Credit: ESO/Kornmesser

Investigating the Growth of Supermassive Black Holes with the Quasar Black Hole Mass Function

Brandon C. Kelly (UCSB, CGE Fellow, bckelly@physics.ucsb.edu)

Yue Shen (Carnegie), Tommaso Treu (UCSB), Matthew Malkan (UCLA), Anna Pancoast (UCSB), Jong-Hak Woo (SNU), Marianne Vestergaard (DARK), Xiaohui Fan (Arizona)

What does the Black Hole Mass Function (BHMF) give us?

- Probes build-up of supermassive black hole population, duty cycle of black hole activity
- Constrains black hole seeding models (e.g., Natarajan & Volonteri 2012)
- Mass function + luminosity function provides Eddington ratio distribution, constrains BH growth rates and time scales
- Important for planning surveys used to study AGN physics, gravitational waves, etc.

Estimating the BH Mass Function

Kelly & Merloni (2012)

Estimating the BH Mass Function

- From Scaling Relationships:
 - Estimate M_{BH} from observables for each source
 - Derive MF from these BH mass estimates
 - Primarily used beyond the local universe for Type 1
 Quasars only (e.g., Greene & Ho 2007; Vestergaard
 +2008,2009; Schulze 2010; Kelly+2011,2013; Shen & Kelly
 2012)

Kelly & Merloni (2012)

Estimating the BH Mass Function

- From Scaling Relationships:
 - Estimate M_{BH} from observables for each source
 - Derive MF from these BH mass estimates
 - Primarily used beyond the local universe for Type 1
 Quasars only (e.g., Greene & Ho 2007; Vestergaard
 +2008,2009; Schulze 2010; Kelly+2011,2013; Shen & Kelly
 2012)
- From continuity equation methods (e.g., Marconi+2004, Merloni & Heinz 2008, Shankar+2009)
 - Use AGN luminosity function to estimate BH growth rate as a function of z, provides rate of change of BHMF
 - Start at local MF and work backwards to reconstruct MF as a function of z
 - Provides MF for all SMBHs (not just AGN), but less direct and more model-dependent

Kelly & Merloni (2012)

Our Sample: SDSS DR7 Quasar Catalogue (Shen +2011)

- Sample of 57,959 Type 1 quasars over 0.3 < z < 5.0
 - Sky coverage of 6248 deg²
- Uniformly selected, selection function given by Richards+(2006)
- Flux limits:
 - i < 19.1 at z < 2.9
 - i < 20.2 at z > 2.9
- Mass estimates derived by Shen+(2011) using FWHM:
 - $H\beta$: 0.3 < z < 0.7
 - MgII: 0.7 < z < 1.9
 - CIV: z > 1.9
- Used Bayesian technique (Kelly+2009) to correct for incompleteness and statistical error in mass estimates

Shen & Kelly (2012)

Type 1 Quasar Black Hole Mass Function

Kelly & Shen 2013, see also Kelly+(2010), Shen & Kelly (2012)

Type 1 Quasar Black Hole Mass Function

Kelly & Shen 2013, see also Kelly+(2010), Shen & Kelly (2012)

Type 1 Quasar Black Hole Eddington Ratio Function

Kelly & Shen 2013

Implied typical BH growth times

- Typical growth time at z > 2 comparable to or longer than Hubble time
- Implies earlier stage of (obscured?) accelerated growth
- z < 0.8: Long growth times reflect low Eddington ratio, re-ignition of BH activity (see also Heckman+2004, Kauffmann & Heckman 2009)

Kelly & Shen (2013)

See also Kelly+(2010), Trakhtenbrot+2011, this conference

Alternative methods for estimating mass: X-ray variability

Alternative methods for estimating mass: X-ray variability

- Broad line scaling relationships may exhibit systematics:
 - Difficult to measure FWHM in low S/N spectra
 - Distribution of high-z/luminous quasars imply smaller statistical scatter in mass estimates compared to calibration (reverberation mapping) sample (e.g., Kollmeier+2006, Shen+2008, Steinhardt & Elvis 2010, Shen & Kelly 2012, Kelly & Shen 2013)
 - Extrapolation beyond emission line properties of calibration sample

Alternative methods for estimating mass: X-ray variability

- Broad line scaling relationships may exhibit systematics:
 - Difficult to measure FWHM in low S/N spectra
 - Distribution of high-z/luminous quasars imply smaller statistical scatter in mass estimates compared to calibration (reverberation mapping) sample (e.g., Kollmeier+2006, Shen+2008, Steinhardt & Elvis 2010, Shen & Kelly 2012, Kelly & Shen 2013)
 - Extrapolation beyond emission line properties of calibration sample
- Mass estimates derived from X-ray variability:
 - Help balance out systematics (unknown unknowns)
 - In principle a clean measurement, no modeling of 'nuisance' components
 - In reality, is difficult measurement for noisy and/or irregularly sampled lightcurves

Amplitude of high-frequency X-ray variability scales with BH mass

See also, e.g., Yu & Lu (2001), Nikolajuk+(2004), Papadakis (2004), O'Neill+(2005), Miniutti+(2009), Caballero-Garcia+(2012)

Amplitude of high-frequency X-ray variability scales with BH mass

log Frequency

See also, e.g., Yu & Lu (2001), Nikolajuk+(2004), Papadakis (2004), O'Neill+(2005), Miniutti+(2009), Caballero-Garcia+(2012)

Summary

- SDSS incomplete at $M_{BH} < 5 \times 10^8 \, M_{Sun}$ and $L / L_{Edd} < 0.1$
- No evidence for a turnover in BH mass or Eddington ratio distribution down to incompleteness limits
- Typical growth times of most massive BHs comparable to Hubble time at z > 2
 - Earlier stage of accelerated obscured growth?
- X-ray variability provides a competitive method for estimating BH mass
 - May enable BH mass function estimation from several-epoch X-ray surveys

How do we estimate black hole mass for (Type 1) quasars?

Two Problems: Incompleteness and Uncertainties in the Mass Estimates

Two Problems: Incompleteness and Uncertainties in the Mass Estimates

Two Problems: Incompleteness and Uncertainties in the Mass Estimates

Correcting for biases: A Bayesian approach (Kelly, Vestergaard, & Fan 2009)

Correcting for biases: A Bayesian approach (Kelly, Vestergaard, & Fan 2009)

Correcting for biases: A Bayesian approach (Kelly, Vestergaard, & Fan 2009)

Disadvantages of Traditional Non-parameteric Tools for Quantifying Aperiodic Variability

Disadvantages of Traditional Non-parameteric Tools for Quantifying Aperiodic Variability

log[Tobserved (days)]

Gonzalez-Martin & Vaughan (2012)

See also, e.g., Yu & Lu (2001), Nikolajuk+(2004), Papadakis (2004), O'Neill+(2005), Miniutti+(2009), Caballero-Garcia+(2012)

McHardy (2013)

See also, e.g., Yu & Lu (2001), Nikolajuk+(2004), Papadakis (2004), O'Neill+(2005), Miniutti+(2009), Caballero-Garcia+(2012)

Excess X-ray Variance

See also, e.g., Yu & Lu (2001), Nikolajuk+(2004), Papadakis (2004), O'Neill+(2005), Miniutti+(2009), Caballero-Garcia+(2012)

Excess X-ray Variance

log Frequency

See also, e.g., Yu & Lu (2001), Nikolajuk+(2004), Papadakis (2004), O'Neill+(2005), Miniutti+(2009), Caballero-Garcia+(2012)

log Frequency

See also, e.g., Yu & Lu (2001), Nikolajuk+(2004), Papadakis (2004), O'Neill+(2005), Miniutti+(2009), Caballero-Garcia+(2012)

Checking the Fit

Downsizing

Alternative models: Luminosity-dependent bias

Broad-line mass estimates

Vestergaard & Peterson (2006)

Implied luminosity function

Shen & Kelly (2012)