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Electromagnetic 
Surveys

Gravitational 
Wave 

Observatories

Pan-STARRS:
•2010-??
•4 skies per month

Large Synoptic Survey Telescope (LSST):
•2021-2032
•1 sky every 3 days

Multimessenger Synergy

• GW Detection/Localization  <--->  EM Detection/Localization;

• GW and light are connected theoretically but originate in wholly different mechanisms 

• --> independently constrain models;

• Either GW or EM observations of close supermassive BH binaries would be the first of its kind!

• Follow up (X-ray, sub-mm) observations can often be made via coordinated alert systems; 

•Cosmological “Standard Sirens”:  New Distance vs. Redshift Measurement
     Schutz 1986,  Chernoff+Finn 1993, Finn 1996,  Holz & Hughes 2005 

eLISA/NGO
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The Name of the Game:

•Predict accurate EM signatures of BBHs over course of the 

binary’s epochs (focusing on the neighborhood of the merger): 

•Inspiral --> Merger --> Ringdown --> one BH

•Gravity   +     Matter     =     Light   

--> Detections --> People believing in what we’re doing!   

                          --> Spectacular evidence of SMBBHs mergers and science!

•GR(t)      +     MHD     <-->  GR Radiative Transfer

•We think we understand basic GRMHD+Rad. theory well, we 

just need good initial data and a decent thermodynamics...

• Ignore self-gravity of gas, the binary separation is too small;  
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Brief Survey of Simulations w/ GR(t)
Disks Jets“Clouds”

Electro-Vac: 
Palenzuela++2010, Moesta++2010

Force-free:  
Palenzuela++2012, Moesta++2012

MHD: 
Giacomazzo++2012

Gaussian:
Bode++2010

Binary Bondi-Hoyle-Lyttleton:
Farris++2010

Hydro: 
Bode++2010, Farris++2010

MHD: 
Farris++2012

L ∼ 1047
erg

s

�
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104G
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108M⊙

�2

Farris++2010
Bode++2010

Giacomazzo++2012

L/Ledd ∼ 0.002 to > 1
8 ≤ asep/M ≤ 10

•Variability from: 
•Relativistic beaming from approaching/receding BH;
•Binary’s orbital motion w.r.t. background flow;  
•Accretion dynamics;

•EM signature coincident with merger;
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Cooling

Cold Jet
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•Variability from: 
•Relativistic beaming from approaching/receding BH;
•Binary’s orbital motion w.r.t. background flow;  
•Accretion dynamics;

•EM signature coincident with merger;

Electro-Vac: 
Palenzuela++2010, Moesta++2010
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MHD: 
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8 ≤ asep/M ≤ 10

Palenzuela++2012
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Brief Survey of Simulations w/ GR(t)
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•Variability from: 
•Relativistic beaming from approaching/receding BH;
•Binary’s orbital motion w.r.t. background flow;  
•Accretion dynamics;

•EM signature coincident with merger;

Electro-Vac: 
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8 ≤ asep/M ≤ 10

Farris++2012

Cooling

Cold Jet

Hot Jet
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Accretion Disks with a 
Single Black Hole
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i = 53◦ṁ = 0.003Corona’s X-ray Variability:
Noble & Krolik 2009
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Thermal Spectrum of Thin Disks:

Noble, Schnittman, 
Krolik, Hawley 2011spin = 0.4

spin = 0.2

spin = 0.0

NT = Novikov-Thorne 
      = Standard time-axi-symmetric  

cold disk solution
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Monte Carlo Inverse Compton Emission
Schnittman, Krolik, Noble 2013

Bremsstrahlung:
Red = Disk, Soft X-rays
Blue = Corona, Hard X-rays

Done++2007
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Back to Binaries...
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Approximate Two Black Hole Spacetimes

• Solve Einstein’s Equations approximately, perturbatively;
• Expand equations to orders of 2.5 Post-Newtonian order 

• Used as initial data of Numerical Relativity simulations;
• Black hole orbits include radiation-reaction terms --> merger;
• Closed-form expressions allow us to discretize the spacetime best for 

accurate matter solutions;

Metric Analytic Approximation: Initial Data

Global, analytic approximation for the metric describing the late

quasi-circular inspiral of two comparable black-holes (Yunes et al.

(2006a, 2006b); Johnson-McDaniel et al. (2009)).

Inner Zone (ri << b): well described by black-hole perturbation

theory (expansion parameter �i = ri/b). Use Detweiler’s

Schwarzschild perturbed metric in Cook-Scheel (harmonic)

coordinates. Electric and magnetic multipoles encode the external

tidal field effects.

Near Zone (ri >> mi and r ≤ λ/2π): (slow-motion/weak field:

�i = mi/ri ∼ (vi/c)2) post-Newtonian theory of point-particles in

harmonic coordinates (Blanchet-Faye-Ponsot (1998)). Gravitational

radiation contents are treated perturbatively.

Far Zone (r ≥ λ/2π): post-Minkowskian theory. Harmonic

coordinates. Expansion in terms of radiative multipole moments.

Non-perturbative gravitational radiation treatment.

Bruno C. Mundim Approximate Black Hole Binary Spacetimes 2012-06-20

Yunes++2006
Mundim++2013

Regions of Validity

Zone
(O  )

Buffer

23

(O   )

BH 1

Inner Zone BH 1 (C  )

Inner Zone BH 2 (C  )

Buffer

4

y

x

BH 2
1

2

Near Zone (C  )3

34

Zone 13

Far Zone (C  )
Buffer Zone (O   )

b

Inner-Zone: Kerr + Multipolar Deformation (BH perturbation theory)
Near-Zone: 2 spinning point-particles in slow-motion/weak-gravity (PN theory)

Far-Zone: A weak-gravity source emitting Multipoles (PM theory)
Wednesday, June 22, 2011

Pbin = 0.8 hours

�
M

106M⊙

�� a

20M

�3/2

tmerge = 17hours

�
M

106M⊙

�� a

20M

�4

•q=1, non-spinning
•~100, 120 orbits
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Log Surface Density

•HARM3d GRMHD sim.;

•Seed with weak B-field;

•Keep disk cool to H/R~0.1;

•Use recorded local cooling 
rate as emissivity proxy;

•Let disk “settle” before BBH 
is let to inspiral;
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The “Lump”

– 47 –

Fig. 1.—: A series of snapshots of the disk surface density at different times. Density contours are

on a linear scale. The color scale encoding the density (see the color bar for each panel) has twice

the range in the bottom two panels as in the top two. White dots show the position of the binary;

the faint white solid circle shows the boundary of the central cut-out; the white dash-dotted circles

represent the radii r = 1, 2 and 3a.
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Fig. 1.—: A series of snapshots of the disk surface density at different times. Density contours are

on a linear scale. The color scale encoding the density (see the color bar for each panel) has twice

the range in the bottom two panels as in the top two. White dots show the position of the binary;

the faint white solid circle shows the boundary of the central cut-out; the white dash-dotted circles

represent the radii r = 1, 2 and 3a.GRMHD: Noble++2012

Newtonian MHD:
Shi++2012
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Newtonian period of a circular equatorial orbit at radius r. Our procedure is similar to those used

by Noble et al. (2009) and Penna et al. (2010). The term in the parentheses acts as a switch

ensuring that L ≥ 0 always, and is zero when the local entropy, S = p/ρΓ, is below the target

entropy, S0 = 0.01, which is the constant value used in the initial data’s torus. Hence, the cooling

function should release any heat generated through dissipation since the initial state. We do not

cool unbound material—i.e. fluid elements that satisfy (ρh+ 2pm) ut < −ρ)—since we do not want

to include cooling that results from application of density or pressure floors. Since L is the cooling

rate in the local fluid frame, its implementation in the EOM must be expressed in the coordinate

frame:

Fµ = Luµ . (24)

Another advantage of the cooling function is that it provides us with a proxy for bolometric

emissivity that is consistent with the disk’s thermodynamics—unlike a posteriori estimates of syn-

chrotron and/or bremsstrahlung luminosity that have typically been made in numerical relativity

simulations (e.g., Bode et al. (2010); Farris et al. (2010, 2011)). We will use L to make predictions

of the total luminosity from circumbinary disks. These predictions are made by integrating L over

the domain in the coordinate frame; we expect to verify their accuracy using full GR ray-tracing

in future work.

4. Results

4.1. Approximate Steady State

At the beginning of both simulations, orbital shear transforms part of the radial component of

the magnetic field to toroidal, creating a laminar Maxwell stress. Meanwhile, in the same region, the

magnetorotational instability grows, its amplitude exponentiating on the local dynamical timescale,

# 500M at the initial inner edge of the disk, r = 60M . The turbulence in the inner disk reaches

nonlinear saturation at t # 10, 000M . Under the combined influence of the initial laminar and later

turbulent Maxwell stress, matter flows inward (see Fig. 4).

Soon after t # 10, 000M , the inward flow begins to pile up at r # 50M , between two and three

times the binary separation (the dashed line in both panels of Fig. 4 marks the location of 2a(t) in

order to guide the eye). We define the surface density Σ as

Σ(r,φ) ≡
∫

dθ
√
−gρ/

√
gφφ (25)

when we quote it as Σ(r), that denotes an azimuthal average. In later discussion, we will sometimes

normalize the surface density to Σ0, the maximum surface density in the initial condition; in code-

units Σ0 = 0.0956. In Run 3 , Σ(r ∼ 2a) grows steadily for the duration of the simulation, but

after t # 20, 000M , the logarithmic rate of growth (i.e., d lnΣ(r)/dt) gradually becomes slower and

slower. Because a number of azimuthally-averaged properties like Σ(r) all become steadier after

•Also, seen in:
• Newtonian hydrodynamics: 

•D’Orazio++2012
•Roedig++2012, at least in the torque var.
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Disk-Binary Decoupling

adec = 70 (d lnΣ/d ln r)−2/5
�
H/r

0.15

�−4/5 �
α

0.01

�−1
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at r ! 2.5a at late times. This asymmetry ultimately causes, in both the Newtonian and post-

Newtonian simulations, a single stream in the gap to become dominant. Almost the only contrast

in this regard is that the orbit of the lump developed a growing eccentricity in the Newtonian case,

but not in Run 3 .

The level of magnetization is likewise qualitatively similar: the mean plasma β in the New-

tonian case fell from ∼ 1 at ! 6a to ! 0.3 at the disk edge at r ! 2a, while the value (averaged

over the quasi-steady epoch in Run 3 ) in our simulations was ! 1.5 at r = 6a, grew to ! 2.5 at

the surface density peak, and then decreased inward. The magnetic stress-to-pressure ratio α in

the disk body follows the same pattern of close resemblance. It was ! 0.3 in the disk body in both

the Newtonian case and Run 3 . In the gap, the similarity was more qualitative than quantitative:

in both cases, it rose steeply into the gap, but only reached ! 0.7 at r ! a in the PN simulation,

whereas it climbed to ! 10 in the Newtonian one.

Most strikingly, the luminosity estimated by Shi et al. (2011) scales extremely well to the

PN case. Shi et al. (2011) could not directly compute the luminosity because they assumed an

isothermal equation of state. However, they argued that the work done by the binary torques would

be delivered to the disk and ultimately dissipated there into heat. Rewriting in our units their value

for the rate at which the torques did work on the gas gives a luminosity of 0.018GMΣpc(a/rg)−1/2,

where Σp is the surface density at the maximum; for our separation (a = 20M) and our surface

density at the maximum (! 0.55 averaged over the quasi-steady epoch in Run 3 ), that becomes

2.2 × 10−3GMΣ0c. This prediction agrees well with the upper end of our estimated range for the

binary torque share of the luminosity.

5.2. Comparison to Analytic Estimates of Binary Runaway

Milosavljević & Phinney (2005) predicted that at some point well before the merger, the

BBH should begin compressing so fast by gravitational radiation that internal stresses within the

disk will not allow it to move inward rapidly enough to stay near the binary. At the order of

magnitude level, this breakaway point would be expected to come when the gravitational radiation

time

tgr =
5

64

( a

M

)4 (1 + q)2

q
M (30)

becomes shorter than the characteristic disk inflow time

tin = α−1(H/r)−2(d lnΣ/d ln r)−1Ω−1 = α−1(H/r)−2(d lnΣ/d ln r)−1(r/rg)
3/2M. (31)

In these equations, the binary mass ratio q = M2/M1, α is the Shakura-Sunyaev stress/pressure

ratio, and Ω is the local disk orbital frequency. The logarithmic derivative of the surface density

enters because spreading of the inner edge is more rapid when it is especially sharp.

With a typical estimate of the stress level, α ∼ 0.01, the binary separation at which tgr and
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�

Binary-disk separation when:

Commonly Imagined: Ours:
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Accretion Rate:

• More accretion than analytic estimates due to 
enhanced stress;  about a factor of two greater 
than Newtonian MHD (Shi++2012); 

• Gradual decrease due to cumulative effect of 
torques and weaker rates further out;

• Additional decrease of RunIn also due to 
decoupling at late times;

15



Luminosity

– 24 –

the period of orbital evolution, although this ratio is in fact a bit ill-defined because 2a(t) is almost

at the simulation’s inner boundary by the end of the simulation.

The accretion rate behaves differently. It falls (see Fig. 11) from ! 30, 000M–! 40, 000M , even

before the binary begins to compress. Without binary orbital evolution (Run 3 ), it levels out from

! 40, 000M–50, 000M , before declining more gradually from ! 50, 000M until the end of Run 3 at

! 76000M . In Run 2 , the onset of binary evolution at t = 40, 000M leads to a continuing decrease

in the rate at which mass flows through the inner boundary that levels out only after ! 50, 000M .

Although the accretion rates in the simulations with and without binary orbital evolution decline at

different times and at different rates, the final accretion rate in Run 2 when the binary separation

has shrunk to only 8M is ! 0.004, only 20–30% less than at the same time in Run 3 .

4.3. EM Luminosity: Magnitude, Modulation

We define the (coordinate frame) cooling rate per unit radius of the disk by

dL

dr
=

∫ √
−g dθ dφLut. (26)

During the approximate stationary state it is best described in terms of two separate regimes. As

shown in Figure 12, at large radius (r ∼> 2a), it is very well described by a power-law, dL/d(r/a0) !
5×10−4(r/a0)−2Σ0a0. At around r ! 2a, the cooling rate per unit radius reaches a local maximum

and declines inward. This distinction neatly corresponds to two different mechanisms for generating

the requisite heat: the dissipation of MHD turbulence associated with mass accretion (at large

radius) and the dissipation of fluid kinetic energy given to the relatively small amount of gas in

the gap by the binary torques (at small radius). In fact, this identification is confirmed semi-

quantitatively. In time-steady accretion, the luminosity per unit radius is (3/2)Ṁ/[(r/M)2GM ] at

radii where the local orbital angular momentum per unit mass is large compared to the net angular

momentum flux per unit mass. Our disk is never in inflow equilibrium, and this expression is not

exact when Ṁ is a function of radius. Nonetheless, taking it as an estimator, it predicts

dL

dr/a0
= 4× 10−4(Ṁ/0.01)(r/a0)

−2Σ0a0. (27)

As Figure 7 shows, the mean accretion rate in code units at r = 2a in Run 3 was ! 0.01, while Ṁ

at larger radii is typically similar or perhaps a factor of two greater.

Integrated over radius, the total luminosity reaches a peak L̂ ! 5.5 × 10−3 at t ! 33000M

(Fig. 13), where we have written the integrated luminosity in units of GMΣ0c as L̂. After reaching

this peak, L̂ falls slowly, reaching ! 3 × 10−3 at t ! 76000M in Run 3 ; averaged over the entire

quasi-steady period in this simulation, it is 3.8× 10−3.

The light output from Run 2 remains very close to that in Run 3 until the binary orbital

evolution becomes rapid at t ! 50000M . After that time, it falls more sharply, so that by the time
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at which Run 2 stops, L̂ ! 2.7 × 10−3; this is, however, still 2/3 the luminosity in Run 3 at the

same time. As the binary shrinks, the radial distribution of the luminosity changes in parallel, with

the peak in surface brightness moving inward. We attribute the gradual decline in luminosity to

the gradual decline in accretion rate. The sharp drop in the final stages of binary orbital shrinkage

is due to the interaction of a boundary effect with genuine dynamics. As shown by Shi et al. (2011),

gas streams flow inward from the inner edge of a quasi-steady circumbinary disk to radii ! 1.2a,

where they can be strongly torqued and some of their material flung back outward toward the disk.

The outward-moving matter shocks against the disk proper at a radius near that of the surface

density peak, and the heat dissipated in these shocks contributes significantly to the luminosity.

When the binary shrinks, this mechanism is weakened for two reasons. The inner boundary of our

simulation (r = 0.8a0) eventually becomes larger than 1.2a(t); when it does, matter is no longer

thrown outward by binary torques. At the same time, however, it is possible that the retreat of

the disk’s inner edge when measured in terms of a(t) might also lead to weaker inward streams.

The fact that the energy deposited by binary torques is ultimately radiated in the disk proper

leads to a method of estimating the relative contributions to the total luminosity coming from

accretion and binary torques. For that reason, and also because the accretion rate diminishes

as the region of the surface density peak is approached from larger radius, it is a reasonable

approximation to suppose that most of the luminosity from the region of the surface density peak

inward has its source in the binary torques. We can therefore roughly bound the work done by the

torques between L(r < 2a0) and L(r < 3a0). On this basis, accretion would account for ! 1/2–3/4

of the total (i.e., L̂ ! 1.8–2.9 × 10−3) and the binary torque for ! 1/4–1/2 (L̂ ! 0.9–2 × 10−3).

The rest-mass efficiency of this luminosity is comparable to the rest-mass efficiency due to

accretion that goes all the way to the black hole. Measured in terms of the time-dependent lumi-

nosity relative to the time-averaged accretion rate through the inner boundary, the efficiency in

Run 3 falls from a peak ! 0.06 achieved for 20, 000M ∼< t ∼< 45000M to ! 0.03 at the end of this

simulation. There are several reasons that this efficiency is so great even though the potential at

r = 50M is an order of magnitude shallower than the potential at the innermost stable circular

orbit (the “ISCO”). One is that the accretion rate in the circumbinary disk is roughly twice the

accretion rate through the inner boundary, so the local accretion dissipation in the disk is boosted

by that same factor of two relative to the rate at which mass passes the inner boundary. Another is

that in a conventional disk around a single black hole the dissipation rate in the region just outside

the ISCO is depressed relative to larger radii because some of the potential energy released is trans-

ported outward by the inter-ring stresses. In the Novikov-Thorne model (in which the stresses are

assumed to vanish at the ISCO), almost 40% of the total luminosity is released outside r = 40M

when the black hole has no spin. This fraction is smaller when the spin is greater, and may be

further reduced to the degree that the net angular momentum flux is smaller (Krolik et al. 2005).

Lastly, of course, additional energy is deposited in the disk by the work done by the binary torques.

Translating the peak cooling rate into physical units gives

Ldisk ! 2.4× 1040(L̂/10−3)M6τ0 erg/s. (28)

– 26 –

Here τ0 is the Thomson optical depth through a disk of surface density Σ0 and L̂ is the luminosity

in code units, i.e., 3–5× 10−3. In Eddington units, this becomes Ldisk/LE " 1.7× 10−4(L̂/10−3)τ0.

Thus, for such a system to be readily observable at cosmological distances, it will be necessary

both for the disk to be optically thick to Thomson scattering and for the mass of the binary to be

relatively large. As a gauge of what might reasonably be expected, we note that in a steady-state

accretion disk around a solitary black hole, the optical depth of the disk at r/rg = 20 would be

∼ 2 × 103(α/0.1)−1(η/ṁ), where η is the usual rest-mass efficiency, ṁ is the accretion rate in

Eddington units, and α is the usual measure of integrated stress in integrated pressure units. With

this disk surface density, the disk luminosity might approach that of a typical AGN.

If this light were radiated thermally, the corresponding effective temperature would be

Teff " 4× 104(L̂/10−3)1/4M−1/4
6 τ1/40 K, (29)

where we have assumed that the radiating area is 2π(2a)2. Thus, it would emerge primarily in the

ultraviolet for fiducial values of black hole mass and optical depth.

The luminosity (assumed to be optically thin) exhibits a noticeable modulation as a function

of time, with peak-to-trough contrast of " 5%. Its Fourier power spectrum shows a strong, sharp

peak at a frequency 1.47Ωbin (see Fig. 14) and a weaker peak at 0.26Ωbin. The latter is the orbital

frequency at the radius of the surface density maximum, " 2.4a; because the lump is located at

this radius, we call this frequency Ωlump. The former we identify with the rate at which the lump

approaches the orbital phase of a member of the binary, 2(Ωbin − Ωlump) = 1.46Ωbin. When the

lump draws near one of the black holes, a new stream forms, falls inward, and is split into two

pieces, one of which gains angular momentum, sweeps back out to the disk, and ultimately shocks

against the disk gas. If the binary mass ratio were far from unity, we expect that the modulation

frequency would become " Ωbin − Ωlump.

5. Discussion

5.1. Comparison to Newtonian MHD

In many respects, the behavior we found in this post-Newtonian regime resembles what was

previously found in the Newtonian limit (Shi et al. 2011). There is very good agreement in the

shapes of their azimuthally-averaged surface density profiles, with any contrasts attributable to

their somewhat different initial conditions. In both cases, during the quasi-steady epoch the surface

density at the disk’s inner edge rises ∝ exp(3r/a), reaches a maximum at r " 2.5a, and then declines

to larger radii.

At early times in both, there is a pair of streams leading from the disk edge to the inner

boundary, which they typically reach at an orbital phase slightly ahead of the nearest member

of the binary. Both also develop a strong m = 1 asymmetry (a “lump”) in the surface density

τ0(r = 20M)

Typical for a Active Galactic Nucleus
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6 τ1/40 K, (29)

where we have assumed that the radiating area is 2π(2a)2. Thus, it would emerge primarily in the

ultraviolet for fiducial values of black hole mass and optical depth.

The luminosity (assumed to be optically thin) exhibits a noticeable modulation as a function

of time, with peak-to-trough contrast of " 5%. Its Fourier power spectrum shows a strong, sharp

peak at a frequency 1.47Ωbin (see Fig. 14) and a weaker peak at 0.26Ωbin. The latter is the orbital

frequency at the radius of the surface density maximum, " 2.4a; because the lump is located at

this radius, we call this frequency Ωlump. The former we identify with the rate at which the lump

approaches the orbital phase of a member of the binary, 2(Ωbin − Ωlump) = 1.46Ωbin. When the

lump draws near one of the black holes, a new stream forms, falls inward, and is split into two

pieces, one of which gains angular momentum, sweeps back out to the disk, and ultimately shocks

against the disk gas. If the binary mass ratio were far from unity, we expect that the modulation

frequency would become " Ωbin − Ωlump.

5. Discussion

5.1. Comparison to Newtonian MHD

In many respects, the behavior we found in this post-Newtonian regime resembles what was

previously found in the Newtonian limit (Shi et al. 2011). There is very good agreement in the

shapes of their azimuthally-averaged surface density profiles, with any contrasts attributable to

their somewhat different initial conditions. In both cases, during the quasi-steady epoch the surface

density at the disk’s inner edge rises ∝ exp(3r/a), reaches a maximum at r " 2.5a, and then declines

to larger radii.

At early times in both, there is a pair of streams leading from the disk edge to the inner

boundary, which they typically reach at an orbital phase slightly ahead of the nearest member

of the binary. Both also develop a strong m = 1 asymmetry (a “lump”) in the surface density

-->  peak in UV assuming thermal emission
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Luminosity(r,t)

tshrink = 4× 104M tshrink = 6× 104Mtshrink = ∞M

Noble++2013
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tshrink = 4× 104M tshrink = 6× 104Mtshrink = ∞M

Luminosity(r/a(t),t)

•Emission tracks binary;
•Rate of signal decay dependent on when BBH starts to inspiral;

Noble++2013
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Periodic Signal

ωpeak = 2 (Ωbin − Ωlump) 1 <
ωpeak

(Ωbin − Ωlump)
< 2 0 <

M2

M1
< 1

May be obfuscated by       
“low-pass” filter of disk’s 
opacity: 

0.16
� α

0.3

�
� fsupp � 0.32

� α

0.3

�
-->  Ray-tracing may help
       determine quality of signal       

ΩK(rlump)
rlump � 2.5a

1.47Ωbin
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ΩK(rlump)
rlump � 2.5a

1.47ΩbinΩK(rlump)

Ωbin
•Beat effect subdued, broader power distribution;
•New peak at binary’s orbital frequency;
•More variability on lump’s orbital timescale;

Variabality vs. Mass Ratio:
q=1 q=1/2

Noble++2013
20



Approximate Two Black Hole Spacetimes Yunes++2006
Mundim++2013

O(v2) O(v3)

O(v4) O(v5)

Dependence on PN order
Ricci Scalar ~  “Fake Density”

Dependence on 
Separation

Regions of Validity

Zone
(O  )

Buffer

23

(O   )

BH 1

Inner Zone BH 1 (C  )

Inner Zone BH 2 (C  )

Buffer

4

y

x

BH 2
1

2

Near Zone (C  )3

34

Zone 13

Far Zone (C  )
Buffer Zone (O   )

b

Inner-Zone: Kerr + Multipolar Deformation (BH perturbation theory)
Near-Zone: 2 spinning point-particles in slow-motion/weak-gravity (PN theory)

Far-Zone: A weak-gravity source emitting Multipoles (PM theory)
Wednesday, June 22, 2011
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Dynamic Coordinates to Resolve Binary Black Holes on 
Shrinking Orbits

•HARM3D is a fixed mesh 
refinement GRMHD 
code;

•  Refinement through 
special gridding;

•Less overhead than AMR;

Zilhao & Noble 2013
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Advection of Magnetic Field Loop 

384x384 cells Zilhao & Noble 2013
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Test Run:

• 2D Hydro, no B-field
• ~ 32 cells per horizon
• Full spacetime, all “zones”;

Zilhao & Noble 2013
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Summary

•We have many of the tools in place to model single black 
hole accretion disks in 3D;

•We have the tools to make self-consistent temporal & 
spectral observational predictions from these simulations; 

•We are in the process of applying these tools to the 
binary case;

•Predicted a periodic EM signal that could be used for 
identifying close binaries by all-sky high-cadence 
campaigns (e.g., LSST, Pan-STARRS);

•Working on techniques to resolve the black holes in an 
efficient manner;

25



Open Questions?
•What are good initial conditions for these simulations?

•From simulations at larger scale?  w/ MHD?

•Effects from varying magnetic field strengths and 
configurations?

•Thermodynamic effects?  Cooling effects?  Radiation 
pressure and heating on gap’s rim?  

•H(R) ~ const. ?   H(R) ~ f(R)? 

•How do magnetic outflows affect the general picture?

•BBH effects:  spin,  orbital precession, misalignment

•e.g., jet misaligned with disk’s orbital plane...

26



Extra Slides

27



MRI Resolution

– 36 –

N3
∼> 790

(

0.1

H/r

)(

β

10

)1/2 (Qφ

25

)

, (B2)

where Nz is the number of cells per scaleheight, H, Qz > 10 is the recommended quality factor of

the simulation, βz ≡ 〈p〉/〈√gzzBz〉. We use spherical coordinates, so Nθ is needed instead:

Nz =
H

∆z
=

H

r∆θ
=

H/r

∆θ
≡ NH/r . (B3)

We see from prior simulations (e.g., Noble et al. (2010)) that β & 10 and βz/β & 50 (the numbers

given in Hawley et al. (2011)) are reasonable for a disk in its asymptotic steady state. At the

beginning of the evolution, β & 100 and βz/β & 1, however. Thus, we have NH/r > 16 cells per

H/r at t = 0, and NH/r > 36 cells per H/r for t ' 0. This is satisfied by the x2 discretization

described in Section 3.3.

The more severe constraint is on the azimuthal symmetry. Both Hawley et al. (2011) and

Sorathia et al. (2011) suggest that past simulations under-resolved the azimuthal direction and

should cover the full azimuthal range φ ∈ [0, 2π] instead of assuming quarter- or half-circle symme-

try. Since ∆φ limits the time step size, we were only able to afford Nφ = 400 as anything larger was

impractical given our computational resources at the time. We were optimistic with this resolution,

however, since the thinnest run of Noble et al. (2010) failed to satisfy eq. B2 yet still resolved the

MRI with Qφ > 25 throughout most of the disk’s body.

We demonstrate how well Run 2 and Run 3 resolve the MRI in Figs. 16, where we show mass-

weighted averages of the Q2 and Q3 MRI quality factors:

Qi =
2π

∣

∣bi
∣

∣

∆xiΩ(r)
√
ρh+ 2pm

. (B4)

The averages were made over x2 and x3 in the following way:

〈Qi〉ρ2 =
∫ 1
0 Qiρ

√
−g dx2

∫ 1
0 ρ

√
−g dx2

, (B5)

〈Qi〉ρ3 =
∫ 2π
0 Qiρ

√
−g dx3

∫ 2π
0 ρ

√
−g dx3

. (B6)

A mass-weighting is used to calculate 〈Qi〉ρ2,3 in order to bias the integral over the turbulent

portion of the disk (the disk’s bulk) rather than laminar regions (e.g., corona, funnel). We find

that the Qz constraint, i.e. 〈Q2〉ρ2,3 > 10, is satisified for all times and regions in either Run 2 or

Run 3 except for the densest parts of the lump at late times in Run 3 . Similarly, the Qφ constraint,

i.e. 〈Q3〉ρ2,3 > 25, is satisified for all times and regions in either Run 2 or Run 3 except for in the

lump at late times in Run 3 .

We also aim to resolve the Outer Lindblad Resonance (OLR). This means that we need about

∼ 10 cells per wavelength of the OLR, λd,

λd =
2π cs
Ωbin

, (B7)
Qθ > 10 Qφ > 25

Sorathia++ 2010, 2011
Hawley++ 2011

Guan, Gammie 2010Noble++ 2010Sano++ 2004

28



Plasma Beta parameter =  pgas / pmag
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Σ

ρur
Flux

pmag
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General Relativistic Magnetohydrodynamics
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Mass 
Density

Internal 
Energy
Density

Gas
Pressure

Magnetic
Pressure

Magneti
c

4-vector

Fluid’s
4-velocity

Radiative
Energy & 

Momentum 
Loss

• Matter is highly ionized, and therefore highly conductive and magnetized;

• Matter evolves via conservation equations of mass, energy, and momentum, and Maxwell’s equations;

• Set of 8 coupled nonlinear 1st-order (usually) hyperbolic PDEs with 1 constraint equation; 

• After q(P) is updated, solve a set of nonlinear algebraic equations, q = q(P)  to obtain P(q);   Noble++2006
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General Relativistic Magnetohydrodynamics

∂

∂t
U (P) +

∂

∂xi
Fi (P) = S (P) (1)

∂

∂t

√
−g





ρut

T t
t + ρut

T t
j

Bk



 +
∂

∂xi
√
−g





ρui

T i
t + ρui

T i
j�

biuk − bkui
�



 =
√
−g





0
T κ

λΓλ
tκ − Ft

T κ
λΓλ

jκ − Fj

0



 (2)

Tµν = (ρ+ u+ p+ 2pm)uµuν + (p+ pm) gµν − bµbν (3)

Γµ
νκ =

1

2
gµσ

�
∂

∂xν
gκσ +

∂

∂xκ
gνσ − ∂

∂xσ
gνκ

�
. (4)

∂I

∂λ
= K (j − αI) (5)

j = j(ρ, p, uµ, Bi, ν) (6)

α = α(ρ, p, uµ, Bi, ν) (7)

1

∂

∂t
U (P) +

∂

∂xi
Fi (P) = S (P) (1)

∂

∂t

√
−g





ρut

T t
t + ρut

T t
j

Bk



 +
∂

∂xi
√
−g





ρui

T i
t + ρui

T i
j�

biuk − bkui
�



 =
√
−g





0
T κ

λΓλ
tκ − Ft

T κ
λΓλ

jκ − Fj

0



 (2)

Tµν = (ρ+ u+ p+ 2pm)uµuν + (p+ pm) gµν − bµbν (3)

ds2 = gµνdx
µdxν (4)

ds2 = − (1− 2M/r) dt2 + (1− 2M/r)−1 dr2 + r2dθ2 + r2 sin2 θdφ2 (5)

Γµ
νκ =

1

2
gµσ

�
∂

∂xν
gκσ +

∂

∂xκ
gνσ − ∂

∂xσ
gνκ

�
. (6)

∂I

∂λ
= K (j − αI) (7)

j = j(ρ, p, uµ, Bi, ν) (8)

α = α(ρ, p, uµ, Bi, ν) (9)

x0
�

= t = x0 (10)

x1
�

= r = Mex
1

(11)

x2
�

= θ = θ(x2) =
π

2

�
1 + (1− ξ)

�
2x2 − 1

�
+

�
ξ − 2θc

π

��
2x2 − 1

�n�
(12)

x3
�

= φ = x3 (13)

gµν =
∂xµ

�

∂xµ
∂xν

�

∂xν
gµ�ν� (14)

1

∂

∂t
U (P) +

∂

∂xi
Fi (P) = S (P) (1)

∂

∂t

√
−g





ρut

T t
t + ρut

T t
j

Bk



 +
∂

∂xi
√
−g





ρui

T i
t + ρui

T i
j�

biuk − bkui
�



 =
√
−g





0
T κ

λΓλ
tκ − Ft

T κ
λΓλ

jκ − Fj

0



 (2)

Tµν = (ρ+ u+ p+ 2pm)uµuν + (p+ pm) gµν − bµbν (3)

ds2 = gµνdx
µdxν (4)

ds2 = − (1− 2M/r) dt2 + (1− 2M/r)−1 dr2 + r2dθ2 + r2 sin2 θdφ2 (5)

Γµ
νκ =

1

2
gµσ

�
∂

∂xν
gκσ +

∂

∂xκ
gνσ − ∂

∂xσ
gνκ

�
. (6)

∂I

∂λ
= K (j − αI) (7)

j = j(ρ, p, uµ, Bi, ν) (8)

α = α(ρ, p, uµ, Bi, ν) (9)

x0
�

= t = x0 (10)

x1
�

= r = Mex
1

(11)

x2
�

= θ = θ(x2) =
π

2

�
1 + (1− ξ)

�
2x2 − 1

�
+

�
ξ − 2θc

π

��
2x2 − 1

�n�
(12)

x3
�

= φ = x3 (13)

gµν =
∂xµ

�

∂xµ
∂xν

�

∂xν
gµ�ν� (14)

1
• Equations solved via finite volume methods on a grid diffeomorphic to standard spherical coordinates; 

• Initial hydrodynamic fields are solutions of the time-averaged PDEs:

• Initial data is stable to perturbations assuming time-averaged geometry and no magnetic fields; 

• This procedure minimizes unphysical transients from its evolution and means to conform to expected configurations 
found in nature;

• MHD evolution leads to correlated turbulence which dictates how angular momentum moves through the disk and 
allows matter to accrete onto the black holes;

Solenoidal Constraint:
“No magnetic monopoles” 
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GRMHD Numerical Methods  (Harm3D)

• Harm3d written largely independent of chosen 
coordinate system (covariant)

• GRMHD code

• Able to handle “arbitrary” spacetimes, though one 
must be specified;

• Equations solved on a uniform discretized domain 
in system of coordinates tailored to the problem; 

• Efficiency through simple uniform domain 
decomposition: 

• Adaptivity pushed to the warped system of 
coordinates; 

• Prefer to use coordinates similar to spherical 
coordinates to accurately evolve disks with significant 
azimuthal component;

• Minimizes dissipation; 

• Allows us to better track transport of angular 
momentum --> essential for understanding disks;

• Typical run:  

• ~ 1 Million  CPU-hours  with ~2000 CPUs

• 10,000 - 30,000 cell-updates/sec/CPU

High-resolution Shock-capturing techniques; 
Reconstruction of Primitive var’s (density, 
pressure, velocities) at cell interfaces:

Piecewise parabolic (PPM) 
Approximate Riemann problem solver: 

Lax-Friedrichs 
HLL = Harten, Lax, van Leer

Conserved variables are advanced in time using 
Method of Lines with 2nd-order Runge-Kutta;

Primitives are recovered from Conserved var’s 
using “2D” and “1DW” root-finding algorithms for 
inverting set of nonlinear algebraic equations;      

Finite Volume Method:Geometry and Coordinates:

Solenoidal Constraint Enforcement:
                  leads to :

Non-perpendicular Lorentz forces to Bi

Inconsistency with MHD;
Sometimes instabilities and artifacts;

3d, modified version of Flux-CT  of Toth 2000

∂iB
i �= 0

Ez = vxBy − vyBx = fx

Noble++2009
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General Relativistic Radiative Transfer
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Geodesic Calculation:
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Tµν = (ρ+ u+ p+ 2pm)uµuν + (p+ pm) gµν − bµbν (3)

ds2 = gµνdx
µdxν (4)

ds2 = − (1− 2M/r) dt2 + (1− 2M/r)−1 dr2 + r2dθ2 + r2 sin2 θdφ2 (5)

Γµ
νκ =

1

2
gµσ

�
∂

∂xν
gκσ +

∂

∂xκ
gνσ − ∂

∂xσ
gνκ

�
. (6)

∂I

∂λ
= K (j − αI) (7)

j = j(ρ, p, uµ, Bi, ν) (8)

α = α(ρ, p, uµ, Bi, ν) (9)
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8 coupled ODEs per ray;
Burlisch-Stoer Method:

Adaptive stepsize
Richardson Extrapolation;

Special stepsize control near black holes
Integrations start at camera and go through source 
to guarantee desired image resolution:

Rays point forward in time;
Rays are integrated backward in time;

1 ODE per ray
Same integrator as that used by geodesics;
Neglects scattering;
Difficulty is in accurate and fast emissivity and 
absorption function;
Emissivity models: 

Synchrotron;
Bremsstrahlung;
Black body; 
Bolometric model;  (see Noble++2009)

Radiative Transfer:

Monte Carlo Radiative Transfer:

Schnittman & Krolik 2009
Rays shot from source, collected at distance observer;
All other emissivity models plus:

 Inverse Compton Scattering;
Reflection emission (e.g., Fe lines);
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Nrays = NtNθNθNiNjNνNMNρ (17)

Nrays = 109NνNMNρ (18)

Nrays ∼ Nx0Nx1Nx2Nx3 (19)
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Nrays ∼ Nx0Nx1Nx2Nx3 (19)
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Binary Black Hole Ray-tracing:
•With Billy Vazquez (grad student);
•Use Superimposed Boosted Dual Kerr-Schild black holes;
•Binary “orbits” via rigid rotation;

Bonning++2009
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Binary Black Hole Ray-tracing:

Constrained to BBH’s Plane Isotropic

•With Billy Vazquez (grad student);
•Use Superimposed Boosted Dual Kerr-Schild black holes;
•Binary “orbits” via rigid rotation;

Bonning++2009
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