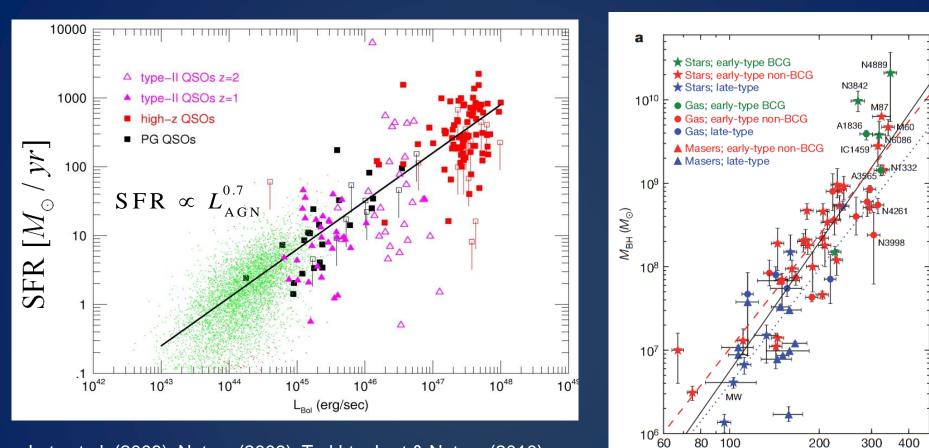
The Extreme Growth of SMBHs and Their Host Galaxies at $z \sim 5$

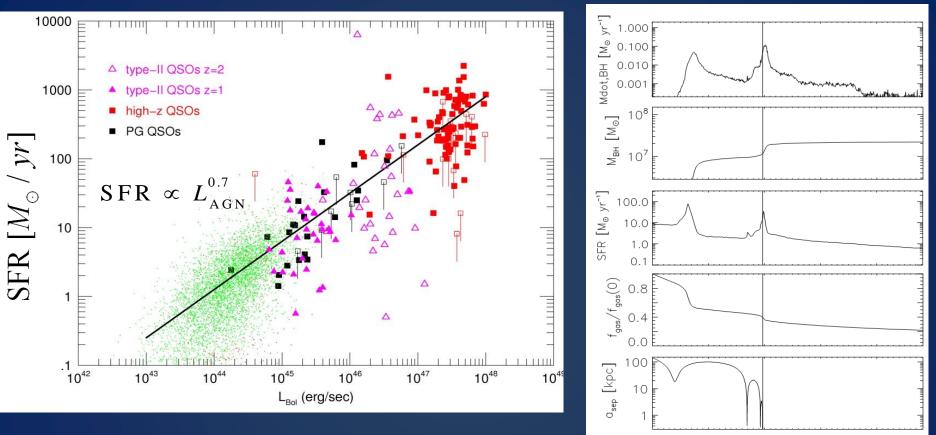

Benny Trakhtenbrot Weizmann Institute of Science → ETH Zurich

With:

Hagai Netzer & Rivay Mor (Tel Aviv University), Paulina Lira (U. Chile) and Ohad Shemmer (UNT)

Massive Black Holes Conference, KITP, Aug. 5th 2013

A Merger-Driven Link Between AGNs and Hosts?



Lutz et al. (2008); Netzer (2009); Trakhtenbrot & Netzer (2010); Mainieri et al. (2011). Also Shao et al. (2010), Rosario et al. (2012)

McConnell et al. (2011)

 σ (km s⁻¹)

A Merger-Driven Link Between AGNs and Hosts?

Lutz et al. (2008); Netzer (2009); Trakhtenbrot & Netzer (2010); Mainieri et al. (2011). Also Shao et al. (2010), Rosario et al. (2012)

Blecha et al. (2011)

Time [Gyr]

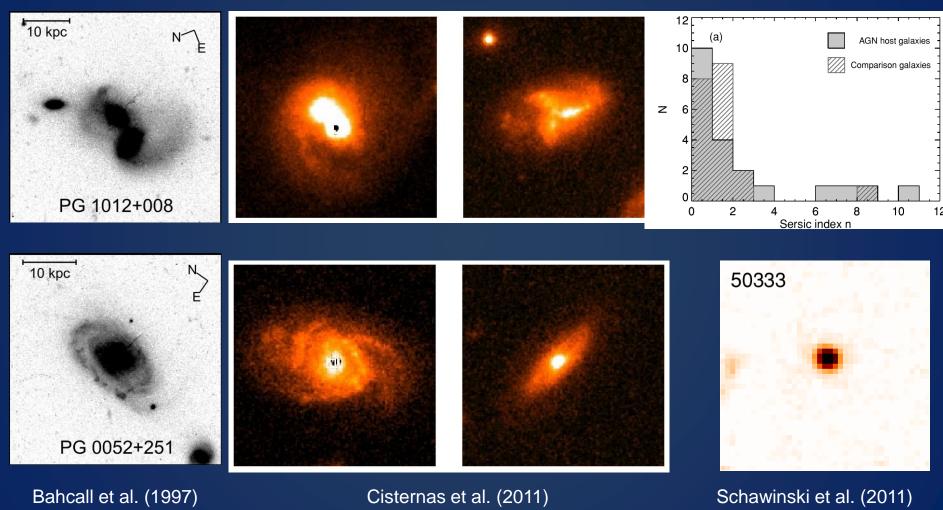
2

1

0

3

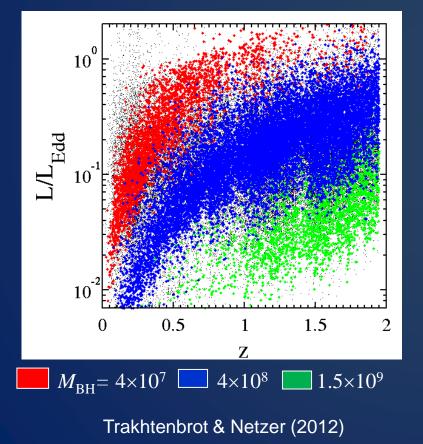
4

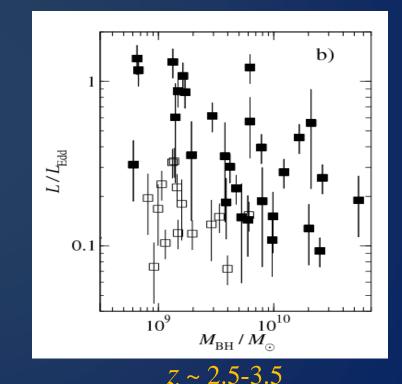

- 1. Rapid SMBH growth is accompanied by intense SF in the host
- 2. Only major mergers can lead to SFR >> $100 M_{\odot}/yr$?

A Merger-Driven Link between AGNs and Hosts?

z ~ 0

z ~ <u>1</u>


Z. ~ 2

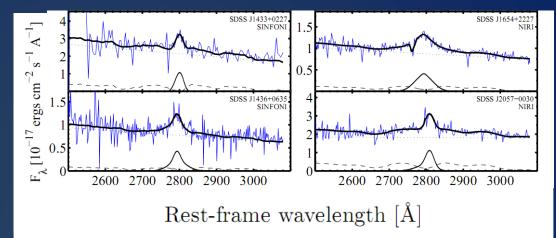


we should focus on faster-growing and/or higher-z systems

The build-up of the most massive BHs

- 1. A local relic population of extremely massive SMBHs $(M_{\rm BH} \sim 10^{10} M_{\odot})$
- 2. At z < 2 most SMBHs in luminous QSOs did not have enough time to grow, given the observed accretion rates
- 3. SMBHs with $M_{\rm BH} \sim 10^{10} M_{\odot}$ and sub- $L_{\rm Edd}$ are already in place at $z \sim 2-3.5$

Shemmer et al. (2004); Netzer et al. (2007); also: Marziani et al. (2009); Dietrich et al. (2009)


The Unique SDSS Sample at $z \sim 4.8$

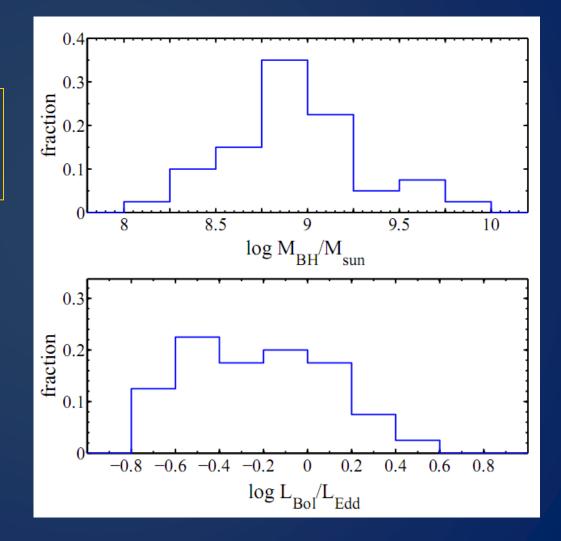
40 QSOs at z = 4.65 - 4.95

Trakhtenbrot et al. 2011 (ApJ 730, 7)

- Redshift chosen to allow measurement of MgII(λ2800Å)
- Selected from SDSS/DR7, and further flux limited.
- Follows the flux distribution of all z~4.8 SDSS QSOs ~1/4 of all similar SDSS QSOs
- H-band spectroscopy with VLT/SINFONI and Gemini-N/NIRI ~2.5-3 hours per source

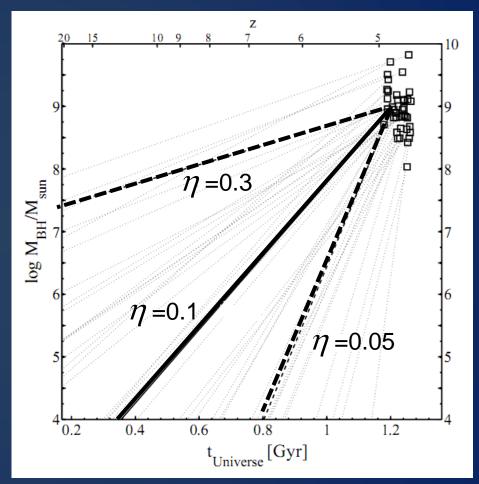
$$M_{\rm BH} = 3.2 \times 10^{6} \left(\frac{L_{3000}}{10^{44} \, {\rm erg \, s}^{-1}} \right)^{0.62} \left(\frac{\rm FW \, H \, M \, (M \, g \, II)}{1000 \, \rm km \, /s} \right)^{2} M_{\odot}$$

McLure & Dunlop (2004)


Distributions of $M_{\rm BH}$ and $L/L_{\rm Edd}$ at $z \sim 4.8$

• Black hole masses:

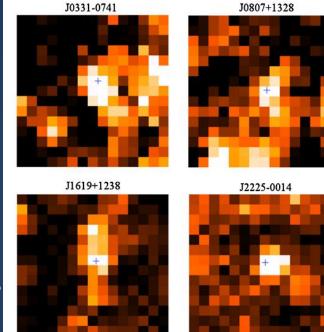
$$10^{8} \leq M_{BH} \leq 6.6 \times 10^{9} M_{\odot}$$
$$\left\langle M_{BH} \right\rangle \approx 8.4 \times 10^{8} M_{\odot}$$

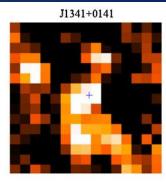

• Accretion rates:

$$0.2 \le L / L_{\rm Edd} \le 3.9$$
$$\left\langle L / L_{\rm Edd} \right\rangle \approx 0.6$$

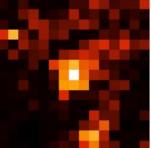
Growth from Seed BHs

- Assuming constant $L/L_{\rm Edd}$ and $\eta = 0.1 \rightarrow$ exponential growth
- → ~40% may have grown from stellar remnants
- → Another ~20% may have grown from seeds with 10³ < M_{seed} < 10⁵ M_☉
- When assuming $\eta = 0.05$, all sources satisfy $M_{\text{seed}} \leq 10^6 M_{\odot}$
- Iow/moderate spins are required to match seed models


Overall Evolution of $M_{\rm BH}$ optical \leftrightarrow NIR 10^{11} z~6.2 0 Z=2Z=1V Willott+10, Kurk+07 ₹ ₹ <u>z~4.8</u> 8 Trakhtenbrot+2011 Δ $M_{BH} [M_{sun}]$ 10⁹ z~3.3 Δ 8 Netzer+07,Shemmer+04 0 0 ∇ z~2.4 108 [Netzer+07,Shemmer+04] 0 z<2 0 SDSS; Netzer & 10^{7} Trakhtenbrot (2007) Trakhtenbrot & Netzer (2012) 10^{6} 2 8 10 12 4 0 6 ι_{Universe} [Gyr]

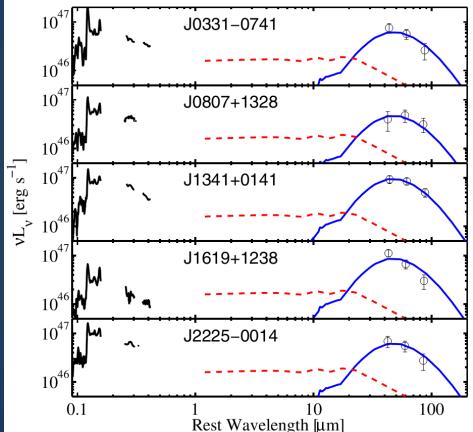

see also B. Kelly's talk...

Herschel Observations


- Herschel/SPIRE imaging at 250, 350 & 500 μm
 → rest-frame ~40-85 μm cold dust heated by SF
- PSF~18" → ~64 kpc/pix ...
 ... but Spitzer imaging helps to identify interlopers
- Extended sample of 44 sources Analysis of first 25 targets presented in Mor et al. (2012)

Netzer et al. 2013 (arXiv:1308.0012)

Stacked source

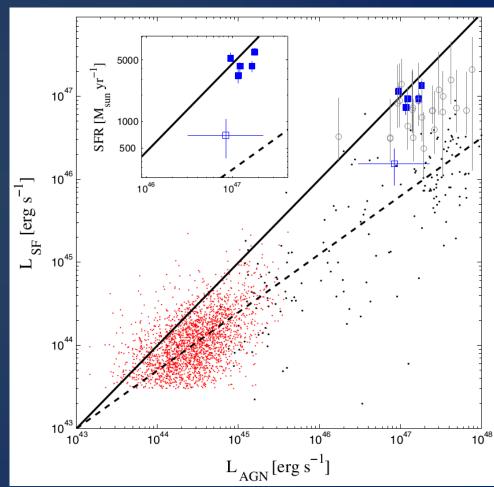

• 10 detected at >3 σ in at least 2 bands $f_{350} \sim (23-45) \pm 7$ mJy , confusion limited

Significant detection in stack of "non-detections" –

Herschel Observations \rightarrow SFRs

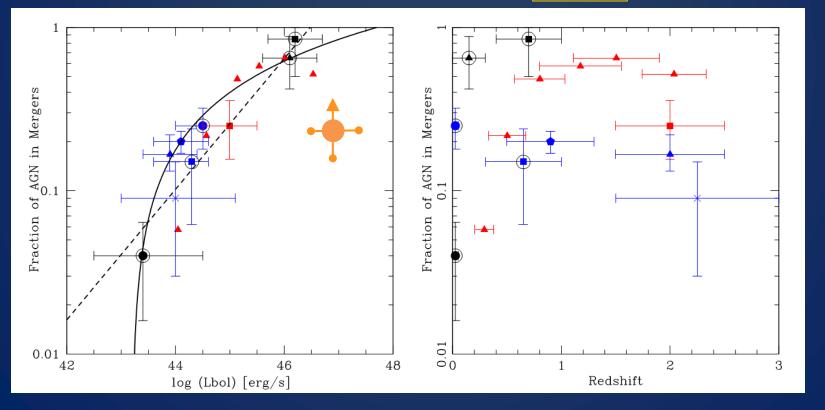
- FIR SED fitted by a grid of templates (Chary & Elbaz 2001) each template <u>defines</u> L_{FIR} (no free parameters)
- MIR ("torus") emission negligible
- → 10 detections (~23%) all with $L_{\rm FIR}$ >10¹³ L_{\odot} SFR ~ 1300-4200 M_{\odot} /yr
- → Stacked "source" (~77%) SFR ~ $450 M_{\odot}/yr$

assuming a Chabrier IMF; a Salpeter IMF would increase SFRs by ~1.6x

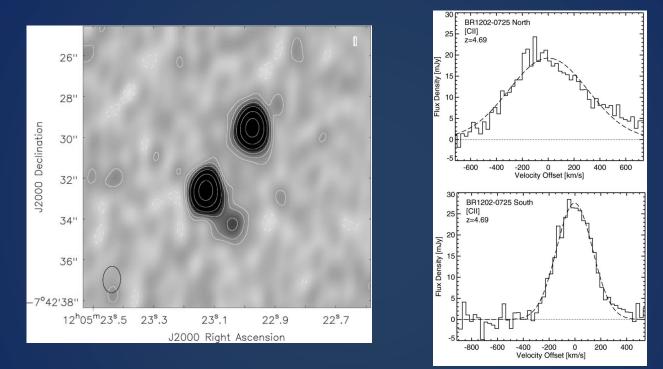

Extreme SFRs for fast-growing SMBHs Two sub-groups:

Herschel-detected and non-detected

- SFR is higher (a factor of >5)
- $M_{\rm BH}$ is higher (a factor of ~3)
- mergers vs. "secular"?
- feedback within ~100 Myr?
- location of groups w.r.t the "main SF sequence"?
- SF-AGN duty cycle?


The SMBHs can reach $\sim 10^{10} M_{\odot}$ within $\sim 100 \text{ Myr}$

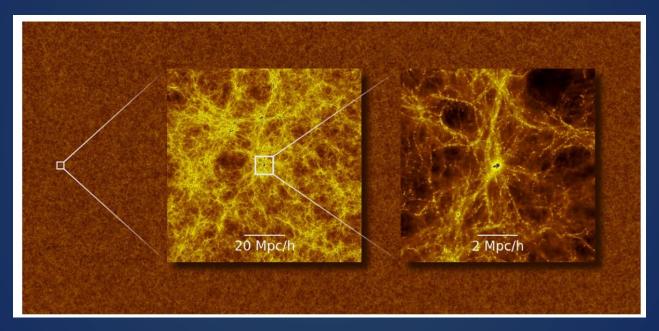
→ different locations on relic $M_{\rm BH}$ - M_* or $M_{\rm BH}$ - σ_* relations? large scatter at the high- $M_{\rm BH}$ end?


Merger Rate in AGN Hosts

- Treister et al. (2012) compiled merger rate estimates:
 "Major Galaxy Mergers Only Trigger the Most Luminous AGNs"
- F only the Herschel detections are mergers, our data suggests a major merger fraction of 23⁺¹⁰₋₇ %

Detecting Mergers with ALMA

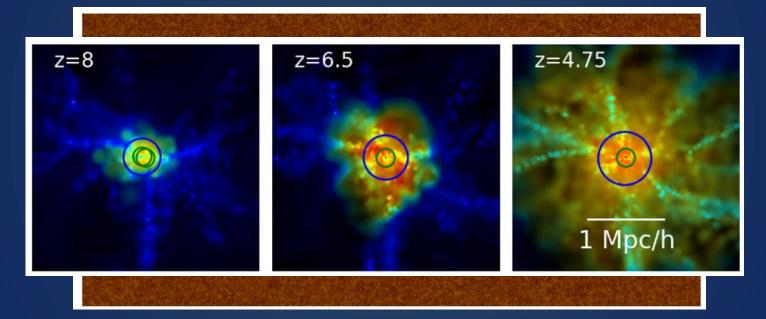
BR 1202-0725 - a luminous QSO at z=4.7


Wagg et al. (2012) – 25 minutes on-source with ALMA (SV)

 \rightarrow Dynamical masses and ISM physics of hosts!

Similar work on $z\sim 6$ QSO hosts by R. Wang et al.

Cosmic Environments with LBGs (?)

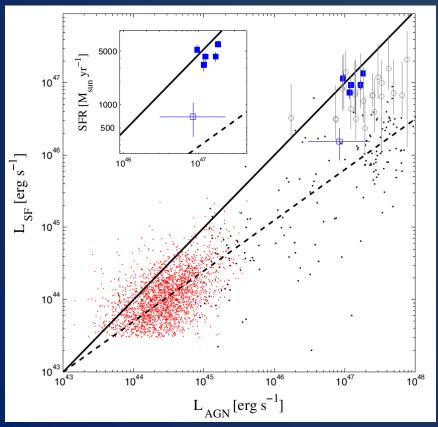

- First SMBHs grew in very massive, rare DM halos (Sijacki et al. 09, DeGraf et al. 2012, Di-Matteo el al. 2012)
- Densest regions in the high-z Universe (local BCGs?)

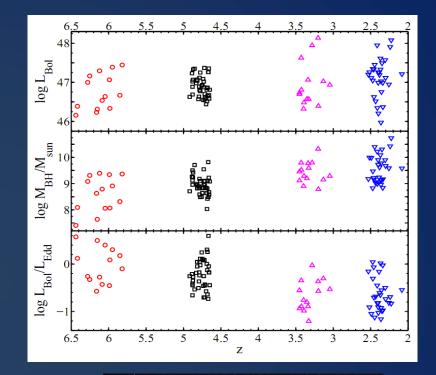
BigBlack simulation: $(0.75 \text{ Gpc})^3$, only 8 comparable $z \sim 5 \text{ QSOs}$

Cosmic Environments with LBGs (?)

- First SMBHs grew in very massive, rare DM halos (Sijacki et al. 09, DeGraf et al. 2012, Di-Matteo el al. 2012)
- Densest regions in the high-z Universe (local BCGs?)

BigBlack simulation: $(0.75 \text{ Gpc})^3$, only 8 comparable $z \sim 5 \text{ QSOs}$


Test these ideas, by looking for over-densities of $z\sim4.8$ LBGs ("V-dropouts") around the $z\sim4.8$ QSOs


Summary

- 1. A large and flux-limited sample at $Z\sim4.8$ with reliable $M_{\rm BH}$ and $L/L_{\rm Edd}$ estimates [Trakhtenbrot et al. 2011]
- Masses are lower, and accretion rates are higher, than lower-z samples → epoch of fast growth of the most massive BHs
- 3. Herschel revealed SMG/merger-like SFRs in ~1/4 of sources and a significant signal in stacking analysis of the remaining ~3/4 (main-sequence-like?) [Netzer et al. 2013]
- Future ALMA observations can provide morphology, dynamical masses and conditions in the ISM
- Future wide-field, deep imaging can probe cosmic environments

~25% of *z*~5 QSO hosts have SMG/merger-like SFRs

Thank you!