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Review of basic properties of
RNA

e RNA is a biopolymer

- RNA (length ~ 70 - 2000)

- DNA (length ~ 10 - 109)

- Proteins (length ~ 102)

- Polysaccharides (length ~ 103)
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Composition of Cell (in weight)

Water 70%
Proteins 15%
DNA 1%

RNA 6%
Polysaccharides 3%
Lipids 2%
Mineral ions 3%
Etc...
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Central dogma of Biology

DNA (information storage)

transcription

RNA (information transmission)

translation

Proteins (biological function)
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Several forms of RNA

Messenger : mRNA (L ~ 1000)
Transfer: tRNA (L ~ 70)
Ribosomal: rRNA (L ~ 3000)
Micro: yRNA (L ~ 25)

Huge amounts of non-coding RNA in
“junk” DNA
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Why does the 3d structure of
RNA matter?

Important discovery in the 80s: RNA can
have enzymatic activity

Important discovery since 2000: pRNA
play crucial role in cell regulation

Function strongly related to

=éhf\lﬂlest know 3d structure of
RNA
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Chemistry of RNA

RNA is a
neteropolymer

Four bases: U

- Adenine (A)

- Guanine (G) H

- Cytosine (C) .

- Uracil (V) 2 H

The sugar phosphate
backbone
polymerizes into a
single stranded
charged (-) polymer
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FOUR BASES OF RNA

guanine cytosine uracil adenine
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sugar-phosphate backbone

SUGAR-PHOSPHATE BACKBONE OF RNA

ribose
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phosphodiester bond
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Energy scales

e Crick-Watson: conjugate pairs
C-G
A-U
Pairing due to Hydrogen bonds between
bases ™ RNA folding

Stacking of aromatic groups

++
Electrostatics (Mg ions) controls 3d
structure
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Energy scales

C — G : 3kCal/mole =5 kT
A — U : 2kCal/mole = 3.3 kT
G — U : 1kCal/mole =1.6 kT

300 K = 0.6 kCal/mole = 1/40 eV
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Base pairing

e Induces helical strands (like in DNA)
e Induces secondary structure of RNA
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Pictures of RNA

Transfer RNA
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Secondary structures

e In RNA, there are helical stems with
IOO p S [ Spael view | 3]z/structure [ Secondary structure |

e and bulges

A

+ B EI
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Pseudo-knots in RNA

e |n addition to secondary structure,
there are “pseudo-knots” which
constrain the 3distiuetire

The H pseudo- _-- Loop-bulge
knot s . . i
Vi : o :- :\ 'j

e 3d_ folding controlled by
concentration of Mg ions.
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In fact base pairing is not good
enough: need also stacking energies.

However:

e saturation of Crick-Watson pairing
e pseudo-knot free energy << free
energy of secondary structure

——> RNA folding much easier than
protein folding
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Partition function

A%

vi;(735) : interaction of base i and j
e short range
e saturating

—
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Partition function

A / H d37“z H f(rz—kl?rz)Q({Tz})

=1 | / Interactions

Chain
connectivi

- ty
0(|Tj+1 — 73l —a)
Q(Tz—l—l Tz)z

:> <

eQa

Q= e_gZi#j v;;(73;)+solvent+electrostatics
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Further simplifications:
- Saturation of interactions
- Watson-Crick pairing

Define V;; = e #5ii0(Ji — j| — 4)

Base pair energy Q

e Approximation Chain rigidity

Z = Qo

sterically
allowed
configurations
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where
Qo=1+> Vij+ >  (VijViu+VieVii+ViVjr)

i<j i<j<k<l

e <

1<g<k<l<..<p<q

e sum is mainly combinatorial
e any index appears once and only
once (saturation)
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In using this partition function, we
have not taken into account the
entropy of loops.

For a loop of size |, the entropy is

S =1llogu— clogl

In fact the®® 4 goes into the free

energies of pairing, so that
S = —clogl

c=3/2 . .
Wlthc _ (Gaussian chain)

. (Self Avoiding Walk)
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Secondary structures

We work oro

Secondary structures = Arches

== -

DeﬁneZ(i’j) as the =
partition function of segm@“ﬂ{’)

e ' —
i - A L
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Recursion relation

e Graphically, when one adds a base

< R+ { %

A k k+ A
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e by iterating this recursion, one can
generate all possible secondary
structures, with correct Boltzmann
weights.

e This is the best tool for predicting
secondary structures in RNA : more
than 85% of base palrmgs correctly
predicted

e Algorithm scales as

e One can include Entropies and
Stacking Energies

o hitp: / /www.thilnivie.ac.at/~ivo /RNA
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Eadifius suttilis ENase P ANA

M- multi-loop
I- interior loop

E- bulgeloop
H- heirpin loop
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e Recursion equation looks like Hartree
equations (tree diagrams)

e No Pseudo-Knots

e |s it possible to find a field theory
such that secondary structures are
the Hartree graphs?

e Then, Pseudo-Knots would appear as
the corrections to Hartree
approximation.
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Matrix Field Theory

e —
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Qo=1+)> Vii+ > (VijViu+VieVii+ViVir)

i<j i<j<k<l

+ ...+ > ViiVii - - - Vig

1<Jg<k<l<...<p<q
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Wick Theorem

e Simple representation: consider an
RNA sequence of length L

L

1 [ & 1 L
Qo=+ / T dgie= Zea @V o T+ 1)
1=1

1=1

e due to Wick theorem

1
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Wick Theorem

L
1 1 vl
VigVir + Vie Vi + Va Vi = / [[dpie™2 =0 %Via %3 ;1
1=1

-— -
E . r = -

r L LS " »
a s B C +< ___l.,——‘*—‘&!lf e -

e However, this form gives same weight
to all pairings. No penalty for Pseudo-
Knots.

o e rime ntakiygnieam: e o-knots.
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e We look for a parameter N such that

N — 400 = Secondary
§tructures
° Corrections 'W = Pseudo-

Knots
——

o Pseudo knots are tunable by Mg ]
con entﬁ?ﬁ{gnthe role ofMg" " |

e TOPOLOGY=MATRIX FIELD THEORY
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Matrix Field Theory: a Short
Tutorial

e Vector field theorie§?(n) models
count number of connected

compdhent of a graph. is the
fugacity of a loop.

e Matrix field theories: “count” ¢4
topology.

e Consider the gen@?ﬂi(iﬁtion%f*hzéf
scalar X field

theory (t'Hooft, 1973)
gac?ﬁﬁﬁlglder théNﬁgllﬂganta Barbara 2006 ‘3 33




Matrix Field Theory

e A matrix)” field theory is defined by

_ /D¢ab( fda;Trcb(x)( V2+m )cb(az) fda:Trcb (x)

. represenﬁbab( T)  py adr\gjle A5
o VertexNTrog, (1) = N

£ 8
factor 1
—G(a? —y)=> m
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Feynmann Graphs

e V: vertices

V_I+L
e | internal propagators—— &V

e L: loops

o V=2

o |=

° L=4 x=V —-1+4+1L

e Fuler characteristic:
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Fuler characteristic and the
Genus

Consider a graph with Euler
characteristic¥

Theorem: this graph can be drawn
without ¢crossings on a surfacé of
X=c
genus= —giyen by ¢
where s the
e number ofyboundaries of the graph

e The genus is the number of
handles of the embedding surfac3e6
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Double line graphs

e In our problem, if we use matrix
fAalAdc

| SN \ SN, m

Gab(T): NXN matrix

Propagator: 1/N

Loop: N
e If we use same rule: P 1

:> N X N =3
e Above graph:
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e Other graph

m 2 internal linesy/N*
2 Loops: NV*

! __— Order
1

e Arches are of order 1

m 2 internal lined/N*
> @ O Loopsl

s .Psendo-knots.are.nfhigher order,in
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Matrix field representation of
RNA folding

e We thus generalize the Wick theorem

L L
1 SENT (VT (i) L
Z(1.L) = —— ||d 2 2 i j j—tHI

e By looking at a few diagrams, it
seems to do what we want: Hartree
diagrams are of order 1, pseudo-
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Topological classification of
RNA folds

e An RNA fold can be characterized by

its topolc

e Number of handle]§_ofLembedding
surface g=—
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Topological expansion of
closed oriented surfaces
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Genus 0O: the Sphere
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Genus 1: the Torus

H. Orland, SPhT, RNA folding, Santa Barbara 2006
Saclay




Genus 2: the Bi-torus
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Genus 3
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Large N expansion

o After some algebraic manipulations,
one has the exact expression:

1 N, 22
Z(l,L) _ - /dAG_?trA —I—NtrlogM(A)]\4—1(14)[14_1’1

C

e wheredir is & X L matrix and
Mi; =06ij — i 41 +i(Vic1)2 Ai1

e The!V dependence is explicit
onhe can perform a loop

expansion (saddle-point)

H. Orland, SPhT, RNA folding, Santa Barbara 2006
Saclay




The loop expansion

e Saddle-point equation
S

94, — 0 & Hartree recursion
equations
e Expansionin 1/N
Ay ZAZ(ZQ) | \a;%

e Propagators of !/’ satisfy a Bethe-
Salpeter equation
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Bethe-Salpeter equation

e No order 1/N correction

k

1
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Eight Pseudo-knots of genus

W f SN ABAB: H PK

ABACBC: KHP

ABCABC

ABCADBCD
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Recursion relations

e |t is possible to obtain exact recursion
relations for genus 1

e There is an exact relation )

1 1
ZOL,L+1)=Z(LL)+ > Vi < ~Tr []+60) x ~Tr I] @+¢))>
k=1 i=1 j=k+1

1
e which can be expanded in powers;of

6
e Algorithm scales aj;’ — too
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Irreducibility and Nesting

SN Can
W s i n m Irreducible
PK
Genus is
additive

Non nested PK
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Primitive Pseudo-Knots

Irreducible

and non- L

hested
Only 4
primitive
PK of genus
1
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Statistical study

Look in database and calculate genii
of pseudo-knots

PseudoBase: around 245 pseudo-
knots:; all are of genus 1, except 1 of
genus 2

237 H PK of the type ABAB
6 KHP of the type ABACBC
1 PK of the type ABCABC

®onda BIC OF typenABCRGARB.with genus 2
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Protein Data Bank (PDB): 850 RNA
Structures

650 RNA have genus O (short
fragments)

Number of bases ranges from 22 ( H
PK with genus 1) to 2999 (with genus
15)

Maximum total genus is 18.
Maximum genus of primitive PK is 8.

Transfer RNA (L=78) are KHP of
genus 1
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U V] — Kissing
|
7
\

i

Figure 10: A typical tRNA (PDB ID levv [34]. It has the genus 1 of a kissing
hairpin pseudoknot.
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Figure 11: The B chain of 1vou.pdb is an RNA of genus 7 and of length 2825
bases.

e This PK of genus 7 is made of 3 HPK,
3 KHP nested in a large KHP

o Are these genii big?
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Exact enumeration of RNA
structures.

e Model: RNA in which any base can
pair with any other base. All pairing

energies are identical
Vij =wv

e Partition function of the model can be
written as

1 N2 1
ZN(L) — Z/d¢ 6_%Tr¢ NTI' (1 —|_¢)L

soith- only one fmiag,lxmmaatﬁa&a
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e This integral can be calculated exactly
using random matrix theory
(orthogonal polynomials).

Zn(0) = 3

g=0

e and the asymptotic behaviors are

IVEI’I
Pg\g NL—>OQ 1—|—2U)LL39 3/2

1
34g—3/2229—|—1g!ﬁ

K, =
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e The total number of diagrams with
any genus is given by

N%L—M)O LL/2 -

—L/24+VL—1/4
V2

e the average genus is given by
< g >~ 0.25L

e for real RNA, the largest genus we
found is 18 for ribosomes (size
around 3000 bp). The genus should
be around 750.

e What about Steric Constraints?
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Enumeration of self-avoiding
RNA structures.

Self-avoiding polymer on a cubic
lattice

Saturating attraction between
nearest-neighbor monomers.

Monte Carlo growth method allows to
calculate accurately free energies.

Length of chains w)td31200

e Still much bigger than for real RNA

e
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Monte Carlo method

e |ldea: forget matrix fields, keep genus

e Work in pairing space (contact map)
Z= Y e fPaiing)

possible pairings

e Introduce a chemical potential for the
topology:¢ " = 72
7 — Z G—BE(pairing) —ug(pairing)
possible pairings
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Possible moves
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e Accept or reject move with probability
D = e PAE—pAg

e It is possible to

- take into account the entropy

- make it very fast

- take into account steric constraint
e We are able to find the correct

pseudo-knots in RNA up to size 200
- transfer RNAs

- Hepatitis delta virus ribozyme
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The structure of the HDV
ribozyme

(c) 10 ,
Jiz AU ——>———0G )
C=G G=C3
G=C U=A s
5G=C C=GF2 |3
Pl C=G C=G =
C=G35 15 C = (G580 L
G=C g é-U 2
o s G=CUCGCUG=C , 3
- G=C—+—U oot o] e
420G : 20 Aswz |3
CA J1.1/4 G m
A G [ e )
P4 C=G
45A=U .
iC=-@ »
c-@ e
(& xi m
. 3
@
. (5 w
VI.@A@ .ﬁ
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Conclusion

e Matrix field theory introduces a
natural classification of RNA folds
according to their topological genus.

e One can write exact recursion
equations for genus 0, 1, ...

e Most promising is the Monte Carlo
calculation with chemical potential for

the genus.
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