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Gas-driven mergers at large scales
e.g., Escala et al 2004, 2005;   Mayer et al 2008;   Dotti et al 2009

see M. Colpi’s, P. Capelo’s and D. Fiacconi’s talks

• When galaxies merge, large amounts of gas 
are funnelled to the centre

• This gas can absorb the binary angular 
momentum faster than stars

• Efficiently bring the black holes to parsec 
distances

• Binary gets circular and coplanar with gas

2Tuesday, August 6, 2013



Mayer et al 2008

10-parsec scale disc forms around the binary
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Massive Nuclear Discs
Gammie 2001; Rice, Lodato, Armitage, et al 2005, etc

cf B. McKernan’s talk
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Numerical Models
Cuadra, Armitage, Alexander, Begelman 2009

• 3:1 mass ratio binary

• Mdisc = 0.2 MBH

• Physical angular momentum 
transport due to self-gravity

• Modified Gadget-2 (SPH code 
by Springel 2005)

• Goal:  find evolution of binary

• time-scale for merger

• eccentricity evolution
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Binary Orbit Evolution
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Scaling to real systems

8Tuesday, August 6, 2013



Scaling to real systems

• Simulations done for given mass ratios and chosen 
cooling time...  need to generalise

8Tuesday, August 6, 2013



Scaling to real systems

• Simulations done for given mass ratios and chosen 
cooling time...  need to generalise

• Analytical predictions show da/dt dependence on disc 
mass and viscosity law (Syer & Clarke ‘95; Ivanov et al ‘99) 

8Tuesday, August 6, 2013



Scaling to real systems

• Simulations done for given mass ratios and chosen 
cooling time...  need to generalise

• Analytical predictions show da/dt dependence on disc 
mass and viscosity law (Syer & Clarke ‘95; Ivanov et al ‘99) 

• Our simulations agree well...

8Tuesday, August 6, 2013



Scaling to real systems

• Simulations done for given mass ratios and chosen 
cooling time...  need to generalise

• Analytical predictions show da/dt dependence on disc 
mass and viscosity law (Syer & Clarke ‘95; Ivanov et al ‘99) 

• Our simulations agree well...

• We can then scale results to different disc properties 
using analytical models.
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Maximum disc mass
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Maximum disc mass
• Can’t we just have a very large disc to make sure 

there’s a merger?
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Maximum disc mass
• Can’t we just have a very large disc to make sure 

there’s a merger?

• No!  There’s a maximum mass beyond which 
cooling will be too fast and produce fragmentation 
instead of transport angular momentum.

Rice et al
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Maximum decay rate
• We combine analytical estimates of max S 

(Levin ‘07) and da/dt to calculate the maximum 
decay rate a disc can produce.
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Maximum decay rate
• We combine analytical estimates of max S 

(Levin ‘07) and da/dt to calculate the maximum 
decay rate a disc can produce.

disc effect

stellar scattering

“hung-up point”

binary embedded in gas
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Binaries smaller than 107 Msun could merge.
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few x 0.01 pc

Binaries smaller than 107 Msun could merge.
Binaries will spend most time at few 0.01 pc separations

(hard to observe)
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Eccentricity Evolution
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Separation
Eccentricity reaches ~0.35 by the end of the simulation.

No sign of saturation.
Will it grow to e ~ 1 ?
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Trying different initial eccentricities...
Roedig, Dotti, Sesana, Cuadra, Colpi 2011
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Trying different initial eccentricities...
Roedig, Dotti, Sesana, Cuadra, Colpi 2011

Eccentricity seems to 
converge to e ~ 0.6 !
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Eccentricity evolution

• Secondary produces 
instantaneous 
overdensity in inner 
part of disc.

• If eccentricity is low, 
overdensity decelerates 
secondary at 
apocentre, increasing 
eccentricity.
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Eccentricity evolution

• If eccentricity is high, 
overdensity accelerates 
secondary at 
apocentre, decreasing 
eccentricity.

• Equilibrium where 
angular velocities are 
equal, at e ~ 0.6.
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Accretion
primary

secondary

• Keep track of gas 
“accreted” by each 
BH ( R < 0.1a )

• More accretion on 
to the secondary

• Variability roughly on 
orbital time-scale.

cf S. Noble’s talk
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“Observable” consequences

see C. Roedig’s talk
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“Observable” consequences

• Higher eccentricity 
enhances accretion 
rate variability.

• GW observations 
would detect remnant 
e ~ 10-2 – 10-3, 
see A. Sesana’s talk.

see C. Roedig’s talk
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Possible to merge larger binaries?
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• More efficient stellar dynamics.

• Tri-axiality or rotation, see F. Khan’s talk
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Possible to merge larger binaries?

• More efficient stellar dynamics.

• Tri-axiality or rotation, see F. Khan’s talk

• 3-body interactions with new black holes. 

• More massive discs... star formation could 
supply new stars to scatter with binary.
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Massive Nuclear Discs
Gammie 2001; Rice, Lodato, Armitage, et al 2005, etc

• Discs will be unstable to 
self-gravity

• Two possibilities:

• slow cooling:
transport angular 
momentum

• fast cooling: 
fragmentation and star 
formation Alexander et al 2008

Rice et al 2003
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Fragmenting Discs
Amaro-Seoane, Brem & Cuadra, 2013. 
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• More massive discs will cool 
faster, then fragment and 
form stars.
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• More massive discs will cool 
faster, then fragment and 
form stars.

• Stellar scattering continues 
driving the merger process.

• Also get stellar 
disruptions?

• Complex process: star 
formation and dynamics will 
influence evolution.

Fragmenting Discs
Amaro-Seoane, Brem & Cuadra, 2013. 
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• After most gas is turned 
into stars, stop SPH 
simulation and follow 
binary + stars system with 
N-body approach.

Long-term evolution
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N-body simulations

• N-body simulations are 
better suited to study 
stellar dynamics.

• Take SPH snapshot and 
move to NBODY6, 
including “gas clouds”.

• Calculate rate of stellar 
disruptions:  up to 
10-4–10-3 per yr
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Reverberation 
Mapping

• Reconstruct 
morphology of central 
region around AGN.

• TDE provide very clean 
opportunity (e.g., 
Komossa+’08)

• Otherwise, “normal” 
accretion on to 
secondary BH.

Peterson

Grier et al 2013
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Reverberation mapping of tidal 
disruption events in binaries

Brem, Cuadra, Amaro-Seoane, et al, in prep
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off-centre source 
produces asymmetric map
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Orbital phase could be inferred

Brem, Cuadra, Amaro-Seoane, et al, in prep

27Tuesday, August 6, 2013



Circum-primary discs and streams 
could be detected
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Conclusions

• Binaries surrounded by massive black holes shrink and become 
eccentric.

• Gas disc can achieve coalescence of M < 107 Msun binaries.  
Luminous counterpart to LISA detections.

• Accretion on to black holes is periodic, an effect that increases 
with the binary eccentricity.

• Considering fragmentation:  stars form numerously in the disc, 
many of them get tidally disrupted (up to ~one per 1000 yr!)

• Such disruptions should produce distinct rev.mapping signals.

• N-body scattering of those stars keep driving binary shrinking, 
although at a slower pace.
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