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Properties of Gradient Sensing M echanism

Chemoattractant gradient is mild, but Chemoattractant profile

adin polymerization is localized _

External signal must be amplified O

Actin pdymer profile

Amplification occursonly for
sufficiently large gradients

There must be athreshold for
amplificaion
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Response to Non-Uniform Chemoattr actant Gradient

Parent et al., 1998

In the presence of the
gradient induced by a
micropipette, the Pl
localizaion appeas and

disappeas

L7788

Servant et al., 2000

In neutrophil s, the
localization of PH-Akt-GFP
IS 6 timesthe
chemoattradant gradient

Response to Uniform Chemoattr actant Stimulus

In neutrophils

Servant et al., 2000

* PH,,, -GFP acawmulates uniformly along the membrane
within 10 secs

* But PH,,,—GFP locali zes ultimately and remains s for up to
8 minutes
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Response to Uniform Chemoattr actant Stimulus

In Dictyostelium
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GEP-PH Parent et al., 1998

* GFP-PH immediately migratesto cdl periphery, revertsto
cytosol within 2 minutes, then develops a polarization.

Switch in direction of the gradient: Shallow Gradient

720 e
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Shallow Gradient:

A gradient whoseinfluenceisfelt all
the way to pre-existing leading edge.

Weiner et al., 1999

* New pseudopod (or Arp3localizaion) does not form at the new
locaion. Instea, existing pseudopod swivels to the new locaion.
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Switch in direction of the gradient: Steep Gradient

P
-

Steep Gradient:

A gradient so locali zed that its
influenceis not felt at the pre-
existing leading edge.

Chung et al, 2001

* Old pseudopod (P! localizaion) retracts and new pseudopod
(P! localization) forms at the new locaion

The M odel
Model consists of two interading species

Activator Inhibitor
* Synthesized autocatalytically * Inhibitsthe activator
* Diffuses dowy * Diffuses rapidly

Wish to acount for two experimental observations:

1. Localization of Plsin response to non-uniform and uniform
chemoattradant gradients

2. Movement of pre-existing Pl localization in response to changes
in diredion of chemoattractant gradient
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Pl Cycle: Intuitive explanation for Pl localization

______

Membrane

Cytosol

PITP

Endoplasmic

Reticulum

» Receptor activation adivates

Tnositol—

1P

3

CDP.DGS

PI3K.

* 1 inPIP;0 Reauitment of
PISK viaRac

* Lealsto autocatalytic
synthesis of PIP, and PIP;.
Feadbad is further reinforced
by PA.

The net effed is:

1. Membrane PI’ s builds up at the expense of PlI’sin ER

2. Pl cycleturns faster

L eading Edge

» Synthesis of P is autocatal ytic and cooperative at small p and
self-limiting at large p.

» Receptor activation increases k* and “lifts’ the synthesis curve.

* New steady state has higher p and higher turnover rate.
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I ntuitive explanation for Pl peak stabilization

Membrane Cytosol Endoplasmic
Reticulum
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* Receptor activation causes autocatalytic build upof PI’s at the
leading edge which results in localized inositol formation

* Inositol diffuses away from the stimulus site and transfers PI from
the membrane to the ER, thus preventing the peg from spreading

Trailing Edge
Rate
_—e p /(k—i) p
A
] Ps

o - P 1 B
k* 7 [pt— |o)I +C,

e i increases at thetrailing edge
» Slope of removal curve increases

» Steady state p deaeases and turnover rateis little slower
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Role of PL Cyin movement of fibroblasts and neutrophils

“Both the PLC and motility responses [in fibroblasts] were
decreased by expression of a dominant-negative PLC
gamma-1 fragment in EGF-responsive infectant lines.” —
Alan Wellset al., 1994

“... cell motility [in neutrophils] is[Ca2+]i dependent
when the cells are examined on physiological substrates
such as fibronectin or vitronectin. Calcium-buffered cells
appear to make repeated attempts to move but are unable
to detach from a fibronectin or vitronectin substrate” —
Hendey et al., 1993

M athematical M odel

2-D disk of radiusR

p : Activator
i : Inhibitor

M odel Variables

*p Slow-diffusing membrane phosphoinositides
*i Fast-diffusing cytosolic inositol phosphates
* p, Slow-diffusing phosphoinositides in ER

Dr. Atul Narang, University of Florida (KITP Bio Networks Chemotaxis Workshop 3/14/03)
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M odel Equations r*_@___,

= =k -
¥ R? 00°
op [, ) D op
E_kfr 6)psP*| -k, pi %_%mﬁg
di D. 94

— 3s{k,r*(8) p.p*| 1k, pi}| +c —ki+—=;

l 27
= + Rd g
P, >R J; P+ pg)

Periodic Boundary Conditions

* Concentrations of p and i are equal a 6= 0, 21t

* Fluxesof pand i are equal at 6= 0, 21t
0=0,2n

Initial Conditions

o Att<Q, cdl isinauniform steady state corresponding to a
uniform concentration of adive recetors

» At t=0, anon-uniform profile imposed on the concentration
of the adive receptors

Dr. Atul Narang, University of Florida (KITP Bio Networks Chemotaxis Workshop 3/14/03)
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Response to chemoattractant gradient

Active Receptors Profile PI Peak Formation
(20% Gradient)

<

°

s o
& 5 3
L B B B

Active Receptors (1*)
kd ”
=
L
Scaled PI conc.
s o o o o
2
T T

04 06
Cell Membrane (8/27) Ce]_lOI:/Iembrmle ?6/21[)

IP3 Profile

* Non-uniform SSdevelops in
120secs

* Inhibitory effed can be seen at
the badk of the cll

* i hasanealy flat profile

Scaled IP3 conc.
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Response To Uniform Chemoattr actantStimulus

» Chemoattractant concentration may be maaoscopically uniform
* But there might be significant random fluctuations in receptor-
ligand binding

Smulating receptor-ligand binding fluctuations
* Cell membrane was partitioned into ten equal arcs.

* In eadt arc, fluctuations in adive receptor concentrations were
simulated by a stochastic model describing receptor-ligand
interacions.

* Noise in the stochastic model is simulated by a Wiener process

* Active receptors (r*) have al% deviation from the mean value.
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Response to Uniform Stimulus

Snapshot of Stochastic Fluctuation Response to Uniform Stimulus
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* Cellsinitially acaumulate PI
uniformly

» Thisisfollowed by the
formation of a Pl pe&k

Servant et al., 2000

Switch in direction of the gradient : Shallow Gradient

Active Receptors Profile (Direction Switch)

PI Peak Movement

Shallow Gradient
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\Weiner et al., 1999
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Switch in direction of the gradient : Steep Gradient

Active Receptors (r*)

Active Receptors Profile (Direction Switch)
Steep Gradient

PI Peak - Reformation
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Response to Two Unequal Chemoattractant Sources

Active Receptors (r*)

Active Receptors Profile - Multiple Sources
(30% Gradient - Slightly unequal)
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* Initially, localizaion develops at locaions of both sources.

* Finally, the larger source“wins’ and asingle localizaion
forms at the site of highest chemoattractant concentration.
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Response to Equal Chemoattractant Sources

Receptor Profile (Multiple Sources) Response to Two Equal Sources
Two cqual Sourves (30%)
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» Two pe&ks can form only if the difference between the
two chemoattractant maxima is very small relative to the
magnitude of the maxima.

Variation of peak width with rate constants

Initial Profile  -------
k. = Rateof Plformation Find Profile  ——
0.3 1]
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 Width of the steady state peek increases with k;

* Pl issynthesized so fast that pe&k spreals before
inositol phosphates can contain them

* Similar resultsiif k; is deaeased.
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Variation of steady states with k;:

Bifurcation Diagram
Variation with Kf
1 —— —— T

° o o

Maximum Scaled PI Conc.

=
o

15 2 25
Parameter Value (Kf)

« Both uniform and non-uniform SSexist over arange of k;
* Gradient makes system jump from uniform to non-uniform SS
* At large and small k;, non-uniform SSmerges with uniform SS

Conclusions:

A reacdion-diffusion model predicts the following:

* PI’slocalizein response to unform and non-uniform
chemoattradant gradient

* PI’smove in response to changes in diredion of
chemoattradant gradient
Shallow Gradient: Existing peek moves to the new locaion
Sharp Gradient: New pegk forms as existing pegk goes down

» Width of PI localizaion changes when readions are adivated
or inhibited.

» Unique pe&k develops even in response to multiple
chemoattradant sources.
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Response to Non-Uniform Chemoattr actant Gradient

Chemoattractant

Micropipette

Tall et al, 2000

Membrane
phosphoinositide

GFP-PH

. Servant et al., 2000
Observation

* Within 10secs, GFP-PH (PIP, /PIP; marker) migrates
toward highest concentration and remains there
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