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—-How Do Cells Compute?




e Computers and the living cell

* Discrete networks as models for cellular computation
* A biological example: The yeast cell cycle

* Discrete network models and stochastic dynamics

* Applications and outlook



Computation 1n the Cell?

0. Soderberg et al. 2006

e Adapting and reacting to environment: analog computation?

* Controlling sequences of events, cell-cycle, multicellular
development, etc.: digital computation?



Computational elements 1n the cell

This workshop: We‘ve seen many
molecular regulatory elements
with binary characteristics,

and even bistable switches.

Digital variables {0,1} can be represented:
Elements for digital computation exist in the cell!

So... 1s there any digital computation in the cell?
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Sequence control options

Computer: Desired sequence of
actions 1s stored on the tape

Dynamical System: Sequence
emerges as dynamical trajectory
of the system, determined by the
circuitry of the system

If you had the choise: punched tape 1s easiest

It all you have 1s squishy stuff (water,
molecules, ...) and have to generate a sequence
from that: There 1s the dynamical systems
approach, only.

Problem: How to reliably generate a sequence of
actiong from canichv hnildino hlock<?



Engineering example:
Controlling a washing machine

e Software: Sequence of switching events,
controlling pumps, valves, motors, heater...

e Input: Switches, temperature probes, water level ...

e QOutput: Sequence of events, in response to selected
program, temperature, water level, etc.

e Hardware: Similar to
punched tape computer

e Switching disks mounted on
common axle, driven by a
motor




Analogy:
Controlling the cell cycle

e Software: Desired sequence of Gene/Protein
activation states

e Input: External signals, cell size, temperature, etc.

e Output: Sequence of molecular activation patterns
in response to external and internal signals

 Hardware: Molecular network, analog,
autonomous dynamics, continuously updated (no
computer clock cycle), many elements with
tendency to binary states.



Dynamics of networks of switches

e Massive simplification of biochemical networks, what
can we learn from it?

 Idea: * Drop prediction of time.

» Keep the requirement to predict
ordered sequences of activation patterns.

This is the ,,Software‘ in the analogy picture.

* Engineering knowledge applicable to this ,,software
layer*?
 How can networks of unreliable elements work reliably?
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Dynamics of genes (yeast)

@ECEDE

MPF

FCSF

Time

Remarkable: steep flanks and plateaus
Hypothesis: Represent a gene by a switch-like dynamics



Gene regulation network of yeast

Simplified levels of activation and inhibition:

[S. Maslov and K. Sneppen, 2003]



Discrete dynamical networks as models for gene
regulation have been around: Boolean networks [Kauffman

Dynamics:

Transients, attractors with lengths
scaling with system size as t~eN for
overcritical connectivity K > K ~ 2

Few attractors:
fixed points, limit cycles.

Large basins of attraction.

1969]
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asymmetric!

o
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«— an attractor state

attractor shown in detail

o cycle
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¢ o T\ transient tree
l and sub-trees
o

After A. Wuensche (1998)
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Kauffman‘s Attractor Hypothesis (1969):
,Attractors of gene networks determine cell types*
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Boolean models for regulatory networks

,more than anecdotal® only very recently:

e R. Albert & H. Othmer: The topology of the regulatory
Interactions predicts the expression pattern of the Drosophila
segment polarity genes, J Theor Biol 223 (2003) 1.

e F.LI, T.Long,Y.Lu, Q.Ouyang & C. Tang: The yeast cell
cycle network is robustly designed, PNAS 101 (2004) 4781.
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Dynamical model of the yeast cell cycle

[Li et al., PNAS 2004]
e Threshold network:

ell Size
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* Couplings activating/inhibitory a;=1/ a;=-1
e Degradation S;(t+1) = 0 1f no input for more than 1 time step
e Synchronous dynamics for all genes



Largest attractor in state space

State space: 211=2048 states, 7 attractors (fixed points)
o Largest attractor (1764 states) = biologically stable final state
» Trajectory after start signal follgws the/p%i&ological time sequence
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* Figure:
Dynamical trajectories of the
1764 protein states
(green nodes), that flow
to the largest fixed point (G1)
* Flow converges to the
biological path (blue)




Robustness |: Network mutations

,, et o, 50% of mutations

S‘I“ aq\' keep biological path:
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Robustness IlI: Damage spreading after “spin flip”

Popular definition of Robustness
used by e.g.

Aldana & Cluzel, PNAS 2003
Shmulevith et al., PNAS 2003
Kauffman et al., PNAS 2003
Kauffman et al., PNAS 2004




Robustness I11: Biochemical stochasticity

¢ Lo e ey, Genes are noisy:

* 10
. _ 0 « =
2 \ Fluctuating switching times
1 McAdams & Arkin PNAS 1997
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Fluctuating gene activity
Pedraza & Oudenaarden Science 05



How does the cell achieve a
clockwork-like reliability from
molecular building blocks?
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Synchronous update (no noise)

Xo




Asynchronous update (noisy)




Simplest genetic circuit: Self-regulating switch Hes1

1

HoST i - /A\'. i N N
e ¥ VYV
s > I ;
d[mRNA] ak” _ [mRNA(1)]
dt k" +[Hesl(t —T)] T o)
d[Hesl Hesl(t
| eS]=/3[mRNA(t)]_[ esl(?)]
dt THesl

[M.H. Jensen, K. Sneppen, G. Tiana 2003 ]



Simplest model that keeps timing info

o Keep delay and one low pass filter,
difference equation for RNA concentration c:

Ac, =a| f(S,(t-1))-c,(D)|Ar

 Let threshold sum now drive the concentration gradient:

Ac, =¢- sgn(EJZij(t -T) -1,
J

e=aht  S;=6(c;-1/2) ¢ €[0]]

 Stochastic numerical integration: random sequential update
[K. Klemm & S.B., g-bio/0309013]



Switching pattern of nodes with filter and delay

delay off, filter off (t=0. e=1)
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« Stable quasi-deterministic dynamics under
asynchronous (random single spin) updates!
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Dynamics on a random network
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Parallel-update dynamics recovered under asynchronous dynamics!



The yeast cell cycle network revisited:
How does it deal with noise?

Multi-switch events can in principle de-synchronize:

e Ul MBFEF SBE Cinl 2 Cdhl Swadh Cde2)) ClbSe Sicl Cilb1,2 Momld Fhase

Cdeld SFF

1 ] 1 {) { | ) ( D | | 0 Start
2 | ] 1 ( 1 0 | ) 1 () 0 )
3 0 | ] | 0 | 0 | 0 0 o
: | 1 | | | 0 ( N ) | 0 (1

{ | | { 1 [ | | | (0 S

| 1 1 1 | 0 | 1 { 1 1 (2
7 { 0 | | { 0 | | | | | A
N | 0 0 0 | 1 | 0 | | I AM
! {) ) {) {) {) ] 1 | 1 1 1 A
10 | 0 0 | | | | | 0 | M
11 {) ) {) {) 1 1 ) l D 0 A
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[asynchronous modeling strategy e.g: M Chaves,
R Albert, ED Sontag, J Theor Biol 235 (2005) 431]



A stochastic model of the yeast cell cycle network

dc.(1) c,(1)

Delay differential equation:
rlEaUSJ(t t)>0  cws |||
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Order of switching events stable against timing
fluctuations ---> Yeast cell cycle is stable

[S. Braunewell & S.Bornholdt, J. Theor. Biol. 245 (2007) 638]
[other stochastic yeast model: Zhang et al., Physica D 219 (2006) 35]



Are we just lucky?

In fact most attractors in discrete dynamical networks are
artifacts of the synchronous update mode (!) and

disappear in the presence of noise...
[F. Greil & B. Drossel, Phys. Rev. Lett. 95 (2005) 048701; K. Klemm &
S. Bornholdt, Phys. Rev. E 72 (2005) 055101 (R)]

Independence of temporal order of flips requires:
1. Nodes must have stable (non-fluctuating) input when they

are required to flip.
2. Nodes that flip in the same macro time step must not

Influence each other.

...these are the same rules as in electrical engineering!
[K. Klemm & S.Bornholdt, PNAS 102 (2005) 18414]



Requirement for robustness against noise poses
constraints on network topology

Why the 4-node Repressilator is unstable....

“wave front”’

X+ Xy

Phase not conserved for loops with even # of inhibitory links

[K. Klemm & S.Bornholdt, PNAS 102 (2005) 18414]
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Reliable networks are evolvable

Single Mutations can stabilize a given attractor!
[S. Braunewell & S.Bornholdt (2007) arxiv.org/abs/0707.1407]
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Case study: Cell cycle control of fission yeast

dCdc13y)
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Case study: Cell cycle control of fission yeast

e [T a biological network is parameter-
insensitive, can we drop parameters TS‘a”
from the model altogether? 1

SK

e Much different from budding yeast:
This 1s largely a protein interaction
network (non-transcriptional) --- can

we model this the Boolean way?
[this worked earlier: Li, Assmann, & Albert,
PLoS Biology €312 (2006)] PP

Ste9 Rum1

Weel/Mik1

Slp \.
Tyr15

[M. Davidich & S.Bornholdt (2007) arxiv.org/abs/0704.2200]



Constructing a dynamical model
of the fission yeast cell cycle

e Threshold Start
network: I

J

/$ v Sit+ 1) =1 0, 280 <0
j

PP —> Cdc25

Ste9

ik1 J

Sp1 \.
Tyr15

* Couplings activating/inhibitory a, =1/ a;=-1
* Degradation S,(t+1) = 0 if no input for more than 1 time step
e Synchronous dynamics for all nodes (genes/proteins)

[M. Davidich & S.Bornholdt (2007) arxiv.org/abs/0704.2200]



Fission yeast state space: Attractor landscape

» State space: 219=1024 states, 18 attractors (fixed points)

o Largest attractor (722 states) = biologically stable final state

* Trajectory after start signal follows the biological time sequence
e insensitive to timing noise

[M. Davidich & S.Bornholdt (2007) arxiv.org/abs/0704.2200]



Models of cellular networks

Single gene Small genetic circuit Mid-size genetic network
[—\ N, - ‘L ‘L /l\»

- 4
" . N B B

%Jﬁ } K |~
3 A

Great detail (m—— Computer modeling —) | 55 detail

Stochastic molecular Differential equations Discrete dynamics Pseudodynamics
simulations (connected switches) (flow across a network)

_—
ok

dt k" + [Protein(t-t)]

d[Protein]
— = B[RNA(1)]
dt

Single gene dynamics {——— Information —)  S\/sterm dynamics

Flow pattern of network states Functional modules
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Time Time

[S.B., Science 2005]



Summary

Some computational tasks of the cell have digital
character: Sequence control

Dynamical networks can serve as ,computers” that
generate reliable.dynamics from unreliable elements

Yeast cell cycle network models exhibit reliability
under stochastic dynamics

implications for networg topology, but reliable

Requiring robustnéss afainst stochasticity has
networks are evolvable

www.itp.uni-bremen.de/complex
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