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Computation in the Cell

• In and Out picture: Adapting and reacting
to environment (analog computation?)

• internally: controlling sequences of events,
controller modules (digital computation?)
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Computation in the Cell?

• Adapting and reacting to environment: analog computation?
• Controlling sequences of events, cell-cycle, multicellular

development, etc.:                     digital computation?

O. Söderberg et al. 2006



Computational elements in the cell

• This workshop: We‘ve seen many 
molecular regulatory elements 
with binary characteristics,

• and even bistable switches.

• Digital variables {0,1} can be represented:

• Elements for digital computation exist in the cell!

• So... is there any digital computation in the cell?



Digital computer

• Switches = electromechanical relays
• Sequence of actions on punched tape

(K. Zuse, 1941)



Sequence control options
• Computer: Desired sequence of 

actions is stored on the tape
• Dynamical System: Sequence 

emerges as dynamical trajectory 
of the system, determined by the 
circuitry of the system

• If you had the choise: punched tape is easiest
• If all you have is squishy stuff (water,

molecules, ...) and have to generate a sequence
from that: There is the dynamical systems
approach, only.

• Problem: How to reliably generate a sequence of
actions from squishy building blocks?

www.jscriba.de



Engineering example:
Controlling a washing machine

• Software: Sequence of switching events,
controlling pumps, valves, motors, heater...

• Input: Switches, temperature probes, water level ...
• Output: Sequence of events, in response to selected

program, temperature, water level, etc.

• Hardware: Similar to
punched tape computer

• Switching disks mounted on
common axle, driven by a
motor



Analogy:
Controlling the cell cycle

• Software: Desired sequence of Gene/Protein
activation states

• Input: External signals, cell size, temperature, etc.
• Output: Sequence of molecular activation patterns

in response to external and internal signals

• Hardware: Molecular network, analog,
autonomous dynamics, continuously updated (no
computer clock cycle), many elements with
tendency to binary states.



Dynamics of networks of switches

• Massive simplification of biochemical networks, what
can we learn from it?

• Idea:    • Drop prediction of time.
             • Keep the requirement to predict

  ordered sequences of activation patterns.
  This is the „Software“ in the analogy picture.

• Engineering knowledge applicable to this „software
layer“?

• How can networks of unreliable elements work reliably?



Control on the
systems level
is very reliable!

?
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Snapshot of gene activity in Yeast



Dynamics of genes (yeast)

Remarkable: steep flanks and plateaus
Hypothesis: Represent a gene by a switch-like dynamics



Gene regulation network of yeast

Simplified levels of activation and inhibition:

[S. Maslov and K. Sneppen, 2003]



Discrete dynamical networks as models for gene
regulation have been around: Boolean networks [Kauffman

1969]
Here: Threshold networks [S.B. & K. Sneppen 1998]
Si t +1( ) = sgn JijS j t( )

j=1

N

Jij 1,0,+1{ }Si 1,+1{ }

Dynamics:

Transients, attractors with lengths
scaling with system size as t~eN for
overcritical connectivity K > Kc ~ 2

Few attractors:

fixed points, limit cycles.

Large basins of attraction.

asymmetric!

After A. Wuensche (1998)



N=13 Genes, K=3 links per node, 2N=8192 states, 

but only 15 dynamical attractors



Kauffman‘s Attractor Hypothesis (1969):
„Attractors of gene networks determine cell types“



Boolean models for regulatory networks

„more than anecdotal“ only very recently:

• R. Albert & H. Othmer: The topology of the regulatory

interactions predicts the expression pattern of the Drosophila

segment polarity genes, J Theor Biol 223 (2003) 1.

• F. Li, T. Long, Y. Lu, Q. Ouyang & C. Tang: The yeast cell

cycle network is robustly designed, PNAS 101 (2004)  4781.



• Computers and the living cell

• Discrete networks as models for cellular computation

• A biological example: The yeast cell cycle

• Discrete network models and stochastic dynamics

•Applications and outlook



Dynamical model of the yeast cell cycle

• Threshold network:

• Couplings activating/inhibitory aij=1/ aij=-1
• Degradation Si(t+1) = 0 if no input for more than 1 time step
• Synchronous dynamics for all genes

[Li et al., PNAS 2004]



Largest attractor in state space

State space: 211=2048 states, 7 attractors (fixed points)

• Largest attractor (1764 states) = biologically stable final state

• Trajectory after start signal follows the biological time sequence

• Figure:

  Dynamical trajectories of the

  1764 protein states

  (green nodes), that flow

  to the largest fixed point (G1)

• Flow converges to the

  biological path (blue)



Robustness I: Network mutations

50% of mutations 
keep biological path:



Robustness II: Damage spreading after “spin flip”

Popular definition of Robustness
used by e.g.
Aldana & Cluzel, PNAS 2003
Shmulevith et al., PNAS 2003
Kauffman et al., PNAS 2003
Kauffman et al., PNAS 2004



Robustness III: Biochemical stochasticity

Genes are noisy:

Fluctuating switching times
McAdams & Arkin PNAS 1997

Fluctuating gene activity
Pedraza & Oudenaarden Science 05



How does the cell achieve a

clockwork-like reliability from

molecular building blocks?
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x0 x1 x2-1 -1

+1 +1

Synchronous update (no noise)



x0 x1 x2-1 -1

+1 +1

Asynchronous update (noisy)



Simplest genetic circuit: Self-regulating switch Hes1

[M.H. Jensen, K. Sneppen, G. Tiana 2003]

d[mRNA]

dt
=

kh

kh + [Hes1(t )]

[mRNA(t)]

RNA

d[Hes1]

dt
= [mRNA(t)]

[Hes1(t)]

Hes1



Simplest model that keeps timing info

• Keep delay and one low pass filter,
difference equation for RNA concentration c:

• Let threshold sum now drive the concentration gradient:

• Stochastic numerical integration: random sequential update

[K. Klemm & S.B., q-bio/0309013]

ci = sgn JijS j (t )
j

i

 

 
  

 

 
  

ci = f Si(t )( ) ci(t)[ ] t

ci 0,1[ ]S j = c j 1 2( )= t



Switching pattern of nodes with filter and delay

• Stable quasi-deterministic dynamics under

  asynchronous (random single spin) updates!



Dynamics on a random network
N=16, K=3, random single spin updates

Parallel-update dynamics recovered under asynchronous dynamics!

[K. Klemm & S.B., q-bio/0309013]



The yeast cell cycle network revisited:

How does it deal with noise?

Multi-switch events can in principle de-synchronize:

[asynchronous modeling strategy e.g: M Chaves,

R Albert, ED Sontag, J Theor Biol 235 (2005) 431]



A stochastic model of the yeast cell cycle network

     Delay differential equation:

      Fluctuating delay td:

Order of switching events stable against timing

fluctuations ---> Yeast cell cycle is stable

[S. Braunewell & S.Bornholdt, J. Theor. Biol. 245 (2007) 638]

[other stochastic yeast model: Zhang et al., Physica D 219 (2006) 35]

fi(t,td ) =

1, aijS j (t td ) > 0
j

0, aijS j (t td ) < 0
j

 

 
 

 
 

Si(t) =
1,ci(t) > 0.5

0,ci(t) < 0.5

 
 
 

dci(t)

dt
= f i(t, td )

ci(t)



Independence of temporal order of flips requires:
1. Nodes must have stable (non-fluctuating) input when they

are required to flip.

2. Nodes that flip in the same macro time step must not

influence each other.

...these are the same rules as in electrical engineering!

[K. Klemm & S.Bornholdt, PNAS 102 (2005) 18414]

Are we just lucky?

    In fact most attractors in discrete dynamical networks are

artifacts of the synchronous update mode (!) and

disappear in the presence of noise...
     [F. Greil & B. Drossel, Phys. Rev. Lett. 95 (2005) 048701; K. Klemm &

S. Bornholdt, Phys. Rev. E 72 (2005) 055101(R)]



Why the 4-node Repressilator is unstable....

Phase not conserved for loops with even # of inhibitory links

Requirement for robustness against noise poses

constraints on network topology

[K. Klemm & S.Bornholdt, PNAS 102 (2005) 18414]



Reliable networks are evolvable

Single Mutations can stabilize a given attractor!

[S. Braunewell & S.Bornholdt (2007) arxiv.org/abs/0707.1407]
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Case study: Cell cycle control of fission yeast

[B Novak et al., Chaos 11 (2001) 277]

Existing model: Differential equations
with 40+ free parameters 



Case study: Cell cycle control of fission yeast

[M. Davidich & S.Bornholdt (2007) arxiv.org/abs/0704.2200]

Start

SK

Ste9 Rum1
Cdc2/Cdc13

PP Cdc25

Slp1
Wee1/Mik1

Tyr15

• If a biological network is parameter-
insensitive, can we drop parameters
from the model altogether?

• Much different from budding yeast:
This is largely a protein interaction
network (non-transcriptional) --- can
we model this the Boolean way?
[this worked earlier: Li, Assmann, & Albert,
PLoS Biology e312 (2006)]



Constructing a dynamical model

of the fission yeast cell cycle

• Threshold  
network:

• Couplings activating/inhibitory aij=1/ aij=-1
• Degradation Si(t+1) = 0 if no input for more than 1 time step
• Synchronous dynamics for all nodes (genes/proteins)

Start

SK

Ste9 Rum1
Cdc2/Cdc13

PP Cdc25

Slp1
Wee1/Mik1

Tyr15

[M. Davidich & S.Bornholdt (2007) arxiv.org/abs/0704.2200]



Fission yeast state space: Attractor landscape

• State space: 210=1024 states, 18 attractors (fixed points)

• Largest attractor (722 states) = biologically stable final state

• Trajectory after start signal follows the biological time sequence

• insensitive to timing noise

[M. Davidich & S.Bornholdt (2007) arxiv.org/abs/0704.2200]



Models of cellular networks

[S.B., Science 2005]



• Some computational tasks of the cell have digital

character: Sequence control

• Dynamical networks can serve as „computers“ that

generate reliable dynamics from unreliable elements

• Yeast cell cycle network models exhibit reliability

under stochastic dynamics

• Requiring robustness against stochasticity has

implications for network topology, but reliable

networks are evolvable

www.itp.uni-bremen.de/complex
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