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Duck-billed Platypus
I lays eggs

I has a beak

I has fur

Fast Scrambler
I Hamiltonian

I scrambles all local
perturbations

I in log time



Plan

1. eggs + fur (Hamiltonian + scrambles in log time)

2. eggs + beak (Hamiltonian + scrambles all local perturbations)

3. A Lieb-Robinson-type lower bound

4. Scrambling and AdS/CFT



Ising

Ising model on a (nonlocal) graph G = (V ,E ):

H =
|V |
|E |

∑
(i ,j)∈ edges

σ
(i)
z σ

(j)
z .

System is integrable, but can still scramble in the σx eigenbasis.
Consider an initial state

|Ψ(0)〉 = |ix1 〉|ix2 〉...|ixn 〉.



Ising (2)

A
Ac

M =

(
1 1 0 0
0 1 1 1

)

The time evolution operator is periodic with period π|E |/|V |. At
time π|E |/2|V |, the state |Ψ(t)〉 is as entangled as it is going to
get. Moreover

S(ρA) = rankZ2M

where M is an |A| by |Ac | matrix, with Mij = 1 if i ∈ A is
connected to j ∈ Ac , 0 otherwise.



Ising (3)

Math problem: minimize |E |/|V | subject to constraint that M be
full rank for almost all subsystems.

Our solution: take a random graph of connectivity〈
|E |
|V |

〉
= 〈# neighbors〉 = log n.

For these graphs, the states |ix1 〉|ix2 〉...|ixn 〉 get scrambled within a
time

t∗ =
π

2
log n.



A numerical cautionary tale

H =
1

n

∑
α,β,i ,j

J
(ij)
αβ σ

(i)
α σ

(j)
β
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A numerical cautionary tale (2)

H =
1

n

∑
i ,j

J(ij)σ
(i)
z σ

(j)
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A numerical cautionary tale (3)

H =
1

n

∑
i ,j

J(ij)σ
(i)
z σ
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z
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General bounds?

Take a completely nonlocal Hamiltonian

H =
1

n

∑
j ,k

Hjk

and consider the evolution of the commutator [A(t),B].

A

B
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2
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General bounds?

Take a completely nonlocal Hamiltonian

H =
1

n

∑
j ,k

Hjk

and consider the evolution of the commutator [A(t),B].

∥∥[A(t),B]
∥∥ ≤ ∥∥[A,B]

∥∥+
∥∥t[[H,A],B]

∥∥+
t2

2

∥∥[[H, [H,A]],B]
∥∥+ ...

(
| sin(x)| ≤ |x |+ |x3/3!|+ |x5/5!|+ ...

)



Lieb-Robinson

There’s a better way!

[A(t),B] = [A,B] +
m∑
j=1

[A(tj+1),B]− [A(tj),B]

=⇒
∥∥[A(t),B]

∥∥ ≤ ∥∥[A,B]
∥∥+ 2

∥∥A∥∥∫ t

0
ds
∥∥[h(s),B]

∥∥
where h is the part of H that doesn’t commute with A. Similarly,∥∥[Hjk(s),B]

∥∥ ≤ ∥∥[Hjk ,B]
∥∥+ 2

∥∥Hjk

∥∥∫ s

0
ds ′
∥∥[h′(s ′),B]

∥∥
where h′ is the part of H that doesn’t commute with Hjk .
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Lieb-Robinson (2)

Iterate this inequality to get a bound. Roughly, one gets a sum
over paths through the graph, starting at the vertex of A and
ending at the vertex of B, weighted by (t/n)`/`!. The number of
such paths is n`−1, so the sum is

∥∥[A(t),B]
∥∥ ≤ ∞∑

`=1

( t
n

)` n`−1
`!
≤ 1

n
exp t.

So that
t∗ ≥ log n.



Scrambling and AdS/CFT

Polchinski, Susskind, Toumbas 1999. Probed only by nonlocal
precursors of decreasing nonlocality. “Unscrambling”.



Scrambling and AdS/CFT

Probed only by nonlocal precursors of increasing nonlocality.
Radial causality ∼ scrambling.



Scrambling and AdS/CFT (2)

I (Susskind, Witten 1998)

I Bousso, Leichenauer, Rosenhaus 2012

I Hubeny, Rangamani 2012

I Czech, Karczmarek, Nogueira, Van Raamsdonk 2012
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Scrambling and AdS/CFT (3)

` ∼ t

These perturbations scramble ballistically, not diffusively!



Conclusions

A
Ac

Ising: simple systems can scramble certain states fast
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Numerics: robust scrambling, but can’t find log

L-R: even complete graphs have speed limits

AdS/CFT: “ballistic” scrambling ∼ radial causality



Future?

I Find a real fast scrambler?

I Attack the matrix Hamiltonian directly?

I Relate this work to other approaches: Barbon/Magan
hyperbolic diffusion, Asplund/Berenstein/Trancanelli
numerical work, holographic thermalization.


