Nonequilibrium thermodynamics at the microscale

C. Jarzynski T-13 Complex Systems, LANL

- The entropy of a closed system never decreases.
- Clausius inequality
- Carnot limit on the efficiency of heat engines

The entropy of a closed system never decreases.

potential energy of weight
\longmapsto thermal energy of fluid

Scale down to the microscopic level ...

potential energy of weight
\Longleftrightarrow thermal energy of fluid

Quantify the fluctuations!

Distribution of entropy generated

Distribution of entropy generated

Distribution of entropy generated

- very general
- valid far from equilibrium
- reduces to linear response near equilibrium

Evans \& Searles, PRE 1994 Gallavotti \& Cohen PRL 1995 Kurchan, 1998
Lebowitz \& Spohn, J Stat Phys 1999

+ many others

Sheared fluid
shear rate

Evans, Cohen, Morriss, Phys Rev Lett (1993)

Optically dragged beads

Demonstration of (integrated) Fluctuation Theorem

$$
\frac{\rho_{\tau}(+S)}{\rho_{\tau}(-S)}=\exp \left(S / k_{B}\right) \quad \Longleftrightarrow \frac{P\left(S_{\tau}<0\right)}{P\left(S_{\tau}>0\right)}=\left\langle\exp \left(-S_{\tau} / k_{B}\right)\right\rangle_{S_{\tau}>0}
$$

Ideally: divide the trajectory into many segments of duration τ, compute S for each segment, \& construct histogram ...

not enough data!

Wang et al, Phys Rev Lett (2002)

More recently ...

Drive the system away from equilibrium with a time-symmetric pulse (squeeze, then relax) ... measure the work performed on the bead

Blickle et al, Phys Rev Lett (2006)

Parameter-dependent potential:

$$
V(z ; I)=A \cdot \exp (-\kappa z)+(B+C I) \cdot z
$$

displacement of bead from wall

Illustration of Clausius inequality: stretched rubber band

Irreversible process:

1. Begin in equilibrium
$\lambda=\mathrm{A}$
2. Stretch the molecule

W = work performed
3. End in equilibrium
$\lambda=B$
4. Repeat

After infinitely many repetitions ...

Nonequilibrium work theorem

- valid far from equilibrium
- fluctuations in W satisfy strong constraint
- nonequilibrium measurements reveal equilibrium properties
C.J., Phys Rev Lett (1997)

Crooks, J Stat Phys (1998)
Hummer \& Szabo, PNAS (2001)
\& others

Derivation

(isolated system)

microstate Hamiltonian $H(x ; \lambda) \quad$ internal energy

In equilibrium ...

$$
\begin{aligned}
p^{e q}(x ; \lambda) & =\frac{1}{Z_{\lambda}} e^{-\beta H(x ; \lambda)} & & \text { Boltzmann-Gibbs distribution } \\
Z_{\lambda} & =\int d x e^{-\beta H(x ; \lambda)} & & \text { partition function } \\
F_{\lambda} & =-\beta^{-1} \ln Z_{\lambda} & & \text { free energy }
\end{aligned}
$$

Derivation
(isolated system)

One realization ...

$$
0 \leq t \leq \tau\left\{\begin{array}{lll}
\text { protocol } & \lambda_{t} & \text { how we act on the system } \\
\text { trajectory } & x_{t} & \text { how the system responds } \\
\text { work } & W=H\left(x_{\tau} ; B\right)-H\left(x_{0} ; A\right)
\end{array}\right.
$$

... now take average of $e^{-\beta W}$ over many realizations

$$
\begin{align*}
\left\langle e^{-\beta W}\right\rangle= & \text { trajectory } \\
& W\left(x_{0}\right)=H\left(x_{\tau}\left(x_{0}\right) ; B\right)-H\left(x_{0} ; A\right) \\
Z_{A} & e^{-\beta H\left(x_{0} ; A\right)} e^{-\beta W\left(x_{0}\right)} \\
= & \frac{1}{Z_{A}} \int d x_{0} e^{-\beta H\left(x_{\tau}\left(x_{0}\right) ; B\right)} \\
= & \frac{1}{Z_{A}} \int d x_{\tau}\left|\frac{\partial x_{\tau}}{\partial x_{0}}\right|^{-1} e^{-\beta H\left(x_{\tau} ; B\right)} \\
= & \frac{Z_{B}}{Z_{A}}=e^{-\beta \Delta F} \quad \text { Liouville's }
\end{align*}
$$

Various derivations

- C.J. PRL \& PRE 1997, J.Stat.Mech. 2004
- G.E. Crooks J.Stat.Phys. 1998, PRE 1999, 2000
- G. Hummer \& A. Szabo PNAS 2001
- S.X. Sun J.Chem.Phys. 2003
- D. J. Evans Mol.Phys. 2003
- S. Mukamel PRL 2003 ... \& others

> Hamiltonian evolution, Markov processes, Langevin dynamics, deterministic thermostats, quantum dynamics ... robust
see also S. Park \& K. Schulten, J. Chem. Phys. 2004
R.C. Lua \& A.Y. Grosberg, J. Phys. Chem. B 2005
related result:
G.N. Bochkov \& Y.E. Kuzovlev JETP 1977

Experimental verification: unfolding a single RNA molecule

Liphardt et al, Science (2002)
unfolding / refolding cycles

Results: equilibrium $\Delta \mathrm{F}$ from nonequilibrium work values

- three pulling rates: $2-5 \mathrm{pN} / \mathrm{s}, 34 \mathrm{pN} / \mathrm{s}, 52 \mathrm{pN} / \mathrm{s}$
- ~ 300 cycles at each rate
- slow cycles (reversible) used to determine ΔF

Relation to Second Law

$$
\left\langle e^{-\beta W}\right\rangle=e^{-\beta \Delta F} \longmapsto\langle W\rangle \geq \Delta F
$$

What is the probability that the 2nd law will be "violated" by at least ζ units of energy?

$$
\begin{aligned}
P[W<\Delta F-\zeta] & =\int_{-\infty}^{\Delta F-\xi} d W \rho(W) \\
& \leq \int_{-\infty}^{\Delta F-\xi} d W \rho(W) e^{\beta(\Delta F-\zeta-W)} \\
& \leq e^{\beta(\Delta F-\xi)} \int_{-\infty}^{+\infty} d W \rho(W) e^{-\beta W}=\exp (-\zeta / k T)
\end{aligned}
$$

Crooks fluctuation theorem

Forward process ... λ : A -> B (unfolding)
Reverse process ... λ : B -> A (folding)

$$
\frac{\rho_{A \rightarrow B}(+W)}{\rho_{B \rightarrow A}(-W)}=\exp [\beta(W-\Delta F)]
$$

Crooks, Phys Rev E (1999)

Experimental verification: Collin et al, Nature (2005)

3-helix junction of ribosomal RNA of E. coli

wild type

Mutant

mutant

Collin et al, Nature 2005

$$
W_{\text {diss }} \approx 50 k_{B} T
$$

$$
\frac{\rho_{A \rightarrow B}(+W)}{\rho_{B \rightarrow A}(-W)}=\exp [\beta(W-\Delta F)] \quad \square \ln \frac{\rho_{A \rightarrow B}(+W)}{\rho_{B \rightarrow A}(-W)}=\beta(W-\Delta F)
$$

Macroscopic machines

steam engine

Carnot cycle

textbook thermodynamics

Molecular machines

What are the underlying thermodynamics?
How is chemical energy converted to mechanical motion?

A similar argument can be made far from equilibrium.

Minimal molecular motors

Van den Broeck, Meurs, Kawai Phys Rev Lett (2004)
"Triangulita"

Directed motion?

YES!

Summary

New \& interesting thermodynamics at the microscale

- Fluctuation theorem

$$
\frac{\rho_{\tau}(+S)}{\rho_{\tau}(-S)}=\exp \left(S / k_{B}\right)
$$

symmetry between entropy generation \& consumption

- Nonequilibrium work theorem $\left\langle e^{-\beta W}\right\rangle=e^{-\beta \Delta F}$
equilibrium thermodynamic information encoded in fluctuations far from equilibrium
- Molecular motors "generic"

