Toy Models and Fast Scrambling (II)

work with N. Lashkari, P. Hayden, M. Hastings, T. Osborne

Douglas Stanford

Stanford Unversity

May 21, 2012

Duck-billed Platypus

- lays eggs
- has a beak
- has fur

Fast Scrambler

- Hamiltonian
- scrambles all local perturbations
- in log time

Plan

1. eggs + fur (Hamiltonian + scrambles in log time)
2. eggs + beak (Hamiltonian + scrambles all local perturbations)
3. A Lieb-Robinson-type lower bound
4. Scrambling and AdS/CFT

Ising

Ising model on a (nonlocal) graph $G=(V, E)$:

$$
H=\frac{|V|}{|E|} \sum_{(i, j) \in \text { edges }} \sigma_{z}^{(i)} \sigma_{z}^{(j)}
$$

System is integrable, but can still scramble in the σ_{x} eigenbasis.
Consider an initial state

$$
|\Psi(0)\rangle=\left|i_{1}^{x}\right\rangle\left|i_{2}^{x}\right\rangle \ldots\left|i_{n}^{x}\right\rangle .
$$

Ising (2)

$$
M=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1
\end{array}\right)
$$

The time evolution operator is periodic with period $\pi|E| /|V|$. At time $\pi|E| / 2|V|$, the state $|\Psi(t)\rangle$ is as entangled as it is going to get. Moreover

$$
S\left(\rho_{A}\right)=\operatorname{rank}_{z_{2}} M
$$

where M is an $|A|$ by $\left|A^{c}\right|$ matrix, with $M_{i j}=1$ if $i \in A$ is connected to $j \in A^{c}, 0$ otherwise.

Ising (3)

Math problem: minimize $|E| /|V|$ subject to constraint that M be full rank for almost all subsystems.

Our solution: take a random graph of connectivity

$$
\left\langle\frac{|E|}{|V|}\right\rangle=\langle \# \text { neighbors }\rangle=\log n
$$

For these graphs, the states $\left|i_{1}^{x}\right\rangle\left|i_{2}^{x}\right\rangle \ldots\left|i_{n}^{x}\right\rangle$ get scrambled within a time

$$
t_{*}=\frac{\pi}{2} \log n .
$$

A numerical cautionary tale

$$
H=\frac{1}{n} \sum_{\alpha, \beta, i, j} J_{\alpha \beta}^{(j)} \sigma_{\alpha}^{(i)} \sigma_{\beta}^{(j)}
$$

A numerical cautionary tale

$$
H=\frac{1}{n} \sum_{\alpha, \beta, i, j} J_{\alpha \beta}^{(i j)} \sigma_{\alpha}^{(i)} \sigma_{\beta}^{(j)}
$$

A numerical cautionary tale (2)

A numerical cautionary tale (3)

General bounds?

Take a completely nonlocal Hamiltonian

$$
H=\frac{1}{n} \sum_{j, k} H_{j k}
$$

and consider the evolution of the commutator $[A(t), B]$.

General bounds?

Take a completely nonlocal Hamiltonian

$$
H=\frac{1}{n} \sum_{j, k} H_{j k}
$$

and consider the evolution of the commutator $[A(t), B]$.

$$
[A(t), B]=[A, B]+i t[[H, A], B]-\frac{t^{2}}{2}[[H,[H, A]], B]+\ldots
$$

General bounds?

Take a completely nonlocal Hamiltonian

$$
H=\frac{1}{n} \sum_{j, k} H_{j k}
$$

and consider the evolution of the commutator $[A(t), B]$.

$$
\|[A(t), B]\| \leq\|[A, B]\|+\|t[[H, A], B]\|+\frac{t^{2}}{2}\|[[H,[H, A]], B]\|+\ldots
$$

General bounds?

Take a completely nonlocal Hamiltonian

$$
H=\frac{1}{n} \sum_{j, k} H_{j k}
$$

and consider the evolution of the commutator $[A(t), B]$.

$$
\begin{aligned}
\|[A(t), B]\| \leq & \|[A, B]\|+\|t[[H, A], B]\|+\frac{t^{2}}{2}\|[[H,[H, A]], B]\|+\ldots \\
& \left(|\sin (x)| \leq|x|+\left|x^{3} / 3!\right|+\left|x^{5} / 5!\right|+\ldots\right)
\end{aligned}
$$

Lieb-Robinson

There's a better way!

$$
[A(t), B]=[A, B]+\sum_{j=1}^{m}\left[A\left(t_{j+1}\right), B\right]-\left[A\left(t_{j}\right), B\right]
$$

Lieb-Robinson

There's a better way!

$$
\|[A(t), B]\| \leq\|[A, B]\|+\sum_{j=1}^{m}\left\|\left[A\left(t_{j+1}\right), B\right]-\left[A\left(t_{j}\right), B\right]\right\|
$$

Lieb-Robinson

There's a better way!

$$
\begin{gathered}
\|[A(t), B]\| \leq\|[A, B]\|+\sum_{j=1}^{m}\left\|\left[A\left(t_{j+1}\right), B\right]-\left[A\left(t_{j}\right), B\right]\right\| \\
\Longrightarrow\|[A(t), B]\| \leq\|[A, B]\|+2\|A\| \int_{0}^{t} d s\|[h(s), B]\|
\end{gathered}
$$

where h is the part of H that doesn't commute with A.

Lieb-Robinson

There's a better way!

$$
\begin{gathered}
\|[A(t), B]\| \leq\|[A, B]\|+\sum_{j=1}^{m}\left\|\left[A\left(t_{j+1}\right), B\right]-\left[A\left(t_{j}\right), B\right]\right\| \\
\Longrightarrow\|[A(t), B]\| \leq\|[A, B]\|+2\|A\| \int_{0}^{t} d s\|[h(s), B]\|
\end{gathered}
$$

where h is the part of H that doesn't commute with A. Similarly,

$$
\left\|\left[H_{j k}(s), B\right]\right\| \leq\left\|\left[H_{j k}, B\right]\right\|+2\left\|H_{j k}\right\| \int_{0}^{s} d s^{\prime}\left\|\left[h^{\prime}\left(s^{\prime}\right), B\right]\right\|
$$

where h^{\prime} is the part of H that doesn't commute with $H_{j k}$.

Lieb-Robinson (2)

Iterate this inequality to get a bound. Roughly, one gets a sum over paths through the graph, starting at the vertex of A and ending at the vertex of B, weighted by $(t / n)^{\ell} / \ell$!. The number of such paths is $n^{\ell-1}$, so the sum is

$$
\|[A(t), B]\| \leq \sum_{\ell=1}^{\infty}\left(\frac{t}{n}\right)^{\ell} \frac{n^{\ell-1}}{\ell!} \leq \frac{1}{n} \exp t
$$

So that

$$
t_{*} \geq \log n
$$

Scrambling and AdS/CFT

Polchinski, Susskind, Toumbas 1999. Probed only by nonlocal precursors of decreasing nonlocality. "Unscrambling".

Scrambling and AdS/CFT

Probed only by nonlocal precursors of increasing nonlocality. Radial causality \sim scrambling.

Scrambling and AdS/CFT (2)

- (Susskind, Witten 1998)
- Bousso, Leichenauer, Rosenhaus 2012
- Hubeny, Rangamani 2012
- Czech, Karczmarek, Nogueira, Van Raamsdonk 2012

Scrambling and AdS/CFT (2)

- (Susskind, Witten 1998)
- Bousso, Leichenauer, Rosenhaus 2012
- Hubeny, Rangamani 2012
- Czech, Karczmarek, Nogueira, Van Raamsdonk 2012

Scrambling and AdS/CFT (3)

$$
\ell \sim t
$$

These perturbations scramble ballistically, not diffusively!

Conclusions

Ising: simple systems can scramble certain states fast

Numerics: robust scrambling, but can't find log

L-R: even complete graphs have speed limits

AdS/CFT: "ballistic" scrambling \sim radial causality

Future?

- Find a real fast scrambler?
- Attack the matrix Hamiltonian directly?
- Relate this work to other approaches: Barbon/Magan hyperbolic diffusion, Asplund/Berenstein/Trancanelli numerical work, holographic thermalization.

