

Marianne Vestergaard

Dark Cosmology Centre, Copenhagen/Univ. of Arizona

Massive Black Holes, KITP, August 8, 2013

AGN Virial Mass Estimates

$$M_{BH} = v^2 R_{BLR}/G$$

Variability
 Studies: R_{BLR}=cT

 Radius - Luminosity Relation:

Radius - Luminosity Relation

Most recent update:

- Scatter low
- Velocity estimate is main limitation in mass uncertainty (los velocity only)

Relation allows an estimate of BH mass based on a single spectrum

 $\lambda L(Optical: 5100Å) [erg/s]$

...provides a measure of R for HB

Velocity Dispersion of the Broad Line Region

and the Virial Mass

$$M_{BH} = f v^2 R_{BLR}/G$$

depends on structure, geometry, and inclination of broad line region

10 absolute uncertainty relative to M-σ relation: factor ~3-4

(based on Korista et al. 1995)

Wavelength (Å)

Scaling Relationships on same mass scale: and calibrated to 2004 reverberation masses

$$M_{BH} = 8.3 \cdot 10^6 \left(\frac{\text{FWHM(H }\beta)}{10^3 \, \text{km/s}} \right)^2 \left(\frac{\lambda L_{\lambda} (5100 \text{A})}{10^{44} \, \text{ergs/s}} \right)^{0.50} \, M_{\odot}$$

• MgII:

$$M_{BH} = 6.2 \cdot 10^6 \left(\frac{\text{FWHM(MgII)}}{10^3 \text{km/s}} \right)^2 \left(\frac{\lambda L_{\lambda} (2100 \text{A})}{10^{44} \text{ergs/s}} \right)^{0.50} M_{\odot}$$

• CIV:

$$M_{\rm BH} = 4.5 \cdot 10^6 \left(\frac{\rm FWHM(CIV)}{10^3 \, \rm km/s} \right)^2 \left(\frac{\lambda L_{\lambda} (1350A)}{10^{44} \, \rm ergs/s} \right)^{0.53} M_{\odot}$$

(MV 02; MV & Peterson 06; MV & Osmer 09)

1σ absolute uncertainty: factor $\sim 3.5 - 4$

Note: Many relations exist - not all are on same mass scale (e.g. Runnoe+2013; Park+ 2013; Tilton & Shull 2013; McGill+ 2008)

Masses of Distant Quasars

Distant active black holes are very massive: M_{BH} : 10^8 - 10^{10} M_{\odot} and very luminous: L_{BOL} : 10^{38} - 10^{41} W = 10^{45} - 10^{48} erg/s

M_{BH} ≈ 10⁹ M_☉
 even beyond space density drop at z ≈ 3

Masses of Distant Quasars

Distant active black holes are very massive: M_{BH} : 10^8 – 10^{10} M_{\odot} and very luminous: L_{BOL} : 10^{38} – 10^{41} W = 10^{45} – 10^{48} erg/s

M_{BH} ≈ 10⁹ M_☉
 even beyond space density drop at z ≈ 3

(DR3 Qcat: Schneider et al. 2005)

Mass Functions of Active Supermassive Black Holes

- MF = space density of BHs as function of both mass and redshift.
- What can each representation tell us?
- Rapid growth of black hole population between 1.6 Gyr and 3.3 Gyr

- LBQS: 454 sq. deg; $16.0 \le B_I \le 18.85^{\text{mag}}$
- SDSS: 182 sq. deg; $i^* \le 20^{\text{mag}}$

(Vestergaard & Osmer 2009)

Mass Functions of Active Supermassive Black Holes

Mass Functions of Active Supermassive Black Holes

 $(H_0=70 \text{ km/s/Mpc}; \Omega_{\Lambda}=0.7)$

(Vestergaard & Osmer 2009)

Mass Functions of Active Supermassive Black Holes

Masses of Distant Quasars

Distant active black holes are very massive: M_{BH}: 10⁹ - 10¹⁰ M_☉

- Probably too massive!
 (Priya Natarayan talk Monday)
- Mass function likely too shallow @hi-end (Brandon Kelly's Talk today)
- M_{BH} error: factor ~5

Uncertainties in Mass Estimates

Be Aware:

- Data Quality Matters (Denney+ 09; MV+ 11; Denney+ 13)
- Line Width Parameter Matters: FWHM vs line dispersion

Median S/N of SDSS DR7 QSO Catalog = 8.4 !!!

S/N Matters!

Comparing FWHM measured on same data by two groups/methods

So does the measurement approach!

(fitting to the data doesn't help)

Undetected Absorption skews the width measurements

Absorption can easily go unrecognized - biasing the line widths measured!

(MV test)

Assef + 2011

Low data quality yields inconsistent masses

- SDSS UV (CIV)
- Gemini IR (Hß)
- · NON-simult. data

Survey data prone to low S/N and undetected absorption

Absorption can yield both a too high and too low FWHM value depending on location on profile

Summary

M_{BH} determinations:

Reverberation mapping (z~0) and scaling relations (z>0)

M_{BH} estimates – issues to be aware of:

- Use multiple broad emission lines for better M_{BH} estimates
 - No broad line is ideal, each have issues: e.g., blending, absorption, blueshift
 - Use scaling relations on same mass scale
- Statistical uncertainty in single-epoch M_{BH} estimates: factor 4-5
- Poor data quality and intervening absorption worsen accuracy
- Line width measures: FWHM more sensitive to spectral noise; line dispersion sensitive to line blending
- We are working on improving mass estimates through spectral measurements and Velocity-Delay Maps for RM. Stay tuned.

BH Demographics:

- Rapid growth from z~4 to z~2.5: factor 17 in space density
- Observe 'down-sizing' of BHs in MFs
- · High-mass end known to be too shallow high masses overestimated

Can mass estimates be off by a factor ~10 or more?

Radius - Luminosity Relations

To first order, AGN spectra look the same

$$U = \frac{Q(\mathrm{H})}{4\pi r^2 n_{\mathrm{H}} c} \propto \frac{L}{n_{\mathrm{H}} r^2}$$

- Same ionization parameter
- Same density

i.e.,
$$R \sim L^{1/2}$$

Rest Wavelength [Å]

Dietrich et al. 2002

Radius-UV Luminosity Relationship for High-z Quasars

Full argument in MV (2004)

$$M = V_{FWHM}^{2} R_{BLR}/G$$

$$\uparrow \qquad \uparrow \qquad \downarrow$$

$$0.1 \cdot 10^{9} M_{\odot} 4500 \text{km/s} 33 \text{ lt-days}$$

1. Assume M is 2. Adopt the

really 1/10th of *average* CIV measured value line width of QSOs, but <L>~10⁴⁷ erg/s OK for quasars

3. We get an R, short for Seyferts... and $R \Rightarrow \Phi$

$$\Phi \propto R_{\rm BLR}^{-2} L$$

 $\approx 10^{47} \, \rm ergs/s$

Log Φ Log n(H)

(Korista et al. 1997)

Luminosity High-z Quasars

It is unlikely that masses are off by factor 10, but while a factor 5 is possible, is is less likely - as photoionization also argues for consistency w/ measurements

(Dietrich et al. 2002)

But isn't the velocity also uncertain?

The previous argument focuses mostly on the R-L relation...

Yes, but a combined factor ~5 is probably still realistic because:

- An average velocity for the population is good in terms of
 - measurement uncertainty
 - the average population inclination (see below)
- Type 1 AGN are mostly inclined toward us, so inclinations range between 0 45 degrees i.e. only \pm ~20degrees from an average inclination, and statistically more objects will be more inclined
- Scatter in M-σ relation for AGN is similar to that for quiescent galaxies (factor of ~3) so inclination probably does not introduce a large uncertainty
- The next slides argue that when we know the inclination to within ~25 degrees (realistic cf. above) then the uncertainty in the mass estimates is only a factor of 3 or less.

BLR velocity field

Two component velocity field: disk + wind?

Minimum width ~1200 km/s

> Width dep.'s on inclination

 $\log R_5$

Face-on

Edge-on

R = ratio of radio core

flux to total flux

log R.,

BLR velocity field

- Two component velocity field: disk + wind?
- BLR as flared disk?
- BLR as warped disk?
- Similar velocity field description:

$$\Delta V_{\rm obs} \approx \left(a^2 + \sin^2 i\right)^{1/2} V_{\rm Kep},$$

a = H/R of disk or
 V(turbulent) /V(Kepler): 0.1 - 0.3
i = inclination of disk normal to LOS

$$V_{Kepler} = \frac{V_{Obs}}{\sqrt{(a^2 + \sin^2 i)}};$$

$$M_{BH} = f \times RV_{Kepl}^2 / G$$

• Only Factor 3 Scatter in M- σ relation: a not small – so a is probably closer to 0.3 than 0.1?

Uncertainty due to inclination

$$\Delta V_{\rm obs} \approx \left(a^2 + \sin^2 i\right)^{1/2} V_{\rm Kep},$$

- a can be H/R of disk or V_{TURBULENT} / V_{KEPLER}
- i is inclination of disk. Face-on: i=0°

$V_{\it Kepler} =$	V_{Obs} .	
	$\sqrt{(a^2+\sin^2i)},$	
$M_{BH} = j$	$f \times RV_{Kepl}^2 / G$	

а	inclination	V _{KEP} /V _{OBS}	(V _{KEP} /V _{OBS}) ²
0.1	10	5	25
0.1	80	1	1
0.3	80	1	1
0.3	60	1.1	1.2
0.3	50	1.2	1.4
0.3	45	1.3	1.7
0.3	40	1.4	2
0.3	30	1.7	2.9
0.3	20	2.2	4.8
0.3	10	2.9	8.4

Assume a = 0.3:

$$\Delta i \sim 70^{\circ} -> \Delta M_{BH} < 8.4$$

$$\Delta i \sim 30^{\circ} -> \Delta M_{BH} < 4.2$$

 $\Delta i \sim 20^{\circ} -> \Delta M_{BH} < 2.4$

$$\Delta i \sim 20^{\circ} -> \Delta M_{BH} < 2.4$$