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 Outline:

Modeling example: the cell cycle and checkpoints

in frog egg extracts

Experimental test of a model

Mining the literature for data

Designing experiments to inform a model

Building a model to guide further experimentation

(cyclin E oscillator)

relationship advice for working with an experimental cell biologist
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Mitosis is regulated by positive and negative feedback loops.

Cyclin

Cdc2

amino acids

Bela Novak and John Tyson
Modelers start here; cell biologists end here.
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Molecular mechanism for M-phase control is translated

into ordinary differential equations.
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Cell biologists are afraid of math!



Kumagai and Dunphy, 1995

Estimating rate constants from the literature:

Cell biologists are binary
thinkers.



Sha et al. (2003) - experimental test of a model

Prediction 1: The threshold concentration of cyclin B

required to activate MPF is higher than the threshold

concentration required to inactivate MPF.
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Testing inactivation threshold  for Mitosis I

Interphase Interphase

Mitosis I

90Cyclin B1

Testing activation threshold  for Mitosis I

Interphase

Mitosis I

90Cyclin B1

and 100 g/ml

CHX

Testing Thresholds in Cycling Extracts

100 g/ml CHX

Solomon et al. 1990

Holloway et al. 1993

Wei Sha

Tony Lassaletta



centrifuge

MPF activity oscillates in cell-free egg extracts.
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For many cell biologists, a test
tube is an in vivo system.



MPF oscillations correlate with changes in sperm morphology.
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Cell biologists love microscopes!



Testing the activation threshold for Mitosis I

Testing the inactivation threshold for Mitosis I

16 24 32 40 090 cyclin B (nM) :

90 min

0 min

60 min

140 min

 090 cyclin B (nM) : 16 3224 40

M

M M M



0
2
4
6
8
10
12
14

0 6 12 18 24 30 60

0
2
4
6
8
10
12
14

0 6 12 18 24 30 60

Prediction 1: The threshold concentration of cyclin B

required to activate MPF is higher than the threshold

concentration required to inactivate MPF.

activation threshold at 90 min

inactivation threshold at 140 min
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Prediction 2: For cyclin levels marginally above the activation

threshold, there is a dramatic “slowing-down” in the rate of

MPF activation.

1.0

0.8

0.7
0.6

0.5

0.4

0.3
0.2



0

0.2

0.4

0.6

0.8

1.0

0 10 20 30

time (min)

M
P

F

Prediction 2: For cyclin levels marginally above the activation

threshold, there is a dramatic “slowing-down” in the rate of

MPF activation.
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Marc Solomon found no evidence for this in 1990.

Cell biologists need a reason for doing a really difficult experiment.



Meiosis II

Interphase

Mitosis I

0.4 mM CaCl
2
 and

100 g/ml CHX

90Cyclin B1

Testing Lag Times in CSF-Released Extracts
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Testing Lag Times in CSF-Released Extracts
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Did I mention, cell biologists love microscopes?
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Testing Lag Times in CSF-Released Extracts:

H1 Kinase Assay
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Prediction 3: The activation threshold of cyclin B is higher

when a DNA replication checkpoint is engaged.
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CHX Aphidicolin and CHX
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Testing Thresholds in Aphidicolin-Treated Extracts
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The DNA replication checkpoint was modeled 

to affect the positive feedback.
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Building a new model of the DNA replication checkpoint…

the Cdc25 module
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Building a new model of the DNA replication checkpoint…

the Cdc25 module

Bulavin et al. 2003 
Kumagai et al. 1998 

Kumagai et al. 1998 



Building a new model of the DNA replication checkpoint…

the Cdc25 module

Kumagai et al. 1998 

Bulavin et al. 2003 
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Building a new model of the DNA replication checkpoint…

adding the Wee1 module
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Building a new model of the DNA replication checkpoint…

adding the Wee1 module

Lee et al. 2001



Building a new model of the DNA replication checkpoint…

adding the Wee1 module

Lee et al. 2001 

When mining the cell
biology literature, read the
fine print.
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Building a new model of the DNA replication checkpoint…



How do we compare data from the experimental

literature to simulations of the model?

Literature: shows % nuclear envelope breakdown

Model: gives MPF activity

Experimental data from: Kumagai et al. 1998



How do we compare data from the experimental

literature to simulations of the model?

Literature: shows % nuclear envelope breakdown

Model: gives MPF activity

a solution:

(15) d[laminP]/dt = kphos lamin([total lamin] – [laminP])[MPF]

(16)

  
fNEB =

[laminP]

[total lamin]
• Heaviside

[laminP]

[total lamin]

 

 
 

 

 
 



Effect of  &   on timing of mitosis
(NEB) = nuclear envelope breakdown
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Comparing simulations with experimental data:

testing the effect of unreplicated DNA

Experimental data from: Kumagai et al. 1998



control + aphidicolin

Comparing simulations with experimental data:

testing the Cdc25 module

Experimental data from: Kumagai et al. 1998



Comparing simulations with experimental data:

testing the Wee1 module

Experimental data from: Lee et al. 2001
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Where is the problem with the model?
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Where is the problem with the model? - what information can we

obtain from the experimental literature to address this problem 

Mueller et al. (1995)
discovered Myt1,
a second MPF kinase.



Where is the problem with the model? - what information can we

obtain from the experimental literature to address this problem 

 



Take home message so far:

1. Mining the experimental literature is tedious but worthwhile.

2. “Qualitative” data can inform quantitative models and

quantitative models can provide  critical qualitative

information.

3. Experiments to test and validate models require deliberate

design.



3. Experiments to test and validate models require deliberate

design.
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Treatment of 

extract 
Source of reagent [ cyclin B] Predicted time for 

50% NEB (-APH) 
Predicted time for 
50% NEB (+APH) 

untreated N/A 0.45 98 min >500 min 

  0.6 67 min 145 min 

Wee1 antibody from Zymed® 0.45 90 min >500 min 

  0.6 61 min 100 min 

Cdc25C antibody given by Maller
83

 0.45 >500 min >500 min 

  0.6 >500 min >500 min 

2xWee1 cDNA given by Murakami
84

 0.45 90 min >500 min 

  0.6 61 min 100 min 

2x Cdc25C cDNA given by Maller
83

 0.45 48 min 67 min 

  0.6 35 min 42 min 

 

3. Experiments specifically designed to inform models require

deliberate design.



Understanding cell cycle control in a dynamic in vivo context.
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Building the cyclin E oscillator

cyclin E



Building the cyclin E oscillator



Testing predictions of the model



Threats to genomic integrity elicit different responses

at different stages of development.



Threats to genomic integrity elicit different responses

at different stages of development.



apoptosis

Threats to genomic integrity elicit different responses

at different stages of development.



Threats to genomic integrity elicit different responses

at different stages of development.



arrest

Threats to genomic integrity elicit different responses

at different stages of development.
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The cell cycle is remodeled extensively at the MBT.



The cell cycle is remodeled extensively at the MBT.

 
variable pre-MBT MBT through gastrulation post-gastrulation 

 [nuclei]  1-4096/ l 4096-~10,000/ l will plateau due to cell growth 

[Cdc25A] high, cycles 2-12 decreases  low 

[Wee1] less active  high  decreases very low 

[Wee2] more active absent  increases at gastrulation relatively high 

[Myt1] basal basal decreased (based on RNA)
87

 

Chk1 activity low transiently active* decreased 

 



Can we use the simple cell cycles of X.laevis embryos to

develop a fundamental understanding of the regulation of the

cell cycle and the engagement of cell cycle checkpoints?

Can we discover plasticity in the DNA damage response at

the level of ecosystems? Does this give insight into

amphibian decline?

Can we use the remodeling cell cycles of the X. laevis embryo

as a model to define quantitative and qualitative elements that

determine a cell’s response to DNA damage?



 THE BIG PICTURE

 experimentalists  theoreticians/modelers
Models that are:

Predictive

Testable

Understandable

Data that are:

Quantitative

Kinetic

Interpreted




