Gravitational waves from
massive black hole binaries

Using gravitational-wave observations of
black hole mergers to probe the growth of
black holes from the early universe

Scott A. Hughes, MIT Massive BHs: Birth, Growth, and Impact, KITP, 7 August 2013
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Basic basics

Gravitational radiation necessary in any relativistic
theory of gravity: Need a mechanism to causally
communicate changes in the gravitational field.

In GR, tidal fields (“curvature”) play role similar
to electric and magnetic fieldsinE & M ...
radiation takes form of tidal gravitational

field propagating from source.

Leading radiation quadrupolar: , _ 2G 1 d*Q)

monopole violates conservation A r o dt2
of energy; dipole violates 2 1
: 2
conservation of momentum. ~ X U

ct r
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How to measure

The GW h is an oscillation in spacetime, has
an impact on propagation of light:
Behavior of light in spacetime with wave:
ds® = —c*dt* + [1 + h(t,z)] dz* = 0
Solve for the speed I

of light in this T
coordinate system:

C

V' 1+ h(t, )
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How to measure

The GW h is an oscillation in spacetime, has

an impact on propagation of light:
Behavior of light in spacetime with wave:
ds® = —c*dt* + [1 + h(t,z)] dz* = 0
Solve for the speed I .
of light in this T
1+ h(t
coordinate system: VI+h(t,2)
ty
Now imagine that we have mirrors L
which fall freely in this spacetime.
Bounce light between mirrors,
record time between bounces. T -x

Scott A. Hughes, MIT Massive BHs: Birth, Growth, z;nd Impact, KITb; 7 August 2013

Wednesday, August 7, 2013 3



How to measure

The GW h is an oscillation in spacetime, has
an impact on propagation of light:

Behavior of light in spacetime with wave:
ds® = —c*dt* + [1 + h(t,z)] dz* = 0

Time interval between bounces:

1 ) 1
AT:/ da :—/ 1 — =h(t,x)| dx
de/dt c 2
/

Gravitational wave enters as an oscillation in
interval from bounce to bounce (Bondi 1957).
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How to measure

The GW h is an oscillation in spacetime, has
an impact on propagation of light:

Behavior of light in spacetime with wave:
ds® = —c*dt* + [1 + h(t,z)] dz* = 0
Two big ingredients needed to measure h:

Good inertial reference frame to define free
fall, and good clock to measure time interval.

g% dx 1 1
AT = ~— [ [1—=
>‘T2 / dx/dt ¢ / [ 2h(t,x)] da

T]"

L

LY §

L
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Gross features of BBH GWs

. . Inspiral Merger Ringdown
Inspiral: Slow evolution A A .
\-\ ( 7 ~7 A

dr]ven by GW lOSS Of ‘\/\t'))‘-—- ‘~J G (__‘_‘._’_"‘
orbital energy and /:/5 §® @ <
angular momentum. A
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Gross features of BBH GWs

Inspiral Merger Ringdown

Inspiral: Slow evolution *\, /

driven by GW loss of = é) - __
@ ¥
orbital energy and /’5 3 ‘&&’ @

angular momentum. RS

F(t) = [256(G Miﬁig(tc . t)r/g W\/WW\/\/\N,“
/

Leading solution for rate of change of wave
frequency as system evolves ... more careful
calculation shows that inspiral encodes a lot of
information about members’ masses and spins.
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Gross features of BBH GWs

Inspiral Merger Ringdown
A
Merger: Extremely | { — .

violent dynamics of @ Q@, < @&@:‘ 5-
spacetime: Two black Ly B |

holes smash together, |
leaving one behind. WWM\/MN“%

Transition from inspiral to merger happens at

[ 3 [2-6]73/2
merge — GMtot T

Late inspiral/merger modeled numerically; a lot of
binary mass (up to ~10%) comes out in GWs.

Scott A. Hughes, MIT Massive BHs: Birth, Growth, and Impact, KITP, 7 August 2013
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Gross features of BBH GWs

Inspiral Merger Ringdown

Ringdown: Last
wiggles of the merger,
enforce the black hole

“No Hair” theorems.
Kerr solution at end.

Simply described using black hole perturbation
theory. Expect mix of modes; mode frequency
and damping time set by final mass and spin.
C3
QﬁQﬂ(?AJ

Scott A. Hughes, MIT Massive BHs: Birth, Growth, and Impact, KITP, 7 August 2013
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Very low frequency

Frequencies. (years)_1 THE GRAVITATIONAL WAVE SPECTRUM
to (months)’
Measure in this band by
precision timing of

millisecond pulsars: | ‘ e ‘*

Pulsars are clocks, GWS o ov oo oe oo et or 0 o

SOURCES

L ; I I N e

cause coherent variation : " ifbon wes LB
° ) ° 5 polarization ‘u,ln“ : bser tracking -:»‘l I.\\:'v
in pulse arrival times.
2ls0 bar

Build a network of pulsars,
time them well, look for
pulse variations with a
particular angular
Pulsar timing movie courtesy Penn State Gravitational distribution on the Sky

Wave Astronomy Group, http://gwastro.org Massive BHs: Birth, Growth, and Impact, KITP, 7 August 2013
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Very low frequency

Frequencies: (years)
to (months)-’
Measure in this band by
precision timing of
millisecond pulsars:

Pulsars are clocks, GWs e

cause coherent variation
in pulse arrival times.

Pulsar timing movie courtesy Penn State Gravitational
Wave Astronomy Group, http://gwastro.org
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Build a network of pulsars,
time them well, look for
pulse variations with a
particular angular
distribution on the sky.
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Very low frequency

Frequencies: (years)
to (months)-’
Measure in this band by
precision timing of
millisecond pulsars:

Pulsars are clocks, GWs e

cause coherent variation
in pulse arrival times.

ITHE GRAVITATIONAL WAVE SPECTRUM
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Network now has almost 40
pulsars, setting impressive
limits on backgrounds ...
getting close to predictions.

Pulsar timing movie courtesy Penn State Gravitational
Wave Astronomy Group, http://gwastro.org
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Low frequency

THE GRAVITATIONAL WAVE SPECTRUM

Frequencies: Inverse
hours up to about 1 Hz.

Laser interferometry

beSt tOOl to measu re e Feriod G(ufv(z):asllfﬂ ' YE;RS | HOURS SECONDS  MSEC
B | | l-_
these waves ... Earth | .\ |

10" 10" 10" 10 104 10° 104 102 1 10°

NFLATION precision LISA G GEQ. LIGO
PROBIE timing of SANASA,  BANG O8S  VIRGO. TAMA

SOURCES

too noisy, detector
must go into Space. -

DETECTORS

Space antenna like eLISA
designed to measure
waves in this band.
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eLISA sensitivity

Fig 13 of Danzmann et al, arxiv:1305.5720

S .t. .t 1 0 1 month I-ns‘iirzgi binary Galac{ri:s?)ilr::d?ies
enS] ]V] y ]S Very & 1 day «= EMRI @ verification
§ 1007 470 | ]h\?u confusion
good for black holes £ \1 “\ Mo 002
for late inspiral (last £ o+ ToSTobh—AL, .o
7] 1 hour llf »
few 102 — 103 orbits) £ ..
and merger/ringdown  § SR
° ear | mont - ‘.
for redshifted masses AN
(1 + Z)Mtot ~ 105—107 ]O'ﬁo 10+ 10° 10 10° l
Frequency (Hz)
Signal-to-noise ratio (SNR) _1- 10 T(IJO
Perfectly suited to going after early
cosmological seeds in binaries.
Scott A. Hughes, MIT Massive BHs: Birth, Growth, and Impact, KITP, 7 August 2013
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Gravitational waves and MBBH

Wide range of MBBH
binaries accessible
to an instrument like
eLISA with decent
events rates ...

... provided that

we can nail down

events happening
atz~ 5 — 15.

Scott A. Hughes, MIT
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Inspiral waves

. ) Inspiral Merger Ringdown
Inspiral: Slow evolution | A S =
driven by GW loss of :% @, SN —
orbital energy and /%S T @Sf —
angular momentum. NG *
h
Rather well MW% e
understood. 7 Masses
Waveform 6 spin components 1 initial eccentricity
described by 17 2 position .angles 1 initial periapsis
, 2 orientation angles longitude
general. 1 initial semi-major axis

1 initial orbit anomaly

Scott A. Hughes, MIT Massive BHs: Birth, Growth, and Impact, KITP, 7 August 2013
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Inspiral waveform

(GM/ P2 [ f () /e

hy = D, (1+ cos? L) cos {271’ / f(t) dt]

2 [GM/ 02]5/3 [Wf(t)/c]2/3

hye = D, COS ¢ Sin [QTF./f(t) dt}
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Inspiral waveform

~215/: ~2/3 | .
hy = (CM/ T [mf(t)/c] (1 + cos” z,) COS {271’/ f(t) dt]

Dy
2 1GM _32 5/3 T f(t)/c 2/3
/'l-x - [ J /( ]D [ f( )/(] COS L SIn [271' /f(t) dt:|
L .

Gravitational waves have two polarizations, named for
their tidal action upon a set of test masses:
“1” wave " .o./ .o. .: ':‘ . :. .../ ... :/ -. .../ .o.
polarization T T vy i

p;i(a;,rivzv::iin % /_ L / % / e g / .

With two arms (as in the baseline eLISA design),
can only measure one polarization at a time.

Scott A. Hughes, MIT Massive BHs: Birth, Growth, and Impact, KITP, 7 August 2013
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Pieces of inspiral waveform

hy = 5 (1 + cos? L) cos |27 / f(t) dt]
L
h,x _ 2 [G./\/l/ C'Z]S/B [,R_f(t)/c]l?/.? ) (t) dt:|
Dy,

1. Phase. Depends on how rapidly the orbit evolves.
Rate is controlled by binary’s masses and spins.
Measure the phase, measure masses and spins.

Scott A. Hughes, MIT Massive BHs: Birth, Growth, and Impact, KITP, 7 August 2013
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Phase: Comes from integrating up the
(relativistic analog of) Kepler’s law

To get that, need relativistic equations of
motion. Post-Newtonian expansion of general
relativity gives us a good form for inspiral:

i Gmoni, Lowest order piece:
| - 2 . .
12 Newtonian gravity
Scott A. Hughes, MIT Massive BHs: Birth, Growth, and Impact, KITP, 7 August 2013
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Phase: Comes from integrating up the
(relativistic analog of) Kepler’s law

To get that, need relativistic equations of
motion. Post-Newtonian expansion of general
relativity gives us a good form for inspiral:

i _Gmani, Lowest order piece:
o TS 2 : -
12 Newtonian gravity
] 5G?*myms  4G*m3  Gmo [ 3 N N | 5 ;
+—,){ { = + — + — (;(nl-_;z'-_))“ —:‘l“+4(1'|1'-_>)—21'._;>] 19
c” "2 12 "2 “
Gmeo -
+ . = (4(n12v1) — 3(n12v2)) 1'13}
12
Post-Newton gives corrections in v/c.
Scott A. Hughes, MIT Massive BHs: Birth, Growth, and Impact, KITP, 7 August 2013
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... and more corrections ...

Scott A. Hughes, MIT Massive BHs: Birth, Growth, and Impact, KITP, 7 August 2013
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and more corrections

1 57G*m?ms  69G*mym3  9G*m:
D im2 2 2
4,.4 2,.-1 rd

12 12 1

| | .9 o
—— | = = (nizv2)" + 5('?121’2)2'1’? — 6(ny2v2)* (v1v2) — 2(vyv2)? + §("12'l‘2)2"’5

Gimoy 15 3
r{s 8

+4(v v )) - 2v ))

G*mymo (39 17 , 15 5 5
++ (_("1’11) = 39(ny2v1)(ny2v2) + —(nuz‘-z) — —11f - -(11,2) 1 2)

G*mj3 ‘ 5 .
+—3 ) (2(n12v1)? = 4(n12v1)(n1202) — 6(ny2v2)? — 8(vyva) + 403) ] nia

T2

G*m? G*mymo- 6. 55
+|: 2 ( 2(nlgl|) —2(7“012))4-#l (——(Il|gl'|)+ —(nl')lg))
'12 2 4 4

Gm: s 9
2, 2 (_ 6(n12v1)(n1av2)® + 2("12!2) + (n12v2)v] — d(nagvy)(v1v2)

+ 4(ny2v2)(v1v2) + 4(ny20))v3 — 5(nyov2) g)ll'u}

1 208G*mym3 24G*mim; 12G%myms ;
("121’1’) - — (ny2v12) + 3 ("1’112) 12| M2
157}, ST 51y,

£ - £ ol - 3 V12
972 712 T2

8G*m*m»  32G*mym2  4G*myms,
+ l - 2 2
12
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... and a few more.

Scott A. Hughes, MIT Massive BHs: Birth, Growth, and Impact, KITP, 7 August 2013
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,{;iii:"':'::;"-’i"-'-;f ... and a few more.
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[Blanchet 2006, Liv Rev Rel 9, 4, Eq. (168)]
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Creates new “forces”

Dynamical inclination

Relativistic effect: “Magnetic-type” coupling

of mass currents to spacetime.
, modifying orbit acceleration;

also causes spins of binary’s members to precess.

1S

o1 = L (2+5'” )/1\/\11L

dt '

dS:-

it = L (24—3'”1)/1\/\[11;

dt L
“Gravitomagnetic”

field due to
orbital motion

Scott A. Hughes, MIT

xSy + L |18, — 2(S, - L)L| x 8,

18, — 28, - L)L] x 8,

1 1
X S2+ 75 |3

“Gravitomagnetic”
field due to other
body’s spin

Massive BHs: Birth, Growth, and Impact, KITP, 7 August 2013
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Dynamical inclination

Relativistic effect: “Magnetic-type” coupling
of mass currents to spacetime.

Creates new “forces”, modifying orbit acceleration;
also causes spins of binary’s members to precess.

IS - . A
(l_ll ~ 1 (2+3’” ),,\/u,L xS + & [18, — 3(S, - T)L| x S,
dt ! ‘ |
dS‘ [~ 3 A A ]
1—; =,% (Z—l—ém)/l\/\[IL XSz—l— lSI——(Sy L)L| xS,
dt |

Angular momentum is globally conserved:

J=L+S1+ S, =constant

Means that the orbital plane precesses to compensate.
(Known as Lense-Thirring precession in weak-field.)

Scott A. Hughes, MIT Massive BHs: Birth, Growth, and Impact, KITP, 7 August 2013
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Dynamical inclination

Precession of angular momentum vectors in a
binary black hole system.

(Animation credit: Peter Reinhardt)
Scott A. Hughes, MIT Massive BHs: Birth, Growth, and Impact, KITP, 7 August 2013
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Dynamical inclination

Precession of angular momentum vectors in a
binary black hole system.

(Animation credit: Peter Reinhardt)
Scott A. Hughes, MIT Massive BHs: Birth, Growth, and Impact, KITP, 7 August 2013
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Pieces of inspiral waveform

G(L+2)M/ PP [ f(t)/
Dy,
Integrate up motion and precession: 103 - 10°

radians of phase accumulate over measurement.

1 b (743 11

o(f) = o *E( \/ff) [ == —5(55( + 1 )( ‘lf)

3058673 5429 617
5 —n? — aM f)1/3
(mmom 1008 " 141" ") (mMf) }

| « m; 14 f,-S,
— —)Z[m( ) ”,\_I] -

7
B ~12\'.\/(m'fm§)

Key feature: The phase depends on — and thus
encodes — masses & spins of the binary’s members.
Measure phase: Measure masses and spins.

Scott A. Hughes, MIT Massive BHs: Birth, Growth, and Impact, KITP, 7 August 2013

hy = F(“angles”) cos [®(1)]

> (47 — B) (T M f)

t\al ot

[721(L- S1)(L - S3) — 247(S; - S2)]
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Inspiral measurements

[G(l n Z)J,\/I/CQJS/IS [ﬂ_f(t)/c]Z/S]:
Dy

hy = (“angles”) cos [®(t)]

Example waveform:
Both black holes non-

spinning.
B 1 Smooth chirp from low
i “ to high frequencies.
23:'1071 | 14--10"l r;‘-rlo'-'l | l5_.,10'-‘
time (seconds)
Scott A. Hughes, MIT Massive BHs: Birth, Growth, and Impact, KITP, 7 August 2013
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Inspiral measurements

[G(l n Z)J,\/I/CQJS/IS [ﬂ_f(t)/c]Z/S]:
Dy

hy = (“angles”) cos [®(t)]

Example waveform:
Both black holes non-

spinning.
B 1 Smooth chirp from low
i “ to high frequencies.
23:'1071 | 14--10"l r;‘-rlo'-'l | l5_.,10'-‘
time (seconds)
Scott A. Hughes, MIT Massive BHs: Birth, Growth, and Impact, KITP, 7 August 2013
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Inspiral measurements
GO+ )M/ PP [rf )/

hy = D, F(“angles”) cos [P(t)]
g S e Spins cranked up!
h; : Spin 1 = Spin 2 =
“ 99% maximum
S0 ; Strong frequency and

amplitude modulation

-02-02FAAAAAAR A : 1ves Spin precision.
ﬁlll 'l VY "r'l' .
0 |||'||ll |I|||| l' |||
0.2 - lI III 'l ll' '] l|I l UI lI Il | ‘ N
04 b lj”t )
e i laa i laagl -
1 1 | l 1 1 1
2x107 4x10" 10 8x 107
thne(sec&nds)
Scott A. Hughes, MIT Massive BHs: Birth, Growth, and Impact, KITP, 7 August 2013
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Inspiral measurements
GO+ )M/ PP [rf )/

hy = D, F(“angles”) cos [P(t)]
g S e Spins cranked up!
h; : Spin 1 = Spin 2 =
“ 99% maximum
S0 ; Strong frequency and

amplitude modulation

-02-02FAAAAAAR A : 1ves Spin precision.
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Highly precise masses,
moderately prec15e spms

Example: distribution 0l o 10 o

of errors in mass | M =105 Mo

measurement 1500 - m/M = 0.1 -
Median mass error 3.6%

. . . Z 1000 - |

90% of distribution : -

confined to dm/m < 17% _

500 [ .

0 __| | | | | | -

0 0.1 0.2 0.3 0.4 0.5
dm,/m,
Scott A. Hughes, MIT Massive BHs: Birth, Growth, and Impact, KITP, 7 August 2013
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Highly precise masses,
moderately precise spms

Example: distribution 0 | 10

f errors in spin B )
o1 errors Sp 150()_ M—105Mo _

measurement - m/M = 0.1
Median spin error 0.075 | )

90% of distribution
confined to 0a < 0.22 _ | :
0 __I_ | | | | __
0 0.2 0.4 0.6 0.8
0a

Scott A. Hughes, MIT Massive BHs: Birth, Growth, and Impact, KITP, 7 August 2013
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Highly precise masses,
moderately prec1se spms

Similar measurement [ _ .
distributions for mass iso - M=105 Mo -
and spin found out to m/M=0.1 -

Z ~ 15, and for masses
of 10% - (a few) 10° Mo. =

1000 — —

500 —
O | —
| | | | | | | | | | | | | | | | |
0 0.2 0.4 0.6 0.8
oa
Scott A. Hughes, MIT Massive BHs: Birth, Growth, and Impact, KITP, 7 August 2013
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Not much improvement on mass
and spin if we imagine using a 3-
armed variant of eLISA

Example: Precision of spin [ , =10
measurement, comparmg : M = 105 Mo
eLISA with 2 arms to eLISA e - m/M = 0.1
with 3 arms. ik
, = L 2 arms
Improvement entirely | || 3 arms -
due to boost of signal- |, L ;
to-noise ratio. 1] 3

0 0.2 0.4 0.6 0.8
da

Scott A. Hughes, MIT Massive BHs: Birth, Growth, and Impact, KITP, 7 August 2013
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CAUTION: Redshifted masses are

precisely measured
Consider nearby source: Phase encodes timescale
for orbit change; tells us mass scale:

/f(t) dt — Torbit X M

Consider cosmological source: Now measure a
redshifted timescale; infer redshifted mass:

/f(t) dt — (1 + 2)7Torbit < (1 + 2) M

Redshift is degenerate with masses.

True when taken to higher order as well ...
cannot infer redshift from GW measurables.

Scott A. Hughes, MIT Massive BHs: Birth, Growth, and Impact, KITP, 7 August 2013
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Pieces of inspiral waveform

c215/3 [ o?/3
hy = GM/ ] D[[, ft)/c] (1 + cos®¢) cos [27r/f(t) dt]
c215/3 [n c?/3
hy = 2lGM/ ]DL[ ft)/c] COS ¢ sin [271'/f(t) dt}

1. Phase. Depends on how rapidly the orbit evolves.
Rate is controlled by binary’s masses and spins.
Measure the phase, measure masses and spins.

Scott A. Hughes, MIT Massive BHs: Birth, Growth, and Impact, KITP, 7 August 2013

Wednesday, August 7, 2013 32



Pieces of inspiral waveform

215/3 [ £(+) /1?3 | ~
hy = GM/ 1 [/ (E)/c] (1 + cos” L) COS [271’/ f(t) dt]

Dy,
coy/L sin [271' /f(t)dt}

2[GM/ 6,2]5/3 [Wf(t)/c]'z/:s

2. Inclination of orbital plane to line of sight.
Measure both polarizations, you measure this angle.

Scott A. Hughes, MIT Massive BHs: Birth, Growth, and Impact, KITP, 7 August 2013
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Pieces of inspiral waveform

¢215/3 [ o?/3
hy = GM/ ] DI[J ft)/c] (1 + cos®¢) cos [QW/f(t) dt}
c215/3 [ c?/3
hy = 2lGM/ ]DL[ ft)/c] COS L Sin [QW/f(t)dt]

1. Phase. Depends on how rapidly the orbit evolves.

Rate is controlled by binary’s masses and spins.
Measure the phase, measure masses and spins.

2. Inclination of orbital plane to line of sight.

Measure both polarizations, you measure this angle.

Scott A. Hughes, MIT Massive BHs: Birth, Growth, and Impact, KITP, 7 August 2013
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Pieces of inspiral waveform

c215/3 [ o?/3
hy = GM/ ] D[[, ft)/c] (1 + cos®¢) cos [2w/f(t) dt]

y eV [zn [ 0 dt}

L

1. Phase. Depends|dn how rapidly the orbit evolves.
Rate is controlled by binary’s masses and spins.
Measure the phase, measure masses and spins.

2. Inclination of orbjjtal plane to line of sight.
Measure both polafizations, you measure this angle.

3. Luminosity distance. Sets amplitude, once masses
and inclination are determined.

Scott A. Hughes, MIT Massive BHs: Birth, Growth, and Impact, KITP, 7 August 2013
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Pieces of inspiral waveform

(GM/ P2 [ f () /e

hy = D, (1 + cos® L) cos {271’ / f(t) dt:l

2 [GM/ 02]5/3 [Wf(t)/c]2/3

hy = COS ¢ Sin [QW/f(t) dt}
Dr, .

Scott A. Hughes, MIT Massive BHs: Birth, Growth, and Impact, KITP, 7 August 2013
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Pieces of inspiral waveform

5/3 c 2/3 .
hy = GM/ ] D[Tf (t)/c] (1+(:0521)(:os !‘Zﬂ'/f([)d[]
L
5/3 2/3
hye = 2[GM/c ]D /(t)/e COS ¢ Sin {2? /f(z‘)dz‘}
L .

Once we know distance, can get z by inverting
distance-redshift relation, assuming the
cosmography ... Lets us break degeneracy and
determine rest frame parameters of binary.

Scott A. Hughes, MIT Massive BHs: Birth, Growth, and Impact, KITP, 7 August 2013
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Both polarizations and directly
measuring distance requ1res 3 arms

Example: distribution o
: = 10
of errors in distance _ 5 _
1500 — M B 10 MO 1
for 2-armed eLISA | m/iM=01 -

Median distance error: T j
6D/D=1.5  =""[ Zarms -
Distance is essentially ! |
unconstrained for most
of these measurements:

Not good enough to oL, T
break m-z degeneracy. 6D,/D,

Scott A. Hughes, MIT Massive BHs: Birth, Growth, and Impact, KITP, 7 August 2013
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Both polarizations and directly
measuring distance requ1res 3 arms

Example: distribution o

—10

of errors in distance o M=105Mo
for 2-armed eLISA | m/iM=01 -

Median distance error: T :
6D/D=1.5  =*""f Zarms

Many events make it
possible to test models of OO:
early black hole growth — |-

but not as well as if rest °C ... . o

5 10 15

. 0
frame masses directly. 6D,/D,

Scott A. Hughes, MIT Massive BHs: Birth, Growth, and Impact, KITP, 7 August 2013
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Both polarizations and directly
measuring distance requ1res 3 arms

Example: distribution

of errors in distance .., [ J P 150 _'
_ M=10°Mo
for 3-armed eLISA | m/M=0.1

Median distance error: | ]

oD/D=0.17 = | 3 arms

Accurate enough to
break m-z and directly

000 — -

track rest frame j J
evolution of masses. T
0 0.5 1 1.5
6D, /D,
Scott A. Hughes, MIT Massive BHs: Birth, Growth, and Impact, KITP, 7 August 2013
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Conclusion

GWs from MBH binaries information rich:
* Precise (redshifted) masses
* Good information about spin parameter
* Possibly distances accurately enough to break
mass-redshift degeneracy.

Nature appears to be giving us the binaries ...
“just” need to start measuring these waves.

Scott A. Hughes, MIT Massive BHs: Birth, Growth, and Impact, KITP, 7 August 2013
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Conclusion

Let’s grab
some babies!!

http://www.etsy.com/listing/67649622/baby-black-hole-now-with-adoption
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