stirring and mixing reduces the duration of the bloom and can prolong the bloom of the virus ...
- ... and under certain circumstances can prevent the bloom from occurring

Richards (2017) J. Theoretical Biology

- Resistance and immunity
- Viral attacks on bacteria
- Ecosystem complexity
- Viruses in a submesoscale world?
- Does the presence of viruses affect the response of the system to environmental change?

