RNA folding and Matrix Field Theory

Henri Orland (SPhT, Saclay)

H. Orland, SPhT, Saclay

Collaboration with

- A. Zee (KITP, UCSB)
- M. Pillsbury (UCSB) and
- G. Vernizzi (SPhT, Saclay)
- M. Bon (Saclay)

Outline

- Review of basic properties of RNA
- Secondary structures
- Matrix field theory for RNA
- Large N expansion
- Recursion relations
- Exact enumeration of RNA structures
- Topological classification of RNA
- Monte Carlo approach

H. Orland, SPhT, Saclay

Review of basic properties of RNA

- RNA is a biopolymer
 - RNA (length ~ 70 2000)
 - DNA (length ~ 10⁶ 10⁹)
 - Proteins (length ~ 10^2)
 - Polysaccharides (length ~ 10³)

Composition of Cell (in weight)

- Water 70%
- Proteins 15%
- DNA 1%
- RNA 6%
- Polysaccharides 3%
- Lipids 2%
- Mineral ions 3%
- Etc...

H. Orland, SPhT, Saclay

Central dogma of Biology

DNA (information storage)

transcription

RNA (information transmission)

translation

Proteins (biological function)

H. Orland, SPhT, Saclay

Several forms of RNA

- Messenger : mRNA (L ~ 1000)
- Transfer: tRNA (L ~ 70)
- Ribosomal: rRNA (L ~ 3000)
- Micro: µRNA (L ~ 25)
- Huge amounts of non-coding RNA in "junk" DNA

Why does the 3d structure of RNA matter?

Important discovery in the 80s: RNA can have enzymatic activity

Important discovery since 2000: µRNA play crucial role in cell regulation

Function strongly related to shape Must know 3d structure of RNA

H. Orland, SPhT, Saclay

Chemistry of RNA

- RNA is a heteropolymer
- Four bases:
 - Adenine (A)
 - Guanine (G)
 - Cytosine (C)
 - Uracil (U)
 - The sugar phosphate backbone polymerizes into a single stranded charged (-) polymer

H. Orland, SPhT, Saclay RNA folding, Santa Barbara 2006

Guanine

H. Orland, SPhT, Saclay

Energy scales

- Crick-Watson: conjugate pairs
 - C G A - U
- Pairing due to Hydrogen bonds between bases >>>> RNA folding
- Stacking of aromatic groups Electrostatics (Mg⁺⁺ ions) controls 3d structure

H. Orland, SPhT, Saclay

Energy scales

C - G : 3kCal/mole = 5 kT A - U : 2kCal/mole = 3.3 kTG - U : 1kCal/mole = 1.6 kT

300 K = 0.6 kCal/mole = 1/40 eV

H. Orland, SPhT, Saclay

Base pairing

- Induces helical strands (like in DNA)
- Induces secondary structure of RNA

H. Orland, SPhT, Saclay

Pictures of RNA

Transfer RNA

H. Orland, SPhT, Saclay

Hammerhea d Ribozyme

Ribosomal RNA

H. Orland, SPhT, Saclay

Secondary structures

- In RNA, there are helical stems with loops
 Spacefill view 3D structure Secondary structure
- and bulges

H. Orland, SPhT, Saclay

Pseudo-knots in RNA

 In addition to secondary structure, there are "pseudo-knots" which constrain the 3distructure

The H pseudoknot

Loop-bulge

 3d₁f₁olding controlled by concentration of Mg ions.

H. Orland, SPhT, Saclay

In fact base pairing is not good enough: need also stacking energies.

However:

- saturation of Crick–Watson pairing
- pseudo-knot free energy << free energy of secondary structure

RNA folding much easier than protein folding

H. Orland, SPhT, Saclay

Partition function

Partition function

 $Q = e^{-\frac{\beta}{2}\sum_{i \neq j} v_{ij}(\vec{r}_{ij}) + \text{solvent+electrostatics}}$

H. Orland, SPhT, Saclay

Further simplifications:

- Saturation of interactions
- Watson-Crick pairing

Define
$$V_{ij} = e^{-\beta \varepsilon_{ij}} \theta(|i-j|-4)$$

Base pair energy

Chain rigidity

$$Z = \sum Q_0$$

sterically allowed configurations

H. Orland, SPhT, Saclay

- sum is mainly combinatorial
- any index appears once and only once (saturation)

H. Orland, SPhT, Saclay

- In using this partition function, we have not taken into account the entropy of loops.
- For a loop of size I, the entropy is

$$S = l \log \mu - c \log l$$

• In fact the $\log \mu$ goes into the free energies of pairing, so that $S=-c\log l$

H. Orland, SPhT, Saclay

• with c = 3/2c = 1.75

Secondary structures

- We work $on Q_0$
- Secondary structures = Arches

- Define Z(i, j) as the
- partition function of $\operatorname{segm}^{(i,j)}_{t}$

H. Orland, SPhT, Saclay

Recursion relation

Graphically, when one adds a base

$$Z(i, k+1) = Z(i, k) + \sum_{j=1}^{k} V_{j,k+1} Z(i, j-1) Z(j+1, k)$$

• with $V(i,j) = e^{-\beta \varepsilon(i,j)} \theta(|i-j|-4)$

H. Orland, SPhT, Saclay

- by iterating this recursion, one can generate all possible secondary structures, with correct Boltzmann weights.
- This is the best tool for predicting secondary structures in RNA : more than 85% of base pairings correctly predicted $$N^3$$
- Algorithm scales as
- One can include Entropies and Stacking Energies

H. Or antispit / / WWW Rtbjuly invite a Goat / ~ivo / RNA Saclay

H. Orland, SPhT, Saclay

- Recursion equation looks like Hartree equations (tree diagrams)
- No Pseudo-Knots
- Is it possible to find a field theory such that secondary structures are the Hartree graphs?
- Then, Pseudo-Knots would appear as the corrections to Hartree approximation.

Matrix Field Theory

 $Q_0 = 1 + \sum_{i < j} V_{ij} + \sum_{i < j < k < l} (V_{ij}V_{kl} + V_{ik}V_{jl} + V_{il}V_{jk})$

 $+\ldots+\sum V_{ij}V_{kl}\ldots V_{pq}$ $i < j < k < \overline{l} < \dots < p < q$

H. Orland, SPhT, Saclay

Wick Theorem

• Simple representation: consider an RNA sequence of length L

$$Q_0 = \frac{1}{N} \int \prod_{i=1}^{L} d\phi_i e^{-\frac{1}{2}\sum_{i,j} \phi_i V_{ij}^{-1} \phi_j} \prod_{i=1}^{L} (1+\phi_i)$$

due to Wick theorem

$$V_{ij} = \frac{1}{N} \int \prod_{i=1}^{L} d\phi_i e^{-\frac{1}{2}\sum_{i,j} \phi_i V_{ij}^{-1} \phi_j} \phi_i \phi_j$$

H. Orland, SPhT, Saclay

Wick Theorem

$$V_{ij}V_{kl} + V_{ik}V_{jl} + V_{il}V_{jk} = \frac{1}{\mathcal{N}}\int\prod_{i=1}^{L}d\phi_i e^{-\frac{1}{2}\sum_{i,j}\phi_i V_{ij}^{-1}\phi_j}\phi_i\phi_j\phi_k\phi_l$$

 However, this form gives same weight to all pairings. No penalty for Pseudo-Knots.

Horle Saclay

• We look for a parameter N such that

- $N \rightarrow +\infty \equiv Secondary$ structures Corrections in $\overline{N} \equiv Pseudo-$ Knots
- Pseudo-knots are tunable by [Mg] $concentration he role of Mg^{++}$]

• TOPOLOGY=MATRIX FIELD THEORY

H. Orland, SPhT, Saclay

Matrix Field Theory: a Short Tutorial

- Vector field theorie Q(n) models count number of connected component of a graph. is the fugacity of a loop.
- Matrix field theories: "count" topology.
- Consider the general Zation of the scalar
 theory (t'Hooft, 1973)

33

H. Of and SphTider the folding Santa Barbara 2006 : a

Matrix Field Theory

• A matrix ϕ^4 field theory is defined by

$$Z = \int \mathcal{D}\phi_{ab}(x)e^{-\frac{N}{2}\int dx Tr\phi(x)(-\nabla^2 + m^2)\phi(x) - \frac{gN}{4!}\int dx Tr\phi^4(x)}$$

• represent $\phi_{ab}(x)$ by a double M• Vertex: $NTr\phi_{ab}^4(x)$ \longrightarrow Nfactor $\frac{1}{N}G(x-y)$ \longrightarrow $\frac{1}{N}$

Feynmann Graphs

- V: vertices
- I: internal propagator $> N^{V-I+L}$
- L: loops
- V=2
- I=4

• L=4

• Euler characteristic:

H. Orland, SPhT, Saclay RNA folding, Santa Barbara 2006

 $\chi = V - I + L$

Euler characteristic and the Genus

- Consider a graph with Euler characteristics
- Theorem: this graph can be drawn without crossings on a surface of genus = given by c
 where is the
- number of/boundaries of the graph
- The genus is the number of handles of the embedding surface H. Orland, SPhT, RNA folding, Santa Barbara 2006 36 Saclay

Double line graphs

In our problem, if we use matrix
 fields

 $\phi_{ab}(x)$: NxN matrix

- Propagator: 1/N Loop: N
- If we use same rule: $N \times \frac{1}{N} = 1$
- Above graph:

H. Orland, SPhT, Saclay • Other graph

2 internal lines:/ N^2 2 Loops: N^2

Pseudo-knots are of higher order₃₈in Saclay

Matrix field representation of RNA folding

• We thus generalize the Wick theorem

 By looking at a few diagrams, it seems to do what we want: Hartree diagrams are of order 1, pseudo H. Orlkn, Sont, s are of Nhigheanta Orbeacos 39

Topological classification of RNA folds

• An RNA fold can be characterized by its topolc

H. Orland, SPhT, Saclay

Topological expansion of closed oriented surfaces

H. Orland, SPhT, Saclay

Genus 0: the Sphere

Genus 1: the Torus

H. Orland, SPhT, Saclay

Genus 2: the Bi-torus

H. Orland, SPhT, Saclay

Large N expansion

• After some algebraic manipulations, one has the exact expression:

$$Z(1,L) = \frac{1}{C} \int dA e^{-\frac{N}{2} \operatorname{tr} A^2 + N \operatorname{tr} \log M(A)} M^{-1}(A)_{L+1,1}$$

• where $A_{ll'}$ is $A \times L$ matrix and $M_{ij} = \delta_{ij} - \delta_{i,j+1} + i(V_{i-1,j})^{\frac{1}{2}}A_{i-1,j}$

H. Orland, SPhT, Saclay

The loop expansion

- Saddle-point equation
- $\frac{\partial S}{\partial A_{ll'}} = 0 \iff \text{Hartree recursion} \\ \text{equations}$
- Expansion in 1/N $A_{ll'} = A_{ll'}^{(0)} + \frac{x_{ll'}}{\sqrt{N}}$
- Propagators of $x_{ll'}$ satisfy a Bethe-Salpeter equation

H. Orland, SPhT, Saclay

Bethe-Salpeter equation

• No order 1/N correction

H. Orland, SPhT, Saclay

Eight Pseudo-knots of genus

Recursion relations

- It is possible to obtain exact recursion relations for genus 1
- There is an exact relation

$$Z(1,L+1) = Z(1,L) + \sum_{k=1}^{L} V_{L+1,k} < \frac{1}{N} Tr \prod_{i=1}^{k-1} (1+\phi_i) \times \frac{1}{N} Tr \prod_{j=k+1}^{L} (1+\phi_j) > 0$$

- which can be expanded in powers of
- Algorithm scales as H. Orla O, PPC,

Saclay

RNA folding, Santa Barbara 2006

too

Irreducibility and Nesting

Irreducible PK

Genus is additive

Non nested PK

H. Orland, SPhT, Saclay

Primitive Pseudo-Knots

Irreducible and nonnested

Only 4 primitive PK of genus 1

H. Orland, SPhT, Saclay

Statistical study

- Look in database and calculate genii of pseudo-knots
- PseudoBase: around 245 pseudoknots; all are of genus 1, except 1 of genus 2
- 237 H PK of the type ABAB
- 6 KHP of the type ABACBC
- 1 PK of the type ABCABC

H. Orland, BPK, of type, ABG, Daha Bar Dr B20 with gensus 2 Saclay

- Protein Data Bank (PDB): 850 RNA Structures
- 650 RNA have genus 0 (short fragments)
- Number of bases ranges from 22 (H PK with genus 1) to 2999 (with genus 15)
- Maximum total genus is 18. Maximum genus of primitive PK is 8.
- Transfer RNA (L=78) are KHP of genus 1

Figure 10: A typical tRNA (PDB ID 1evv [34]. It has the genus 1 of a kissing hairpin pseudoknot.

Figure 11: The B chain of 1vou.pdb is an RNA of genus 7 and of length 2825 bases.

 This PK of genus 7 is made of 3 HPK, 3 KHP nested in a large KHP
 Are these genui big?

H. Orland, SPhT, Saclay

Exact enumeration of RNA structures.

- Model: RNA in which any base can pair with any other base. All pairing energies are identical $V_{ij} = v$
- Partition function of the model can be written as

$$Z_N(L) = \frac{1}{A} \int d\phi \ e^{-\frac{N}{2v} \operatorname{Tr} \phi^2} \frac{1}{N} \operatorname{Tr} \ (1+\phi)^L$$

H. Orland the only one foling, Nanta at 1086 Saclay

- This integral can be calculated exactly using random matrix theory (orthogonal polynomials). $Z_N(L) = \sum_{q=0}^{\infty} \frac{a_L(g)}{N^{2g}}$
- and the asymptotic behaviors are given by $a_L(g) \approx_{L \to \infty} K_g (1+2v)^L L^{3g-3/2}$

$$K_g = \frac{1}{3^{4g-3/2}2^{2g+1}g!\sqrt{\pi}}$$

- The total number of diagrams with any genus is given by $\mathcal{N} \approx_{L \to \infty} L^{L/2} \frac{e^{-L/2 + \sqrt{L} - 1/4}}{\sqrt{2}}$
- the average genus is given by $< g >_L \approx 0.25L$
- for real RNA, the largest genus we found is 18 for ribosomes (size around 3000 bp). The genus should be around 750.
- What about Steric Constraints?

Enumeration of self-avoiding RNA structures.

- Self-avoiding polymer on a cubic lattice
- Saturating attraction between nearest-neighbor monomers.
- Monte Carlo growth method allows to calculate accurately free energies.
 Length of chains appto31200

• Still much bigger than for real RNA: H. Orland, SPhT, RNA folding, Santa Barbara 2006 61 Saclay

Monte Carlo method

- Idea: forget matrix fields, keep genus
- Work in pairing space (contact map)

$$Z = \sum_{\text{possible pairings}} e^{-\beta E(\text{pairing})}$$

• Introduce a chemical potential for the topology: $e^{-\mu} = \frac{1}{N^2}$

H. Orland, SPhT, Saclay

Possible moves

H. Orland, SPhT, Saclay

- Accept or reject move with probability $p = e^{-\beta \Delta E \mu \Delta g}$
- It is possible to
 - take into account the entropy
 - make it very fast
 - take into account steric constraint
- We are able to find the correct pseudo-knots in RNA up to size 200
 - transfer RNAs
 - Hepatitis delta virus ribozyme

The structure of the HDV ribozyme

H. Orland, SPhT, Saclay

Conclusion

- Matrix field theory introduces a natural classification of RNA folds according to their topological genus.
- One can write exact recursion equations for genus 0, 1, ...
- Most promising is the Monte Carlo calculation with chemical potential for the genus.