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The Problem...

- Circadian rhythm in a test tube:
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1 Wow! That’s amazing!
|+ Circadian oscillators are
supposed to be transcriptional.
* A complete biochemical
“circuit” in vitro.
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Cyanobacteria

- Photosynthetic bacteria (O, producing)

- Oldest known fossils
= ~3.5 billion years
= Responsible for current oxygenic atmosphere
= Qrigin of chloroplasts

- “Blue-green algae”
- S. elongatus: Genetically tractable model.




Circadian Rhythms

- Most eukaryotes, cyanobacteria,...

* Free-running oscillation, ~24 hours.

- Entrained by light, temperature, etc.

- Temperature-compensated.

- Textbook model: Negative transcriptional feedback
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...but no transcription needed in S.
Elongatus

- Circadian rhythm in a test tube:
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The Players

- KaiC
= Hexamer (AAA+ ATPase).
= Auto (de)phosphorylation activity.
= Transcriptional repressor in vivo.
* Phosphorylation level oscillates with

24 hour period. ’ el
° Ka| A Pattanayek et al., Mol. Cell 2004
= Dimer

= Stimulates KaiC phosphorylation.

= Complexes w/KaiC and KaiB + KaiC.
- KaiB

= Dimer or tetramer

= Attentuates KaiA'’s effects.

= Complexes w/KaiC and KaiA + KaiC.
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The Players

- KaiC
= Hexamer (AAA+ ATPase).
= Auto (de)phosphorylation activity.
= Transcriptional repressor in vivo.

= Phosphorylation level oscillates with
24 hour period.

- KalA
= Dimer
= Stimulates KaiC phosphorylation.
= Complexes w/KaiC and KaiB + KaiC.
- KaiB
= Dimer or tetramer
= Attentuates KaiA'’s effects.
= Complexes w/KaiC and KaiA + KaiC. ' -3
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In Vitro Data

- Different combinations of proteins

= Phosphorylation and dephosphorylation each slow
and temperature-compensated.
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In Vitro Data

- Varying concentrations
= |ncreasing all concentrations by same factor = No

change.
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In Vitro Data

- Sizes of Complexes
= No evidence for interactions between KaiC hexamers.

= Almost no free KaiA.
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In Vitro Data
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In Vitro Data

- Sizes of Complexes
= No evidence for interactions between KaiC hexamers.
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Modeling Challenges

Kai proteins neither created nor destroyed.

KaiC (de)phosphorylation = only driven (energy-
consuming) reactions.
= No other covalent modifications or enzymatic activities.

= QOther reactions obey detailed balance (unless tightly coupled
to phosphorylation cycle).

KaiC hexamers don't interact directly.
= Single KaiC hexamer can’t oscillate coherently.
= KaiC’s coupled only indirectly through KaiA and KaiB.

Seriously constrained by biochemical data.




Model, Part 1: Allosteric Cycles

- 2 KaiC conformations:

= “U” favors phosphorylation
= “D” favors dephosphorylation

- KaiC alone cyclically adds & removes P’s:
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| |

Dy+—= Dy+= Dy+= D3y=— Dy ~— Ds— Dg

(subscript indicates # phosphates)




Thermodynamic Constraints
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Thermodynamic Constraints
- What drives state transitions?

Bind ATP Release ADP

CUO_’U1 —U—-U—-U—U;— UGD
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Thermodynamic Constraints

- What drives state transitions?
Nucleotide exchange.
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Thermodynamic Constraints

- What drives state transitions?

Nucleotide exchange.
= All obvious driven steps now “used up”.
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Thermodynamic Constraints

What drives state transitions?

Nucleotide exchange.
= All obvious driven steps now “used up”.
= Further reactions should obey detailed balance.

Bind ATP Release ADP
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Thermodynamic Constraints

What drives state transitions?

Nucleotide exchange.
= All obvious driven steps now “used up”.
= Further reactions should obey detailed balance.

Must allow reverse, intermediate reactions.

Bind ATP Release ADP

iyt

Dy+= Dy+= Dy+= D3y~—= D= Ds— Dq




Monomer States

- 8 KaiC monomer states:

= U or D conformation
= Phosphorylated or not
= Nucleotide (ATP/ADP) bound or not

- Energy levels

D-ATP

—— U-ATP

Unphosphorylated
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Single Hexamer: Noisy Oscillations
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Must synchronize the different hexamers.




Monomer Exchange

Emberly & Wingreen
PRL 2006

- It happens during dephosphorylation phase.
- It is (probably) not enough to explain

synchronization
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Model, Part 2: Differential Affinity

- KaiA catalyzes KaiC phosphorylation.

- [KaiA] limiting.

- KaiA binds laggards (fewer phosphates) more
strongly than leaders (more phosphates).
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Generic Differential Affinity

- KaiA and KaiC only.
- Oscillates:
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- Does not agree quantitatively with experiments.




Full Model

- Should include KaiB.

- Should agree with data on KaiC alone, KaiA + KaiC,
abundance of different complexes,...
- Changes/Additions:
= Weak dephosphorylation in U conformation.

= U more stable than D: AVOID OVERSHOOTS.
= KaiB binds to, stabilizes D conformation.

= KaiB-KaiC complexes sequester KaiA (differential affinity).

No KaiA, can’t add P’s Hogging KaiA




Full Model vs. Experiment
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Full Model vs. Experiment
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Full Model vs. Experiment

Model

1 or 2 Kali proteins




Temperature Compensation

- Recall
= Period insensitive to temperature.
= (De)phosphorylation rates separately insensitive to

temperature.
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Temperature Compensation

Recall

= Period insensitive to temperature.

= (De)phosphorylation rates separately insensitive to
temperature.
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T.C. Model




T.C. Model

- Want period robust to changes in other rates.
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T.C. Model

- Want period robust to changes in other rates.

- Make (de)phosphorylation slowest.

= But, period could still depend on ratios of rates (e.qg.
dissociation constants).

= Same timescale, different amplitude = Different
period.
- Drive all 2-body reactions to completion = No
effect if change K.
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T.C. Model

1 : . : :
Warying Flip Rates A,
0al ¥ing Flip | fxh
£ 1/5
original
b x5
b 1/5
0 12 24 a6 43 kil 72
time(hour)
1 . . . .
a5 “arying Dissociation Constants B
¥ h
¥ 1
¥ 1/5
I

0 12 24 a6 43 Bl 72
time(hour)




Kai probeing [jM]
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Temperature Compensation

- Mechanism makes predictions
= No free KaiA

= Period unchanged when increase all
concentrations.

Kageyama ef al.,
Mol. Cell 2006




Temperature Compensation

- Mechanism makes predictions
= No free KaiA
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Predictions

- KaiC has 2 conformations

= Transitions between coupled to ATP hydrolysis/
phosphorylation.

= This limits choice of rates, irreversibility, ...
- Binding reactions driven to completion.




Predictions

* Increasing [KaiB] leaves oscillations unaffected.
* Increasing [KaiA] destroys oscillations.
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Predictions
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Summary

Challenge: Mechanism for “minimal” protein
oscillator.

= Only 3 purified proteins.

= Only 1 reaction cycle driven out of equilibrium.

Proposal: Synchronization of molecular cycles via
differential affinity.

Predict: Increasing [KaiA], but not [KaiB], destroys
oscillations.

Outlook.
* |n vivo? Lower [KaiA], transcriptional feedback.
= Evolution: No KaiA in ~50% of cyanobacteria!






