

The First Stars Black Hole Seeds

Tom Abel (Stanford), Marcelo Alvarez (CITA), Michael Norman (UCSD), Chao Shi (GT), Matthew Turk (Columbia), Hao Xu (UCSD)

Outline

- Overview of Pop III characteristics
- A single BH seed:
 - A study on the importance of radiative feedback
 - Early mass accretion history in minihalos
- BH seeds in the first galaxies:
 - Spatial distributions (central or dispersed?)
 - Mean multiplicities

Population III Stars Formation

• Metal-free star formation primarily rely on H₂ cooling in the gas phase.

$$\begin{array}{l} \mathrm{H} + \mathrm{e}^{-} \rightarrow \mathrm{H}^{-} + \gamma \\ \mathrm{H}^{-} + \mathrm{H} \rightarrow \mathrm{H}_{2} + \mathrm{e}^{-} \end{array}$$

• Form in DM halos with masses 10^{5-7} M_{\odot} at z \geq 5, depending on H₂ dissociating radiation background.

Monday, 5 August 13

Monday, 5 August 13

Population III Stars Formation

Field of view – 2000 AU

Collapsing metal-free cloud fragments into 10 and 6 M_{\odot} cores. Accretion rates = 0.06 M_{\odot}/yr

Population III Stars Main Sequence – Radiative Feedback

Density

Temperature

1.2 kpc

- $10^6 M_{\odot} DM$ halo; z = 17; single 100 M_{\odot} star (no SN)
- Drives a 30 km/s shock wave, expelling most of the gas

Population III Stars Main Sequence – Radiative Feedback

- $10^6 M_{\odot} DM$ halo; z = 17; single 100 M $_{\odot}$ star (no SN)
- Drives a 30 km/s shock wave, expelling most of the gas

Wise / BH Seeds from Pop III / 05 Aug 2013

Abel+ (2007)

Accretion onto a Single Seed BH

Wise / BH Seeds from Pop III / 05 Aug 2013

Monday, 5 August 13

- Focus on BH accretion and radiation after main sequence in a 5 x 10⁵ M_☉ halo for 200 Myr.
- Initial BH mass = 100 M_{\odot}
- Assume Bondi-Hoyle accretion. Simulation resolves the Bondi radius.
- <1 M_☉ of accretion as the halo grows by a factor of 10.

Field of view = 7 kpc (inset: 300 pc) $z = 17 \rightarrow 11$

Monday, 5 August 13

Wise / BH Seeds from Pop III / 05 Aug 2013

- With radiative feedback, maximum accretion rates reach are reduced by a factor of 100–10⁴ to 10⁻⁴ (dM/dt)_{edd}
- Only followed the evolution up to 5 x 10⁶ M_☉ halo.
- Is rapid accretion possible in atomic cooling halos?

Monday, 5 August 13

- Is the Bondi accretion rate accurate when radiative feedback affects the flows interior to the Bondi radius?
- Two modes of accretion
 - Rapid (~50%) duty cycles in dense (>5 x 10⁶ cm⁻³) gas, caused by a collapse of the ionization front.
 - Slow (~6%) duty cycles otherwise

BH Populations in the First Galaxies

Wise+ (in prep)

The First Galaxies BH Populations

enzo-project.org

- Simulation setup:
 - 1.5 comoving Mpc box, 100 M_{\odot} DM particles, 1 comoving pc (maximal) resolution
 - Pop II & III star formation and feedback (transition at $10^{\text{-4}}\,Z_{\odot})$
 - Randomly sample Pop III stars from a top-heavy IMF with a characteristic mass of 40 $M_{\odot}.$
 - Only stars in the proper mass range create stellar-mass BHs.

Wise+ (in prep)

The First Galaxies BH Populations

enzo-project.org

- Simulation setup:
 - 1.5 comoving Mpc box, 100 M_{\odot} DM particles, 1 comoving pc (maximal) resolution
 - Pop II & III star formation and feedback (transition at $10^{-4} Z_{\odot}$)
 - Randomly sample Pop III stars from a top-heavy IMF with a characteristic mass of 40 $M_{\odot}.$
 - Only stars in the proper mass range create stellar-mass BHs.

output_0012 z = 22.65 155 Myr

le-54 (g/cm³)

$z = 23 \rightarrow 11$ 75 comoving kpc

Projected Temp.

Projected Density Black dots = BHs

Escaping stellar radiation

The First Galaxies BH Populations

Wise / BH Seeds from Pop III / 05 Aug 2013

The First Galaxies

Monday, 5 August 13

The First Galaxies BH Accretion Rates (5 Highest)

Wise / BH Seeds from Pop III / 05 Aug 2013

The First Galaxies BH Accretion Rates

Wise / BH Seeds from Pop III / 05 Aug 2013

enzo-project.org

- Follow a "rare peak" forming galaxies until z = 15.
 - 40 comoving Mpc box, 5 comoving Mpc zoom-in region
 - 34,000 M_{\odot} DM particles, 19 comoving pc (maximal) resolution
 - Same physics and phenomenology as previous simulation, but no BH radiative feedback or accretion (yet).
- At z = 15, there are
 - Three ${>}10^9~M_{\odot}$ DM halos
 - 13,123 Pop III stars
 - ~3 x 10⁸ M_{\odot} of Pop II stars in ~3000 dwarf galaxies

- Zoom-in region hosts a few 10^9 M_{\odot} (4- σ) halos by z=15.
- Halo mass function has 5x the abundances as a mean region.
- Similar to a mean density region at z = 10.
- Pop III SFR suppressed but constant for the last 60 Myr at 10⁻⁶ yr⁻¹ cMpc⁻¹
 - Mainly caused by Lyman-Werner feedback

- In this "rare peak", strong local Lyman-Werner feedback suppresses Pop III star formation below 10⁷ M_☉.
- Most Pop III stars form in 1-2 x 10⁷ M_☉ halos.
- Afterward through mergers, halos between 10^7 and 10^8 M_{\odot} host 10 Pop III remnants on average at z = 15.
- 10⁹ M_☉ host about 50 Pop III remnants.
- Interesting note: There are several atomic cooling halos that haven't hosted Pop III stars.

The First Galaxies Pop III Remnant Multiplicity – X-ray binaries?

- Recall that recent simulations have suggested that Pop III stars may form in binaries
- High-mass X-ray binaries could exist in dwarf galaxies
- Could contribute to reionization by partially ionizing the IGM (long mean free paths).

The First Galaxies Pop III Remnant Multiplicity – X-ray binaries?

- Recall that recent simulations have suggested that Pop III stars may form in binaries
- High-mass X-ray binaries could exist in dwarf galaxies
- Could contribute to reionization by partially ionizing the IGM (long mean free paths).

Open Questions Fragmentation in Isothermal Collapses

Are we missing later fragmentation in the massive seed scenario? Analogous to the progress in Pop III star formation simulations?

Fig. 1. Projected gas distribution around the protostar. (A) The large-scale gas distribution around the cosmological halo (300 pc on a side). (B) A self-gravitating, star-forming cloud (5 pc on a side). (C) The central part of the fully molecular core (10 astronomical units on a side). (D) The final protostar (25 solar radii on a side). The color scale from light purple to dark red corresponds to logarithmically scaled hydrogen number densities from 0.01 to 10^3 cm⁻³ (A), from 10 to 10^6 cm⁻³ (B), and from 10^{14} to 10^{19} cm⁻³ (C). The color scale for (D) shows the density-weighted mean temperature, which scales from 3000 to 12,000 K.

Yoshida+ (2007) – no fragmentation

Wise / BH Seeds from Pop III / 05 Aug 2013

Greif+ (2012) – disk fragmentation

Open Questions Feedback in the Massive BH Seed Formation

- What fraction of gas goes into the BH, stars, and outflows?
- What are the effects of radiative feedback on the inflows in the direct collapse scenario?
 - Decreasing accretion rates?
 - Triggered / suppressed star formation?

 What happens when a pre-existing BH exists in a pristine, collapsing gas cloud?

Summary

- Radiative feedback from Pop III seed BHs has little dynamical effect on large-scales but heats and rarefies the local surrounding medium, limiting accretion rates to $\sim 10^{-10} \, M_{\odot}/yr$.
- BH accretion is limited in most minihalos, and points to growth in halos with M > $10^8 M_{\odot}$.
- In high-redshift galaxies, there are tens of BH seeds from Pop III stars roaming around the ISM, weakly accreting material.