DNA Remodeling by Tyrosine Recombinases

Tom Ellenberger

Department of Biochemistry and Molecular Biophysics Washington University in St.Louis SCHOOL OF MEDICINE Diverse Biological Activities of Tyrosine Recombinases

Viral integration and excision

Control of gene expression

Gene rearrangements

Lys235 His308 Arg212 Arg311 Tyr342

Segregation of newly replicated chromosomes

λ Recombination

Ordered, Pairwise Exchange of DNA Strands

Structures of Cre and Flp Recombinases

Chen, Y., Narendra, U., Iype, LE., Cox, MM., Rice, PA. (2000) *Mol Cell* **6**, 885-897.

Guo, F., Gopaul, DN., van Duyne, GD. (1997) *Nature* **389**, 40-46.

Structure of λ -int's catalytic domain showed an inactive conformation

Crystal structure of the unliganded catalytic domain Kwon, HJ. *et al.*, (1997) *Science* **276**,126-131

att Arms Deliver λ -int to the Sites of DNA Strand Exchange

Kim and Landy 1992. Science 256, 198-203

A new type of suicide DNA substrate traps covalent λ -int:DNA complexes

The DNA-bound structure of λ -int shows a conformation active for DNA cleavage

Basic residues stabilize the phosphotyrosine protein-DNA linkage

Tyr342 nucleophile moves into the active site for DNA cleavage in *cis*

DNA bound (active)

Free (inactive)

Tyr342 Moves Into the Active Site and Ejects β9 For *Trans* Interactions

Trans interactions of β9 coordinate the recombination reaction?

W350A, I353A, W350ter mutations cause elevated DNA cleavage activity of λ -int monomers while abolishing recombination.

Tekle et al., (2002) *J Mol Biol.* **324**, 649-665 Kazmierczak et al., (2002) *Nucleic Acids Res.* **30**, 5193-5204

The β 9 tail of λ -int controls half-the-sites reactivity?

COC' suicide substrate traps a λ -int dimer

Cyclic permutation of the β 9 "tails" in λ -int tetramers

How Do Arm-binding Interactions Promote Isomerization?

Recombination with the arm-DNA

The 2-arm Holliday Junction Complex

Fig2: Native PAGE of complexes formed with Integrase (IntY and IntF), HJ and Arm sites

Radman-Livaja et al. 2003. Mol. Cell 11, 783.

Structures of full-length λ -int complexed with core and arm DNAs

λ Recombination Complexes

Arm-DNA interactions induce strand exchange and HJ isomerization

Snapshots During Isomerization

Migration of the DNA bend (branch migration)

"Intasome" models for integrative and excisive recombination

Modeling the "Intasome"

A structural basis for allosteric control of DNA recombination by lambda integrase. Biswas et al. Nature (2005) 435, 1059-1066.

Department of Biochemistry and Molecular Biophysics Washington University in St.Louis SCHOOL OF MEDICINE

Chromosome Ends

- 거 A <u>unique structure</u> distinguishes telomeres from dsDNA breaks.
- Chromosome ends are <u>nonrecombinogenic</u>, transcriptionally silent, and bind to multiple proteins.
- 의 Specialized enzymes process chromosome ends after replication, in order to solve the "<u>end replication problem</u>."

Chromosome Ends

Telomeres

- \mathfrak{I} G-rich repeats
- ightarrow Heterogeneous in length
- ス Synthesized by a specialized RNA polymerase, telomerase
- ightarrow Predicted quadruplex structure

Linear Plasmid Ends

- \mathfrak{I} Short palindromic sequence
- $\boldsymbol{\varkappa}$ Fixed length
- ౫ Generated by endonucleolytic cleavage and ligation
- $\operatorname{\mathcal{Y}}$ Predicted hairpin structure

Replication of Linear Plasmids

adapted from Kobryn and Chaconas 2002. Molec. Cell 9, 195

Linear Replicons With Hairpin Ends

Temperate Phage with Linear Plasmid Genomes

Borrelia burgdorferi Segmented Genome (different scale from above)

adapted from: Chaconas 2005. Molec. Microbiology 28, 625.

Telomere Resolvases

adapted from Huang et al. 2004. JMB 337, 77.

Reaction Scheme for Telomere Resolution

TelK(1-538) - DNA Complex

Space group P4₁

Unit cell parameters a = b = 158Å, c = 91Å

a.s.u. contains two TelK538 Molecules bound to a 44bp "replicated telomere."

Diffraction image from native crystal of TelK with nicked "suicide DNA"

Crystallographic Studies of TelK-DNA Complexes

Phases obtained using selenium, iodine, and mercury derivatives.

Structure Determination and Model Refinement

Space group $P4_1$ Unit cell $a = b = 158\text{\AA}, c = 91\text{\AA}$

Nicked-native

Resolution50-3.0ÅRmerge12.1%I/s11.0Redundancy5.1Completeness91.0%

%

FOM - SHARP 0.35
Selenium(24),Iodine(13),Hg(6)

Refinement

 Rwork
 32.7%

 Rfree
 33.6%

 Rmsd
 0.01/1.60

 (bond/angle)

TelK Monomer

TelK Monomer

Adaptive Structural Elements

Sequence-specific DNA Contacts

TelK Dimer Functions as a *"DNA Crimping Tool"*

TelK Dimer Functions as a *"DNA Crimping Tool"*

Unstacking of Central Base Pairs

What Have We Learned?

- TelK forms a compact dimer stabilizing a highly distorted DNA conformation.
- DNA binding surface is extended by the C-terminal "stirrup" of TelK.
- Structure is inconsistent with proposal of "pre-hairpinning" prior to DNA cleavage.

Predictions

- DNA binding energy is coupled with distortion of the DNA substrate.
- "Crimping" of the DNA serves to drive the reaction forward.
- Following DNA cleavage, hairpin formation is spontaneous, i.e., the enzyme does not chaperone the 5'-OH end of the cleaved DNA.

The Credits

Hideki Aihara (λ int, TelK) **Tapan Biswas** (λ int)

Collaborators:

Art Landy (Brown U.)- λ recombination Wai Mun Huang (U. of Utah)- telomere resolution

Funding: NIGMS, Human Frontier Science Program