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Counting Black Holes in D=4,5.

• BPS black holes: very good quantitative understanding in terms
of chiral 2D CFTs.

• Other Extremal: some understanding in terms of chiral 2D CFTs.

• Near-BPS: good qualitative understanding in terms of non-chiral
2D CFTs.

• Generic: clues suggest understanding in terms of non-chiral 2D
CFTs.

The goal of this talk : review some of these clues.
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Setting

• Setting (in this talk): D = 4 black holes in N = 4 string theory.

• Note: no further restriction, so setting includes Schwarzchild,
Kerr....; and also BPS black holes.

• The proposal: a dual description in terms of a 2D SCFT with
(0, 4) SUSY.

• Some references:

FL, arXiv: 9702153.

M. Cvetic and FL, arXiv: 9705192, 1106.3341, 1112.4846.

A. Castro, A. Maloney, and A. Strominger, arXiv:1004.0996.
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Entropy Phenomenology (Kerr)

• The Entropy of Kerr black holes

S = 2π

(
G4M

2 +
√
G2

4M
4 − J2

)
.

• The form of the entropy suggests a chiral split

S = SL + SR .

• The two chiral halves of the CFT interact weakly, at least for the
purpose of semi-classical counting.

• Model for Angular Momentum: angular momentum is identified
with the R-charge of the (0,4) SCFT.

Physics: only R-movers in the 2D CFT have the ability to carry J .
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Parametric Charges

• The addition of charges in the context of N = 4 SUGRA involves
the introduction of parametric mass and angular momentum m, a
and parametric charges δi:

G4M =
1

4
m

4∑
i=1

cosh 2δi ,

G4Qi =
1

4
m sinh δi , (i = 1, 2, 3, 4) ,

G4J = ma(Πc − Πs) .

• Abbreviations

Πc ≡
4∏
i=1

cosh δi , Πs ≡
4∏
i=1

sinh δi .
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Chiral Entropy

• The entropy is much more complicated after general charges
have been added

SL =
2πm2

G4
(Πc + Πs) ,

SR = 2π

√
m4

G2
4

(Πc − Πs)2 − J2 .

• An encouraging feature: the dependence on angular
momentum can still be accounted for by the physical assumption
that only right movers are able to carry angular momentum.
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Diffeomorphism Anomaly
• Define physical temperatures for left and right movers

independently by the generalized first laws

dSL = βLdM , dSR = βRdM .

(It follows that the Hawking temperature is βH = βL + βR) .

• Model chiral contributions to black hole entropy as a 1D gas on a
circle with radiusR:

SR,L =
π

6
cTR,L × 2πR .

• An encouraging feature: the central charges determined this
way are not chiral (cR = cL).

So there is no diffeomorphism anomaly in the semi-classical
theory, as expected.
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Level Matching
• The model for the semiclassical entropy employes the Cardy form:

S = 2π
√
khL + 2π

√
khR

Notation: c=6k for (0, 4) SCFTs.

• An encouraging feature: there is a quantization condition

k(hL − hR) = J2 + J4 .

that can be interpreted as level matching of the 2D CFT dual to
the general black holes.

Notation: the quartic invariant is the integer

J4 = ~q2~p2 − (~q · ~p)2

• Moduli Independence: the charge vectors ~q, ~p depend on moduli
but J , J4 do not. This is a generalized attractor mechanism.
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Strategy

• Goal : find further evidence for 2D conformal geometry.

• Strategy (for now): analyze details of the geometry.

• Inspiration: analysis of BTZ black holes (using AdS3 geometry),
analysis of Kerr black holes using near horizon symmetry....

• Strategy (medium term): precise description by tensoring of
chiral CFT’s that succesfully describe extremal black holes, using
level matching to constrain 0-modes.
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The Black Hole Geometry

The explicit geometry with all charges turned on:

ds2
4 = −∆−

1
2G(dt +Aφdφ)2 + ∆

1
2

(
dr2

X
+ dθ2 +

X sin2 θ

G
dφ2

)
,

where

X = r2 − 2mr + a2 ,
G = r2 − 2mr + a2 cos2 θ ,

A =
2ma sin2 θ

G
[(Πc − Πs)r + 2mΠs] dφ ,

∆0 =

4∏
i=1

(r + 2m sinh2 δi) + 2a2 cos2 θ[r2 + mr
∑
i

sinh2 δi

+4m2(Πc − Πs)Πs + 2m2
∑
i<j<k

sinh2 δi sinh2 δj sinh2 δk +
1

2
a2] .

Abbreviation: Ared = G
a sin2 θ

Aφ depends on r alone.
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The Laplacian

The entropy formula suggests a dual 2D CFT. But the corresponding
features in the scalar wave equation are much more precise.

The general Laplacian:

∆
−1

2
0 [∂rX∂r−

1

X
(Ared∂t−∂φ)2+

A2
red −∆0

G
∂2
t +

1

sin θ
∂θ sin θ∂θ+

1

sin2 θ
∂2
φ]

Recall: Kerr black holes allow separation of variables. The addition of
charges (largely) maintains this property:

A2
red −∆0

G
= r2 + 2mr

(
1 +

4∑
i=1

s2
i

)
+ 8m2(Πc − Πs)Πs

−4m2
∑
i<j<k

s2
is

2
js

2
k + a2 cos2 θ .
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Hypergeometric Structure?
• The resulting radial equation is “almost” hypergometric.

• If it were precisely hypergeometric we could find an SL(2)2

symmetry which perhaps would be enhanced to conformal
symmetry .

• The obstacle is that the effective potential

Veff =
A2

red −∆0

G

rises too quickly far from the black hole: Veff ∼ r2 because
∆0 ∼ r4 corresponds to asymptotically flat space and G ∼ r2.

• Interpretation: we should enclose the black hole in a box that
regulate asymptotic behevior.
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The Subtraction Prescription

• Prescription: Modify the conformal factor so that ∆ ∼ r instead
of ∆0 ∼ r4.

• Consequence: the scalar wave equation in the subracted
geometry is exactly a hypergeometric equation.

• Technical Assumptions: determine ∆ uniquely by assuming
separability is maintained, and also that ∆ is analytical in r, θ.

∆ = (2m)3(Π2
c − Π2

s)r + (2m)4Π2
s − (2m)2(Πc − Πs)

2a2 cos2 θ

• Interpretation: ∆ encodes the environment of the black hole,
not its internal structure.

13



General Causal Structure

• Recall the full metric:

ds2
4 = ∆

1
2

(
dr2

X
+
X sin2 θ

G
dφ2

)
+
[
∆

1
2dθ2 −∆−

1
2G(dt +Aφdφ)2

]
Assume X = X(r), G = X − a2 sin2 θ
(and Aφ, ∆ general functions of r, θ).

• The ergosphere (inside static limit):

G = 0 .

• The event horizon (t, φ subspace changes signature):

X = 0 .
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General Thermodynamics
• Remain in the general context where X,Ared,∆, are not

specified.

• The thermodynamics determined for these black holes:

ΩH = a
(Ared)hor

,

βH = 4π(Ared)hor
(∂rX)hor

,

S = π(Ared)hor
G4

.

• The striking feature: the conformal factor ∆ does not appear in
the thermodynamics.

It also did not appear in the causal structure.

• Interpretation: ∆ is a feature of the embedding into an ambient
spacetime.
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Supporting Matter

• Issue: the subtracted geometry (with modified ∆) does not
satisfy the equations of motion with the original matter.

• Interpretation: the sources supporting the modified ∆ represents
the physical matter that realizes the box enclosing the black hole.

• In situations (such as near extremality) where the offending terms
can be approximated away the ”additional” matter is negligible.

• In general the matter is sensible: it satisfies “all” energy
conditions.

• A simple realization of the matter: 5D minimal SUGRA, KK
reduced to 4D.
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A 5D Lift

• It is illuminating to lift the 4D geometry to a 5D geometry , via
an auxiliary coordinate α:

ds2
5 = ∆(dα + B)2 + ∆−1/2ds2

4

= −X
ρ
dt2 +

dr2

X
+

ρ

4m2(Πc − Πs)2
(dα +

Ared

ρ
dt)2 + dΩ

′2
2 .

The linearly shifted radial coordinate:

ρ = 8m3[r(Π2
c − Π2

s)−
a2

2m
(Πc − Πs)

2 + 2mΠ2
s] .

• In the 5D form separability is manifest.

• Bonus: massive scalar fields that couple minimally to the 5D
geometry are also separable.
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Virasoro

• The full 5D space is locally AdS3 × S2.

• So there is Virasoro2 symmetry and also an SU(2) R-symmetry.

• Except: the reduction of the 5D space to the physical 4D
spacetime introduces global issues.

• Concretely: physical deformations are independent of α so the full
Virasoro is not realized on the physical space.
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Central Charge

• The phenomenological model determines the CFT central
charge in units of the CFT radiusR:

cR =
24m3

G4
(Π2

c − Π2
s) .

The cubic dependence on mass generalizes the MSW formula far
off extremality.

• The scaleR relates the physical spacetime temperature to the
dimensionless CFT temperature:

TCFT
L,R = T phys

L,R R .

• The lift to 5D leavesR arbitrary a priori.
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Summary

Progress towards conformal symmetry of general black holes:

• The phenomenology of the black hole entropy formula
suggests a 2D CFT origin.

• Black hole thermodynamics in a manner that exhibits
independence of the conformal factor .

• The subtraction procedure isolates a part of the geometry that
has SL(2)2 symmetry.

• Rudiments of a full Virasoro symmetry even for very general
black holes.
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