RNA folding and

 Matrix Field Theory

 Matrix Field Theory}

Henri Orland (SPhT, Saclay)

Collaboration with

- A. Zee (KITP, UCSB) M. Pillsbury (UCSB)
and
G. Vernizzi (SPhT, Saclay)
M. Bon (Saclay)

Outline

- Review of basic properties of RNA
- Secondary structures
- Matrix field theory for RNA
- Large N expansion
- Recursion relations
- Exact enumeration of RNA structures
- Topological classification of RNA
- Monte Carlo approach
H. Orland, SPhT,

Saclay

Review of basic properties of RNA

- RNA is a biopolymer
- RNA (length ~ 70 - 2000)
- DNA (length ~ $10^{6}-10^{9}$)
- Proteins (length ~ 10^{2})
- Polysaccharides (length ~ 10 ${ }^{3}$)

Composition of Cell (in weight)

- Water 70\% Proteins 15\%

DNA RNA Polysaccharides 3\% Lipids

2\%
Mineral ions

- Etc...

Central dogma of Biology

DNA (information storage)

RNA (information transmission)
translation
Proteins (biological function)

Several forms of RNA

- Messenger : mRNA (L ~ 1000)
- Transfer: tRNA (L ~ 70)
- Ribosomal: rRNA (L ~ 3000)
- Micro: μ RNA (L ~ 25)
- Huge amounts of non-coding RNA in "junk" DNA

Why does the 3d structure of RNA matter?

Important discovery in the 80s: RNA can have enzymatic activity
Important discovery since 2000: μ RNA play crucial role in cell regulation

Function strongly related to shape kust know 3d structure of RNA

Chemistry of RNA

- RNA is a heteropolymer
- Four bases:
- Adenine (A)
- Guanine (G)
- Cytosine (C)
- Uracil (U)

The sugar phosphate backbone polymerizes into a single stranded charged (-) polymer

Uracil

RNA folding, Santa Barbara 2006

FOUR BASES OF RNA

SUGAR-PHOSPHATE BACKBONE OF RNA

Energy scales

- Crick-Watson: conjugate pairs

$$
\begin{aligned}
& C-G \\
& A-U
\end{aligned}
$$

Pairing due to Hydrogen bonds between bases \Rightarrow RNA folding
Stacking of aromatic groups
Electrostatics (Mg^{++}ions) controls 3d structure

Energy scales

$\mathrm{C}-\mathrm{G}: 3 \mathrm{kCal} /$ mole $=5 \mathrm{kT}$
$\mathrm{A}-\mathrm{U}: 2 \mathrm{kCaI} /$ mole $=3.3 \mathrm{kT}$
$\mathrm{G}-\mathrm{U}: 1 \mathrm{kCal} / \mathrm{mole}=1.6 \mathrm{kT}$

$$
300 \mathrm{~K}=0.6 \mathrm{kCal} / \mathrm{mole}=1 / 40 \mathrm{eV}
$$

Base pairing

- Induces helical strands (like in DNA)
- Induces secondary structure of RNA

H. Orland, SPhT,

RNA folding, Santa Barbara 2006

Pictures of RNA

Transfer RNA

H. Orland, SPhT,

RNA folding, Santa Barbara 2006

Hammerhea d Ribozyme

Ribosomal RNA

Secondary structures

- In RNA, there are helical stems with loops
- and bulges

Pseudo-knots in RNA

- In addition to secondary structure, there are "pseudo-knots" which constrain the tudistrguiture

The H pseudoknot

Loop-bulge

- 3dfolding controlled by concentration of Mg ions.
H. Orland, SPhT,

RNA folding, Santa Barbara 2006

In fact base pairing is not good enough: need also stacking energies.

However:

- saturation of Crick-Watson pairing
- pseudo-knot free energy << free energy of secondary structure

Partition function

$v_{i j}\left(\vec{r}_{i j}\right)$: interaction of base i and j

- short range
- saturating
H. Orland, SPhT, Saclay

RNA folding, Santa Barbara 2006

Partition function

$$
\begin{array}{r}
Z=\int \prod_{i=1}^{L} d^{3} r_{i} \prod_{i=1}^{L-1} \underbrace{\text { Interactions }}_{\substack{\text { Chain } \\
\text { connectivi } \\
\text { ty } \\
\left(\vec{r}_{i+1}, \vec{r}_{i}\right)}\left(\left\{\vec{r}_{i}\right\}\right)}
\end{array}\left\{\begin{array}{l}
\delta\left(\left|\vec{r}_{i+1}-\vec{r}_{i}\right|-a\right) \\
e^{-\frac{3}{2 a^{2}}\left(\vec{r}_{i+1}-\vec{r}_{i}\right)^{2}}
\end{array}\right.
$$

$Q=e^{-\frac{\beta}{2} \sum_{i \neq j} v_{i j}\left(\vec{r}_{i j}\right)+\text { solvent+electrostatics }}$

RNA folding, Santa Barbara 2006

Further simplifications:
 - Saturation of interactions
 - Watson-Crick pairing

Define $\quad V_{i j}=e^{-\beta \varepsilon_{i j} \theta(|i-j|-4)}$

- Approximation

Chain rigidity

$$
Z=\sum_{\substack{\text { sterically } \\ \text { allowed } \\ \text { configurations }}} Q_{0}
$$

where

$$
Q_{0}=1+\sum_{i<j} V_{i j}+\sum_{i<j<k<l}\left(V_{i j} V_{k l}+V_{i k} V_{j l}+V_{i l} V_{j k}\right)
$$

$$
+\ldots+\sum_{i<j<k<l<\ldots<p<q} V_{i j} V_{k l} \ldots V_{p q}
$$

- sum is mainly combinatorial
- any index appears once and only once (saturation)
- In using this partition function, we have not taken into account the entropy of loops.
- For a loop of size I, the entropy is

$$
S=l \log \mu-c \log l
$$

- In fact the $\log \mu$ goes into the free energies of pairing, so that

$$
S=-c \log l
$$

- with $^{c}=3 / 2$

$$
c=1.75
$$

Secondary structures

- We work orQ ${ }_{0}$
- Secondary structures = Arches
- Define ${ }^{Z(i, j)}$ as the
- partition function of segment (i)

H. Orland, SPhT,

RNA folding, Santa Barbara 2006

Recursion relation

- Graphically, when one adds a base

$Z(i, k+1)=Z(i, k)+\sum_{j=1}^{k} V_{j, k+1} Z(i, j-1) Z(j+1, k)$
- with

$$
V(i, j)=e^{-\beta \varepsilon(i, j)} \theta(|i-j|-4)
$$

- by iterating this recursion, one can generate all possible secondary structures, with correct Boltzmann weights.
- This is the best tool for predicting secondary structures in RNA : more than 85% of base pairings correctly predicted
- Algorithm scales as
- One can include Entropies and Stacking Energies
P: orhatrini / / WWw Saclay

Baciltus subtitis RNase P RNA

H. Orland, SPhT,

RNA folding, Santa Barbara 2006

- Recursion equation looks like Hartree equations (tree diagrams)
- No Pseudo-Knots
- Is it possible to find a field theory such that secondary structures are the Hartree graphs?
- Then, Pseudo-Knots would appear as the corrections to Hartree approximation.

Matrix Field Theory

$$
\begin{gathered}
Q_{0}=1+\sum_{i<j} V_{i j}+\sum_{i<j<k<l}\left(V_{i j} V_{k l}+V_{i k} V_{j l}+V_{i l} V_{j k}\right) \\
+\ldots+\sum_{i<j<k<l<\ldots<p<q} V_{i j} V_{k l} \ldots V_{p q}
\end{gathered}
$$

Wick Theorem

- Simple representation: consider an RNA sequence of length L

$$
Q_{0}=\frac{1}{\mathcal{N}} \int \prod_{i=1}^{L} d \phi_{i} e^{-\frac{1}{2} \sum_{i, j} \phi_{i} V_{i j}^{-1} \phi_{j}} \prod_{i=1}^{L}\left(1+\phi_{i}\right)
$$

- due to Wick theorem

$$
V_{i j}=\frac{1}{\mathcal{N}} \int \prod_{i=1}^{L} d \phi_{i} e^{-\frac{1}{2} \sum_{i, j} \phi_{i} V_{i j}^{-1} \phi_{j}} \phi_{i} \phi_{j}
$$

Wick Theorem

$V_{i j} V_{k l}+V_{i k} V_{j l}+V_{i l} V_{j k}=\frac{1}{\mathcal{N}} \int \prod_{i=1}^{L} d \phi_{i} e^{-\frac{1}{2} \sum_{i, j} \phi_{i} V_{i j}^{-1} \phi_{j}} \phi_{i} \phi_{j} \phi_{k} \phi_{l}$

- However, this form gives same weight to all pairings. No penalty for PseudoKnots.

- We look for a parameter N such that

$$
\begin{aligned}
& \quad N \rightarrow+\infty \equiv \text { Secondary } \\
& \text { • } \quad \text { Corructures } \\
& \text { Knots }
\end{aligned}
$$

- Pseudo-knots are tunable by [Mg] concentration $\frac{N}{N}$ the role ofMg ${ }^{++}$]

TOPOLOGY=MATRIX FIELD THEORY

Matrix Field Theory: a Short Tutorial

- Vector field theorie 9 (n) models count number of connected component of a graph. is the fugacity of a loop.
- Matrix field theories: "count" topology.
- Consider the genequd(zation δf 䉼 scalar x
$973)$ theory (t'Hooft, 1973)

Matrix Field Theory

- A matrix ϕ^{4} field theory is defined by
$Z=\int \mathcal{D} \phi_{a b}(x) e^{-\frac{N}{2} \int d x \operatorname{Tr} \phi(x)\left(-\nabla^{2}+m^{2}\right) \phi(x)-\frac{g N}{4!} \int d x \operatorname{Tr} \phi^{4}(x)}$
- represent $\phi_{a b}(x)$ by a Nnıhle ad\&b
- Vertex. $N \operatorname{Tr} \phi_{a b}^{4}(x)$
 factor

$$
\frac{1}{N} G(x-y)
$$

Feynmann Graphs

- V: vertices
- I: internal propagators N^{V-I+L}
- L: loops
- $\mathrm{V}=2$
- $\quad I=4$
- $L=4$
- Euler characteristic:

$$
\chi=V-I+L
$$

Euler characteristic and the

 Genus- Consider a graph with Euler characteristics
- Theorem: this graph can be drawn without $c r o s s_{i n g}$ genus $=$ given by
where is the
- number ofgboundaries of the graph
- The genus is the number of $\underset{\text { hand }}{\text { hand }}$

Double line graphs

- In our problem, if we use matrix
fialde

$\phi_{a b}(x): \mathbf{N} \times \mathrm{N}$ matrix
- If we use same rule Loop: N
- Above graph:
- Other graph

2 internal lines:/ N^{2} 2 Loops: N^{2}

- Arches are of order 1

 Saclay

Matrix field representation of RNA folding

- We thus generalize the Wick theorem
$Z(1, L)=\frac{1}{A(L)} \int \prod_{k=1}^{L} d \varphi_{k} e^{-\frac{N}{2} \sum_{i j}\left(V^{-1}\right)_{i j} \operatorname{tr}\left(\varphi_{i} \varphi_{j}\right)} \frac{1}{N} \operatorname{tr} \prod_{1}^{L}\left(1+\varphi_{l}\right)$

- By looking at a few diagrams, it seems to do what we want: Hartree diagrams are of order 1, pseudoн. orknneme

Topological classification of RNA folds

- An RNA fold can be characterized by its topolc

- Number of handles of embedding surface

Topological expansion of closed oriented surfaces

Genus 0: the Sphere

Genus 1: the Torus

H. Orland, SPhT,

RNA folding, Santa Barbara 2006

Genus 2: the Bi -torus

Genus 3

H. Orland, SPhT, Saclay

Large N expansion

- After some algebraic manipulations, one has the exact expression:

$$
Z(1, L)=\frac{1}{C} \int d A e^{-\frac{N}{2} \operatorname{tr} A^{2}+N \operatorname{tr} \log M(A)} M^{-1}(A)_{L+1,1}
$$

- where $A_{l l^{\prime}}$ is $A_{1} \times L$ matrix and

$$
M_{i j}=\delta_{i j}-\delta_{i, j+1}+i\left(V_{i-1, j}\right)^{\frac{1}{2}} A_{i-1, j}
$$

- The ${ }^{N}$dependence is explicit
one can perform a loop expansion (saddle-point)
H. Orland, SPhT,

RNA folding, Santa Barbara 2006

The loop expansion

- Saddle-point equation

$$
\frac{\partial S}{\partial A_{l l^{\prime}}}=0
$$ equations

- Expansion in $1 / \mathrm{N}$

$$
A_{l l^{\prime}}=A_{l l^{\prime}}^{(0)}+\frac{x_{l l^{\prime}}}{\sqrt{N}}
$$

- Propagators of ${ }^{2} l l^{\prime}$ satisfy a BetheSalpeter equation
H. Orland, SPhT,

RNA folding, Santa Barbara 2006

Bethe-Salpeter equation

- No order $1 / \mathrm{N}$ correction

H. Orland, SPhT,

RNA folding, Santa Barbara 2006

Eight Pseudo-knots of genus

 1

Recursion relations

- It is possible to obtain exact recursion relations for genus 1
- There is an exact relation
$Z(1, L+1)=Z(1, L)+\sum_{k=1}^{L} V_{L+1, k}<\frac{1}{N} \operatorname{Tr}^{k} \prod_{i=1}^{k-1}\left(1+\phi_{i}\right) \times \frac{1}{N} T_{r} \prod_{j=k+1}^{L}\left(1+\phi_{j}\right)>$
- which can be expanded in powers ${ }^{1}$ of
- Algorithm scales as ${ }^{6}$
too

RNA folding, Santa Barbara 2006

Irreducibility and Nesting

Irreducible PK

Genus is additive

Non nested PK

Primitive Pseudo-Knots

Irreducible and nonnested

Statistical study

- Look in database and calculate genii of pseudo-knots
- PseudoBase: around 245 pseudoknots; all are of genus 1 , except 1 of genus 2
- 237 H PK of the type ABAB
- 6 KHP of the type $A B A C B C$
- 1 PK of the type $A B C A B C$
 Saclay
- Protein Data Bank (PDB): 850 RNA Structures
- 650 RNA have genus 0 (short fragments)
- Number of bases ranges from 22 (H PK with genus 1) to 2999 (with genus 15)
- Maximum total genus is 18 . Maximum genus of primitive PK is 8 .
- Transfer RNA $(L=78)$ are KHP of genus 1

Figure 10: A typical tRNA (PDB ID 1evv [34]. It has the genus 1 of a kissing hairpin pseudoknot.

Figure 11: The B chain of 1 vou.pdb is an RNA of genus 7 and of length 2825 bases.

- This PK of genus 7 is made of 3 HPK , 3 KHP nested in a large KHP
 Are these genii big?

Exact enumeration of RNA structures.

- Model: RNA in which any base can pair with any other base. All pairing energies are identical

$$
V_{i j}=v
$$

- Partition function of the model can be written as

$$
Z_{N}(L)=\frac{1}{A} \int d \phi e^{-\frac{N}{2 v} \operatorname{Tr} \phi^{2}} \frac{1}{N} \operatorname{Tr}(1+\phi)^{L}
$$

- This integral can be calculated exactly using random matrix theory (orthogonal polynomials).

$$
Z_{N}(L)=\sum_{g=0}^{\infty} \frac{a_{L}(g)}{N^{2 g}}
$$

- and the asymptotic behaviors are given by

$$
a_{L}(g) \approx_{L \rightarrow \infty} K_{g}(1+2 v)^{L} L^{3 g-3 / 2}
$$

$$
K_{g}=\frac{1}{3^{4 g-3 / 2} 2^{2 g+1} g!\sqrt{\pi}}
$$

- The total number of diagrams with any genus is given by
$\mathcal{N} \approx_{L \rightarrow \infty} L^{L / 2} \frac{e^{-L / 2+\sqrt{L}-1 / 4}}{\sqrt{2}}$
- the average genus is given by

$$
<g>_{L} \approx 0.25 L
$$

- for real RNA, the largest genus we found is 18 for ribosomes (size around 3000 bp). The genus should be around 750 .
- What about Steric Constraints?

Enumeration of self-avoiding RNA structures.

- Self-avoiding polymer on a cubic lattice
- Saturating attraction between nearest-neighbor monomers.
- Monte Carlo growth method allows to calculate accurately free energies. Length of chayinsap)to31200
- Still much bigger than for real RNA: H. Orland, SPhT,

Monte Carlo method

- Idea: forget matrix fields, keep genus
- Work in pairing space (contact map)

$$
Z=\sum_{\text {possible pairings }}
$$

$e^{-\beta E(\text { pairing })}$

- Introduce a chemical potential for the topology: $e^{-\mu}=\frac{1}{N^{2}}$

$$
Z=\sum_{\text {possible pairings }} e^{-\beta E(\text { pairing })-\mu g(\text { pairing })}
$$

Possible moves

- Accept or reject move with probability

$$
p=e^{-\beta \Delta E-\mu \Delta g}
$$

- It is possible to
- take into account the entropy
- make it very fast
- take into account steric constraint
- We are able to find the correct pseudo-knots in RNA up to size 200
- transfer RNAs
- Hepatitis delta virus ribozyme

The structure of the HDV ribozyme

Conclusion

- Matrix field theory introduces a natural classification of RNA folds according to their topological genus.
- One can write exact recursion equations for genus $0,1, \ldots$
- Most promising is the Monte Carlo calculation with chemical potential for the genus.

