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cells can sense subtle chemical gradients and act
upon it within seconds




E-Coli: the hero of the story:

(a)

(b)

% run ~ 0.8 sec /

tumble ~ 0.1 sec
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Bacterial strategy for chemotaxis:

biased random walk

Attractant =

.

Temporal (not spatial) comparisons




Chemo-receptors
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Normalized cell count

Extremely high sensitivity
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Amplification

Proc. Natl. Acad. Sci. USA
Vol. 83, pp. 8987-8991, December 1986
Biophysics

Temporal comparisons in bacterial chemotaxis
(impulse response/step response/adaptation/gain)

JEFFREY E. SEGALL*T, STEVEN M. BLock*$, AND HowARD C. BERG*$

*Division of Biology 216-76, California Institute of Technology, Pasadena, CA 91125

Contributed by Howard C. Berg, August 18, 1986

RESULTS

Calibration of the Impulse Response. Given the impulse
response of Fig. 1 (induced by pulses of small but unknown
amplitude), one can predict the time course of the response
to an arbitrary stimulus; however, the amplitude of this
response is unknown up to a constant scaling factor. To
predict both the amplitude and the time course of a response,
this scaling factor must be determined. First, we measured
the rate at which attractant was released from a particular set
of pipettes by exposing cells 5 um away to a large step in
current (—100 nA) and recording their recovery times: this
works because the steady-state concentration of attractant a
fixed distance away from the tip of a pipette is proportional
to the rate of release (p. 23 of ref. 17), and the recovery time
is proportional to the net change in receptor occupancy (cf.
table 1 of ref. 16). Next, we measured the amplitude of the
response of the same cells to a smaller step in current (=3 to
—10 nA). Assummg that the rate of relcasc varies linearly

by the smaller steps is shown in Fig. 2. Note that 11X
response is not saturated. For the subset of cells used in the
calibration (those exposed to a-methyl-DL-aspartate; see
figure legend) a change in bias of 0.23 occurred for an
estimated change in fraction of receptor bound of 0.0042,
Finally, we cal:brated t.he lmpulse response by subtractm

amplltude shown : C generated by a pulse that
increased the rcccptor Dccupancy by 0.19 for a period of 20
msec (the approximate width of the shortest pulse used in our
experiments).




Precise adaptation
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Wide dynamic range
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Signalling pathway in chemotaxis of E. coli

attractants cheA
no attractants — cheA-P
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Signaling properties of the chemotaxis
network

« “Robust and precise

adaptation”: range of 3-
M\r 4 orders of magnitude
of attractant
« “Signal integration”:

Segall, Block, and Berg (1986) multiple attractants
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CCW vs CW bias for tethered cells * Wide dynamlcal range

In response to step in attractant



Receptors translate amount of attractants to
activity (cheA to cheA-P)

Input: amount of attractants

Output: activity

Attractant binding inhibits phosphorylation of CheA
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How can one measure activity (Pon) ? T o /C“e“\ /C“e\’ﬁ o,
asp \| *\ H ) tumbles

FRET (Sourjik and Berg) e I\ e,
asp-Tar CheAp CheY CheZ

Fluorescence resonance energy transfer

A
@ . Conditions for FRET:
‘ w\ Overlap between emission and excitation
spectra of the donor and excitation pair.
Pairs must be within about a “Forster radius.”
Ched —m Chof-P- ~3-5nm

FRET



FRET (cont.)
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FRET results
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Fig. 3. Response of wild-type cells to steps of Mebsp at different ambient concentrations, measured with the CheY /Ched FRET pair. (4) Initial response
amplitudes as a function of the magnitude of the step change in concentration of Mefisp after complete adaptation to ambient concentrations 0 (@), 0.1 (m),
0.5 (%), and 5 mM (4). Additional Medspwas added (closed symbaols) and then removed (open symbals) in a sequence of steps of increasing size (as in Fig. 2).



If everything 1s only a function of free energy
difference, all curves can be collapsed by scaling
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Receptors: activity function depends on
methylation

» Adaptation — how much activity occurs
for the same amount of attractant binding.

More attractant — increased
methylation by CheR — increased
activity

Less attractant — increased
demethylation by CheB — decreased

actvity
| Methyl binding sites
Control of the function Pon([C]) B CheB, CheR
(e ———
l+e ’
4 = output

AF(C,m) =Ag(m)+KT > log(1+C; /K)



Adaptation: P,

_eon
e FX /KT 1

P — —
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Allowing for attractants/repellents and methylation:

AF = Ag(m)+KT > log(1+C; /K))

To adapt, the methylation changes to achieve AF = const



Initial FRET response (N/Npre)
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FRET data: two regimes of activity

Sourjik and Berg (2002)
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Two regimes of receptor activity
consistent with 2-state receptor model.



Two regimes of a 2-state receptor
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Initial FRET response (N/Npre)
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Why all receptors turns off simultaneously in wild
type ? :
Why is k4 so small in wild type ? ST\

Why Hill coefficient larger than 1 ?

Where does amplification comes from ?

Why plateaus at different heights and different ks ?

How 1s the system sensitive to ligands attracted to
minority receptor ?

>  Receptor — receptor coupling
Duke and Bray (1999)




Receptors are clustered globally into a large array,
and locally 1nto trimers of dimers.

McAndrew et al. (2004, 2005)

Gestwicki et al. (2000)

cluster of
trimers of dimers

Kim et al. (1999); Studdert
and Parkinson (2004)



Receptor-receptor coupling

» Each receptor can be either active (S=1/2) or inactive (S=-1/2)

* Increase 1n attractant concentration enhances the
probability of being inactive (uniform magnetic field)

» Each (in)active receptor increase the probability of
other receptors to be (in)active

F=> HS -> J;S;S,

<ij>



MWC model

N receptors are all “on” or all “off” together

P = : c , Asg=¢&" —g™"
1+eN2(1+— )N
Kp
Regime Il(QkE><®): P — 1

Rje@apmarneac@pt@ﬂé%pua@@ybﬁ T

sensitivity (low K,) in Redfrge 1, an nenhanced

d@&p@%‘wirye(%‘ifgﬁ FHIP %@@Wﬁ@t%w I

* Pon(Ky ) =Pon(0)/2 = =K°"/N (high sensitivity)
* Hill coefficient = 1
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Mixed complex MWC model

Regime I:
* K. = K,/ N.
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Mixed complexes of size 14-16.
Each complex is an independent 2-state system.



Receptor homogeneity and cooperativity
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Receptors are in Regime II:

« Hill coefficient increases with Tar homogeneity because more
receptors bind ligand at transition.

* K; (or K;,) decreases with Tar homogeneity because fewer Tsrs
need to be switched off.



What about adaptation ?

Highest sensitivity for AF=0, this 1s what methylation does:
C.
_ |
AF(C,m)=As(m)+ > log(l+ K—)
i

d Methylation
dt

» P, =a[CheR] /b[CheB]

Assumes continuous level of methylation !

Barkai and Leibler:

— a[CheR]-b[CheB] P

What happens if one takes into account discreteness of
methylation levels ?



Imprecise adaptation of receptor clusters

Simulation

time (sec)

* Gillespie algorithm

stochastic and exact

Cluster size 18 receptors

[Tar: Tsr]=[1:2]
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Adaptation via “assistance neighborhoods™

aspartate

Antommattei et al. (2004)
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Assistance neighborhoods restore precise adaptation

Model:

* stationary bound CheR
and CheB

* fixed assistance
neighborhoods

* each modification site
accessed equally likely

Abortive methylation attempts
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Prediction: Two limits of adaptation
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Conclusions

Signaling properties of the chemotaxis network:
— Precise and robust adaptation

— Signal integration

— Sensitivity

FRET studies reveal two regimes of activity

— Regime I: low activity and constant K,

— Regime Il: high activity and increasing K,

Model of coupled 2-state receptors account for signaling
properties, and for two regimes

— Regime | (Ag > 0): coupling — enhanced sensitivity
— Regime |l (Ae < 0): coupling — enhanced
cooperativity (but only for homogeneous clusters)

Adaptation “homogenizes” receptors (Ae = 0) for
enhanced sensitivity
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