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Gas-driven mergers at large scales

e.g., Escala et al 2004, 2005; Mayer et al 2008; Dotti et al 2009
see M. Colpi’s, P. Capelo’s and D. Fiacconi’s talks

® When galaxies merge, large amounts of gas
are funnelled to the centre

® This gas can absorb the binary angular
momentum faster than stars

e Efficiently bring the black holes to parsec
distances

® Binary gets circular and coplanar with gas
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t=26Gyr

10-parsec scale disc forms around the binary ||

Mayer et al 2008
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t=26Gyr

t=48 Gyr

Mayer et al 20
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Massive Nuclear Discs

Gammie 2001; Rice, Lodato, Armitage, et al 2005, etc
cf B. McKernan’s talk
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Massive Nuclear Discs

Gammie 2001; Rice, Lodato, Armitage, et al 2005, etc
cf B. McKernan’s talk

® Discs will be unstable to

self-gravit
g y (,‘\ Q H 1"4 BH l )
nGL RM disc \Q

Q =
® Two possibilities:

® slow cooling: Rice et al 2003
transport angular
momentum
A : _— 1
® fast cooling: N,
fragmentation and star
formation Alexander et al 2008
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Massive Nuclear Discs

Gammie 2001; Rice, Lodato, Armitage, et al 2005, etc
cf B. McKernan’s talk

® Discs will be unstable to
self-gravity

: & H Mp
Qe C BH

1GE R M.,

® Two possibilities:

#2:

® slow cooling: Rice et al 2003
transport angular
momentum
2= : - 1%
® fast cooling: e
fragmentation and star
formation Alexander et al 2008
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Numerical Models

Cuadra, Armitage, Alexander, Begelman 2009

® 3:1 mass ratio binary

® Muisc = 0.2 MgH

® Physical angular momentum
transport due to self-gravity

® Modified Gadget-2 (SPH code
by Springel 2005)
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Binary Orbit Evolution
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Scaling to real systems
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Scaling to real systems
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® Analytical predictions show da/dt dependence on disc
mass and viscosity law (Syer & Clarke ‘95; Ivanov et al ‘99)
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Scaling to real systems

® Simulations done for given mass ratios and chosen
cooling time... need to generalise

® Analytical predictions show da/dt dependence on disc
mass and viscosity law (Syer & Clarke ‘95; Ivanov et al ‘99)

® Our simulations agree well...

® We can then scale results to different disc properties
using analytical models.
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Maximum disc mass
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Maximum disc mass

e Can’t we just have a very large disc to make sure
there’s a merger!?
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Maximum disc mass

e Can’t we just have a very large disc to make sure
there’s a merger!?

® No! There’s a maximum mass beyond which
cooling will be too fast and produce fragmentation
instead of transport angular momentum.
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Rice et al
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Maximum decay rate

® We combine analytical estimates of max S
(Levin ‘07) and da/dt to calculate the maximum
decay rate a disc can produce.
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Maximum decay rate

® We combine analytical estimates of max S
(Levin ‘07) and da/dt to calculate the maximum
decay rate a disc can produce.

- binary embedded in gas""_~-

ooooooooooooooooooooo

Tuesday, August 6, 2013 10



Maximum decay rate

® We combine analytical estimates of max S
(Levin ‘07) and da/dt to calculate the maximum
decay rate a disc can produce.

Tuesday, August 6, 2013 10



Maximum decay rate

® We combine analytical estimates of max S
(Levin ‘07) and da/dt to calculate the maximum
decay rate a disc can produce.

Tuesday, August 6, 2013 10



Q
~n

oﬂ

timescole [yr]
6‘

time-scale

O O
< ©

107

<

maoss [Msun]

separation

—
o
(=%

—
m

=
o
=

result from opacity table
onglytical approximation — — — —

197
maoss [Msun]

IMass

Tuesday, August 6, 2013 11




Q
~n

oﬂ

Hubble tim

timescole [yr]
6‘

time-scale

O O
< ©

107

<

maoss [Msun]

separation

—
o
(=%

—
m

=
o
=

result from opacity table
onglytical approximation — — — —

197
maoss [Msun]

IMass

Tuesday, August 6, 2013 11




Hubblet

O
©

timescole [yr]
6‘

time-scale

O
<

radius [pec]

’ result fro opocaty table E

onolytucol pprommotuon -—— -

separation

10¢ 10’
maoss [Msun]

IMass

Binaries smaller than 107 My, could merge.
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Binaries smaller than 107 Mg, could merge.

Binaries will spend most time at few 0.01 pc separations
(hard to observe)
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Eccentricity Evolution

Eccentricity

Separation

Eccentricity reaches ~0.35 by the end of the simulation.
No sign of saturation.
Will it growtoe ~ | ?
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Trying different initial eccentricities...
Roedig, Dotti, Sesana, Cuadra, Colpi 201 |
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Trying different initial eccentricities...

Roedig, Dotti, Sesana, Cuadra, Colpi 201 |
Eccentricity seems to
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Eccentricity evolution

® Secondary produces
instantaneous
overdensity in inner
part of disc.

® |[f eccentricity is low,
overdensity decelerates
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Eccentricity evolution

® |[f eccentricity is high,
overdensity accelerates
secondary at
apocentre, decreasing
eccentricity.

Equilibrium where
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Accretion

primary

® Keep track of gas

“accreted” by each
BH (R<0.1a)

1200
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® More accretion on secondary
to the secondar e |
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“Observable” consequences

see C. Roedig’s talk
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“Observable” consequences

® Higher eccentricity
enhances accretion
rate variability.

see C. Roedig’s talk
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“Observable” consequences

® Higher eccentricity
enhances accretion
rate variability.

® GW observations |
would detect remnant
e~ 02— 1073, |

see A. Sesana’s talk.

see C. Roedig’s talk
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Possible to merge larger binaries?
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® Tri-axiality or rotation, see F Khan's talk
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Possible to merge larger binaries?

® More efficient stellar dynamics.
® Tri-axiality or rotation, see F Khan’s talk

- ® 3-body interactions with new black holes.
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Massive Nuclear Discs

Gammie 2001; Rice, Lodato, Armitage, et al 2005, etc
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Fragmenting Discs

Amaro-Seoane, Brem & Cuadra, 201 3.
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Fragmenting Discs
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® More massive discs will cool
faster, then fragment and
form stars.
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Fragmenting Discs

Amaro-Seoane, Brem & Cuadra, 201 3.
® More massive discs will cool , \

faster, then fragment and
form stars.

® Stellar scattering continues
driving the merger process.

® Als
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Fragmenting Discs

Amaro-Seoane, Brem & Cuadra, 201 3.

® More massive discs will cool
faster, then fragment and
form stars.

® Stellar scattering continues
driving the merger process.
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Long-term evolution

® After most gas is turned
into stars, stop SPH
simulation and follow
binary + stars system with
N-body approach.
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N-body simulations

Initial positions of stars and gas clouds

® N-body simulations are
better suited to study
stellar dynamics.

® Take SPH snapshot and
move to NBODY6,

including “gas clouds”.

® Calculate rate of stellar
disruptions: up to
10-*~10-3 per yr
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Long-term evolution

Semi-major axis time evolution
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Reverberation
Mapping

<—To observer

® Reconstruct
morphology of central
region around AGN.

Peterson Line-of—sight velocity ® TDE provide very clean
opportunity (e.g.,
(©) Inclined Keplerian Disk Komossa+’08)

® Otherwise, ‘“‘normal”
accretion on to
secondary BH.

4000 -2000 O 2000 4000
Grier et al 2013 V (km/s)
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Reverberation mapping of tidal
disruption events in binaries

Inclined Keplerian Disk, TD offset from center

(¢) Inclined Keplerian Disk

N
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0
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off-centre source
produces asymmetric map

Brem, Cuadra,Amaro-Seoane, et al, in prep
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Orbital phase could be inferred

(3775550 | [(3Rsag

vesye) RITEEESsT)

JEWYEE )

Brem, Cuadra, Amaro-Seoane, et al, in prep
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Circum-primary discs and streams
could be detected
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Conclusions
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Conclusions

® Binaries surrounded by massive black holes shrink and become
eccentric.

® Gas disc can achieve coalescence of M < |07 M binaries.
Luminous counterpart to LISA detections.

® Accretion on to black holes is periodic, an effect that increases
with the binary eccentricity.

- ® Considering fragmentation: stars form numerously in the disc,
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