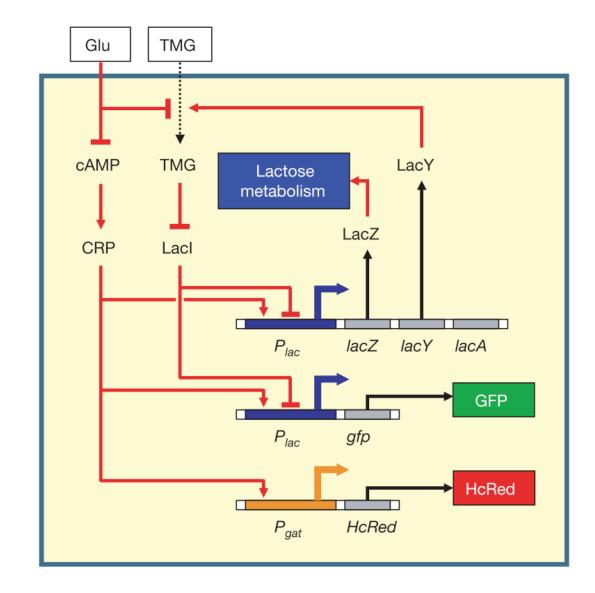
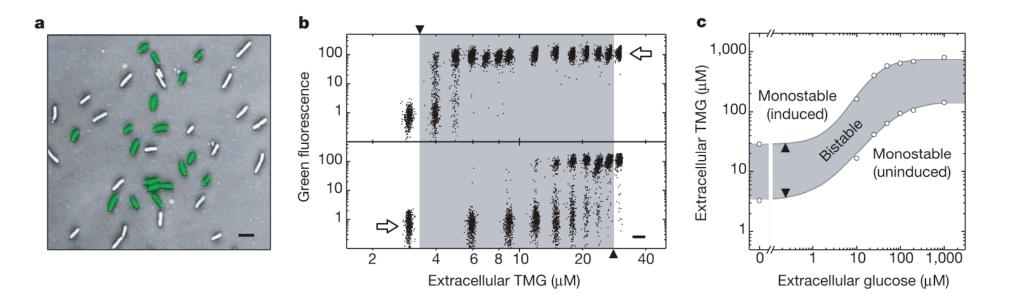

Bistability in the lac operon

Moisés Santillán Michael C. Mackey Eduardo S. Zeron The lactose operon


Interaction of the repressor with the *lac* operators



The Osbudak et al. Experiment

NATURE | VOL 427 | 19 FEBRUARY 2004

Bistability was not observed when the inducer was lactose

During induction with lactose, initially uninduced cell populations show a transient bimodal distribution of green fluorescence levels at certain glucose concentrations, and a transient unimodal distribution at others. However, the steady state distribution after 4 hours of growth is *always* unimodal, and we never observe hysteresis. By performing extensive measurements, we confirmed this unimodal behaviour to occur for over fifty combinations of glucose and lactose concentrations, upto saturating quantities of each sugar. The difference between the observed responses to TMG and lactose could be due to several causes. First, because lactose is metabolized and therefore affects cell growth rate, it could happen that the induced subpopulation of a bimodal population always grows to dominance. Second, since the metabolism of lactose leads to a drop in CRP-cAMP levels¹⁸, the inducer activity of allolactose might be counteracted to some extent. Third, although an increase in operon expression leads to an increase in lactose uptake and allolactose production, it also leads to an increase in allolactose degradation by β -galactosidase. Intracellular allolactose levels therefore depend very weakly on operon expression levels, reducing the strength of positive feedback and possibly eliminating bistability altogether.

A mathematical model for the lac operon

$$\begin{aligned} \dot{M} &= k_{M}[D] \left(p_{pc}([Ge]) \mathcal{P}_{R}^{1}([A]) + p_{p} \mathcal{P}_{R}^{2}([A]) \right) - (\gamma_{M} + \mu) M \end{aligned}$$
(1)

$$\begin{aligned} \dot{E} &= k_{E}[M] - (\gamma_{E} + \mu)[E] \end{aligned}$$
(2)

$$\begin{aligned} \dot{L} &= k_{L} \beta_{L}([Le]) \beta_{G}([Ge])[Q] - 2\phi_{M} \mathcal{M}([L])[B] - \mu[L] \end{aligned}$$
(3)

$$\begin{aligned} [A] &= [L] \end{aligned}$$
(4)

$$\begin{aligned} [Q] &= [E] \end{aligned}$$
(5)

$$\begin{aligned} [B] &= [E]/4 \end{aligned} \end{aligned}$$
(6)

$$\\ \mu &= \varepsilon \left(J_{G}([Ge]) + J_{L}([L]) \right) \end{aligned}$$
(7)

Supplementary equations

$$p_{pc}([Ge]) = \frac{p_p (1 + p_c([Ge])(k_{pc} - 1))}{1 + p_p p_c([Ge])(k_{pc} - 1)}$$
(8)

$$p_c([Ge]) = \frac{K_G^{n_h}}{K_G^{n_h} + [Ge]^{n_h}}$$
(9)

$$\mathcal{P}_{R}^{1}([A]) = \frac{1 + \xi_{2}\rho_{1}([A])}{\prod_{i=1,2,3} \left(1 + \xi_{i}\rho_{1}([A])\right) + \sum_{\sigma \in \operatorname{perm}(1,2,3)} \left(1 + \xi_{\sigma_{1}}\rho_{1}([A])\right)\xi_{\sigma_{2}\sigma_{3}}\rho_{2}([A])}$$
(10)

$$\mathcal{P}_{R}^{2}([A]) = \frac{\left(1 + \xi_{2}\rho_{1}([A])\right)\xi_{3}\rho_{1}([A]) + \xi_{23}\rho_{2}([A])}{\prod_{i=1,2,3} \left(1 + \xi_{i}\rho_{1}([A])\right) + \sum_{\sigma \in \text{perm}(1,2,3)} \left(1 + \xi_{\sigma_{1}}\rho_{1}([A])\right)\xi_{\sigma_{2}\sigma_{3}}\rho([A])_{2}}$$
(11)

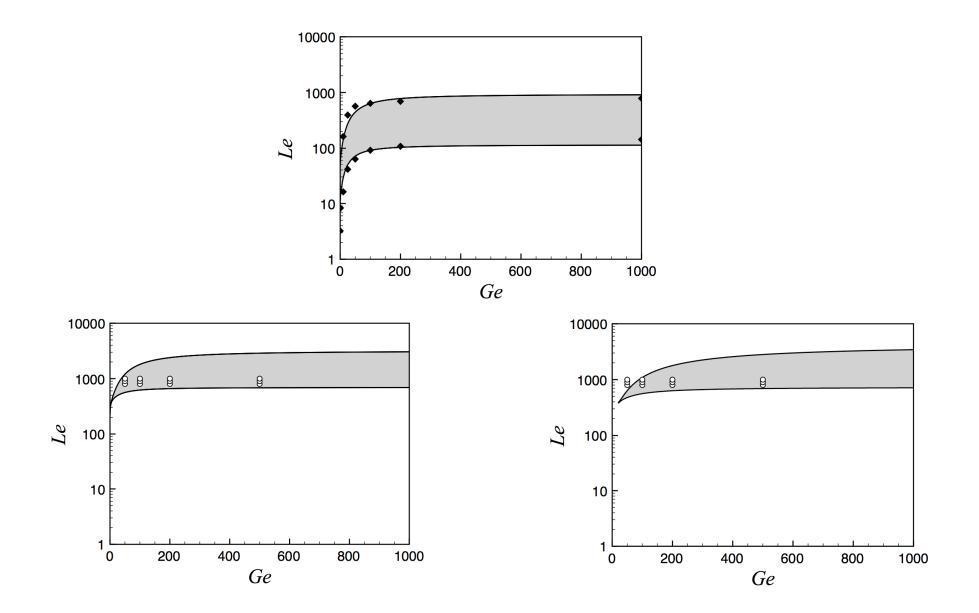
$$\rho_1([A]) = \left(\frac{K_A}{K_A + [A]}\right)^2 \tag{12}$$

$$\rho_2([A]) = \left(\frac{K_A}{K_A + [A]}\right)^4 \tag{13}$$

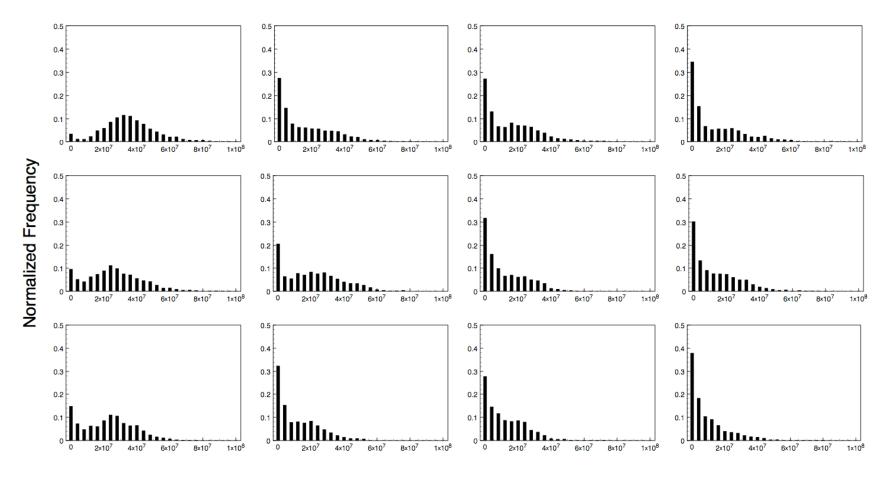
$$\beta_L([Le]) = \frac{[Le]}{\kappa_L + [Le]} \tag{14}$$

$$\beta_G([Ge]) = 1 - \phi_G \frac{[Ge]}{\kappa_G + [Ge]}$$
(15)

$$\mathcal{M}([L]) = \frac{[L]}{\kappa_M + [L]} \tag{16}$$

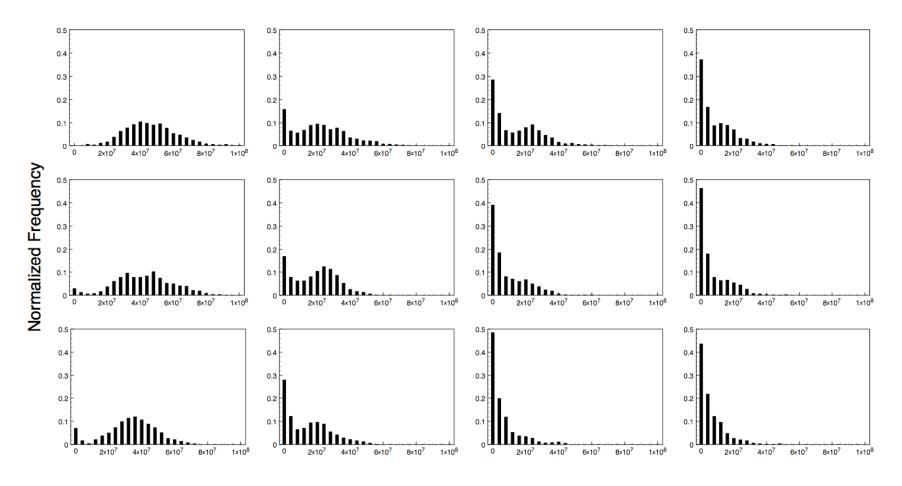

$$J_G([Ge]) = J_G^{\max} \frac{[Ge]}{[Ge] + \Phi_G}$$
(17)

$$J_L([L]) = 4\phi_M \mathcal{M}([L])[B] \tag{18}$$

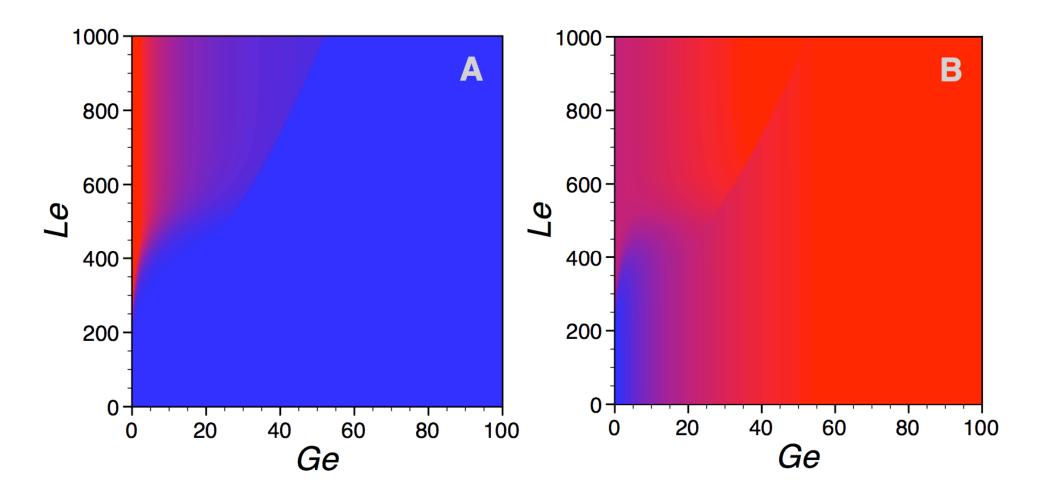

Parameter Values

[D]	\approx	$2\mathrm{mpb}$	k_M	\approx	$0.18\mathrm{min}^{-1}$
ε	\approx	$5.2 imes 10^{-10} { m mpb^{-1}}$	γ_M	\approx	$0.46\mathrm{min}^{-1}$
p_p	\approx	0.127	k_{pc}	\approx	30
K_G	\approx	$2.6\mu{ m M}$	n_h	\approx	1.3
ξ_1	\approx	17	ξ_2	\approx	0.85
ξ_3	\approx	0.17	ξ_{12}	\approx	1261.7
ξ_{13}	\approx	430.6	ξ_{23}	\approx	2.4
K_A	\approx	? mpb	k_E	\approx	$18.8\mathrm{min}^{-1}$
γ_E	\approx	$0.01\mathrm{min}^{-1}$	k_L	\approx	$6.0 imes10^4\mathrm{min}^{-1}$
ϕ_M	\approx	$\in [0, 3.8 imes 10^4] { m min}^{-1}$	κ_L	\approx	$680\mu\mathrm{M}$
ϕ_G	\approx	0.35	κ_G	\approx	$1.0\mu{ m M}$
κ_M	\approx	$7.0 imes10^5\mathrm{mpb}$	$J_G^{ m max}$	\approx	$4.4 imes 10^7{ m mpbmin^{-1}}$
Φ_G	\approx	$22\mu{ m M}$			

Bifurcation Diagrams



Constant Growth Rate


Lactose Molecules per Bacterium

Variable Growth Rate

Lactose Molecules per Bacterium

Induction Level & Growth Rate

