Massive black hole binary mergers within sub-pc scale gas discs

Richard Alexander Pau Amaro-Seoane Phil Armitage Mitch Begelman Patrick Brem Monica Colpi Massimo Dotti Felipe Garrido Stefanie Komossa Constanze Roedig Alberto Sesana

Jorge Cuadra
PUC Chile

JC acknowledges support from CONICYT-Chile through FONDECYT (11100240), Basal (PFB0609) and Anillo (ACT1101) grants; KITP, and the FP7 (LACEGAL).

Gas-driven mergers at large scales

e.g., Escala et al 2004, 2005; Mayer et al 2008; Dotti et al 2009 see M. Colpi's, P. Capelo's and D. Fiacconi's talks

- When galaxies merge, large amounts of gas are funnelled to the centre
- This gas can absorb the binary angular momentum faster than stars
- Efficiently bring the black holes to parsec distances
- Binary gets circular and coplanar with gas

Gammie 2001; Rice, Lodato, Armitage, et al 2005, etc cf B. McKernan's talk

$$Q = \frac{c_s \Omega}{\pi G \Sigma} \sim \frac{H}{R} \frac{M_{BH}}{M_{disc}} < 1$$

Gammie 2001; Rice, Lodato, Armitage, et al 2005, etc cf B. McKernan's talk

 Discs will be unstable to self-gravity

$$Q = rac{c_s \Omega}{\pi G \Sigma} \sim rac{H}{R} rac{M_{BH}}{M_{disc}} < 1$$

Gammie 2001; Rice, Lodato, Armitage, et al 2005, etc cf B. McKernan's talk

 Discs will be unstable to self-gravity

$$Q = rac{c_s \Omega}{\pi G \Sigma} \sim rac{H}{R} rac{M_{BH}}{M_{disc}} < 1$$

- Two possibilities:
 - slow cooling: transport angular momentum
 - fast cooling: fragmentation and star formation

Gammie 2001; Rice, Lodato, Armitage, et al 2005, etc cf B. McKernan's talk

 Discs will be unstable to self-gravity

$$Q = rac{c_s \Omega}{\pi G \Sigma} \sim rac{H}{R} rac{M_{BH}}{M_{disc}} < 1$$

- Two possibilities:
 - slow cooling: transport angular momentum
 - fast cooling: fragmentation and star formation

Gammie 2001; Rice, Lodato, Armitage, et al 2005, etc cf B. McKernan's talk

 Discs will be unstable to self-gravity

$$Q = rac{c_s \Omega}{\pi G \Sigma} \sim rac{H}{R} rac{M_{BH}}{M_{disc}} < 1$$

- Two possibilities:
 - slow cooling: transport angular momentum
 - fast cooling:
 fragmentation and star
 formation

Gammie 2001; Rice, Lodato, Armitage, et al 2005, etc

cf B. McKernan's talk

 Discs will be unstable to self-gravity

$$Q = rac{c_s \Omega}{\pi G \Sigma} \sim rac{H}{R} rac{M_{BH}}{M_{disc}} < 1$$

- Two possibilities:
 - slow cooling: transport angular momentum
 - fast cooling:
 fragmentation and star
 formation

Numerical Models

Cuadra, Armitage, Alexander, Begelman 2009

- 3:1 mass ratio binary
- \bullet $M_{\rm disc} = 0.2 M_{\rm BH}$
- Physical angular momentum transport due to self-gravity
- Modified Gadget-2 (SPH code by Springel 2005)
- Goal: find evolution of binary
 - time-scale for merger
 - eccentricity evolution

Binary Orbit Evolution

$$\frac{da}{dt} \approx 10^{-4} a_0 \Omega_0$$

Time

 Simulations done for given mass ratios and chosen cooling time... need to generalise

- Simulations done for given mass ratios and chosen cooling time... need to generalise
- Analytical predictions show da/dt dependence on disc mass and viscosity law (Syer & Clarke '95; Ivanov et al '99)

- Simulations done for given mass ratios and chosen cooling time... need to generalise
- Analytical predictions show da/dt dependence on disc mass and viscosity law (Syer & Clarke '95; Ivanov et al '99)
- Our simulations agree well...

- Simulations done for given mass ratios and chosen cooling time... need to generalise
- Analytical predictions show da/dt dependence on disc mass and viscosity law (Syer & Clarke '95; Ivanov et al '99)
- Our simulations agree well...
- We can then scale results to different disc properties using analytical models.

Maximum disc mass

• Can't we just have a very large disc to make sure there's a merger?

Maximum disc mass

- Can't we just have a very large disc to make sure there's a merger?
- No! There's a maximum mass beyond which cooling will be too fast and produce fragmentation instead of transport angular momentum.

We combine analytical estimates of max S
 (Levin '07) and da/dt to calculate the maximum
 decay rate a disc can produce.

We combine analytical estimates of max S
 (Levin '07) and da/dt to calculate the maximum
 decay rate a disc can produce.

We combine analytical estimates of max S
 (Levin '07) and da/dt to calculate the maximum
 decay rate a disc can produce.

We combine analytical estimates of max S
 (Levin '07) and da/dt to calculate the maximum
 decay rate a disc can produce.

We combine analytical estimates of max S
 (Levin '07) and da/dt to calculate the maximum
 decay rate a disc can produce.

mass

mass

Binaries smaller than $10^7 \, M_{sun}$ could merge.

Binaries smaller than $10^7\,M_{sun}$ could merge. Binaries will spend most time at few 0.01 pc separations (hard to observe)

Eccentricity Evolution

Eccentricity reaches ~0.35 by the end of the simulation.

No sign of saturation.

Will it grow to e ~ I ?

Trying different initial eccentricities...

Roedig, Dotti, Sesana, Cuadra, Colpi 2011

Trying different initial eccentricities...

Roedig, Dotti, Sesana, Cuadra, Colpi 2011

Eccentricity seems to converge to e ~ 0.6!

Eccentricity evolution

- Secondary produces instantaneous overdensity in inner part of disc.
- If eccentricity is low, overdensity decelerates secondary at apocentre, increasing eccentricity.

Eccentricity evolution

- If eccentricity is high, overdensity accelerates secondary at apocentre, decreasing eccentricity.
- Equilibrium where angular velocities are equal, at e ~ 0.6.

Accretion

- Keep track of gas "accreted" by each BH (R < 0.1a)
- More accretion on to the secondary
- Variability roughly on orbital time-scale.

cf S. Noble's talk

"Observable" consequences

see C. Roedig's talk

"Observable" consequences

Higher eccentricity enhances accretion rate variability.

see C. Roedig's talk

"Observable" consequences

- Higher eccentricity enhances accretion rate variability.
- GW observations would detect remnant $e \sim 10^{-2} 10^{-3}$,

see A. Sesana's talk.

see C. Roedig's talk

- More efficient stellar dynamics.
 - Tri-axiality or rotation, see F. Khan's talk

- More efficient stellar dynamics.
 - Tri-axiality or rotation, see F. Khan's talk
- 3-body interactions with new black holes.

- More efficient stellar dynamics.
 - Tri-axiality or rotation, see F. Khan's talk
- 3-body interactions with new black holes.
- More massive discs... star formation could supply new stars to scatter with binary.

Massive Nuclear Discs

Gammie 2001; Rice, Lodato, Armitage, et al 2005, etc

 Discs will be unstable to self-gravity

$$Q = rac{c_s \Omega}{\pi G \Sigma} \sim rac{H}{R} rac{M_{BH}}{M_{disc}} < 1$$

- Two possibilities:
 - slow cooling: transport angular momentum
 - fast cooling:
 fragmentation and star
 formation

Massive Nuclear Discs

Gammie 2001; Rice, Lodato, Armitage, et al 2005, etc.

 Discs will be unstable to self-gravity

$$Q = rac{c_s \Omega}{\pi G \Sigma} \sim rac{H}{R} rac{M_{BH}}{M_{disc}} < 1$$

- Two possibilities:
 - slow cooling: transport angular momentum
 - fast cooling:
 fragmentation and star
 formation

Amaro-Seoane, Brem & Cuadra, 2013.

Tuesday, August 6, 2013 20

Amaro-Seoane, Brem & Cuadra, 2013.

 More massive discs will cool faster, then fragment and form stars.

Amaro-Seoane, Brem & Cuadra, 2013.

- More massive discs will cool faster, then fragment and form stars.
- Stellar scattering continues driving the merger process.
 - Also get stellar disruptions?

Amaro-Seoane, Brem & Cuadra, 2013.

- More massive discs will cool faster, then fragment and form stars.
- Stellar scattering continues driving the merger process.
 - Also get stellar disruptions?
- Complex process: star formation and dynamics will influence evolution.

Long-term evolution

 After most gas is turned into stars, stop SPH simulation and follow binary + stars system with N-body approach.

N-body simulations

- N-body simulations are better suited to study stellar dynamics.
- Take SPH snapshot and move to NBODY6, including "gas clouds".
- Calculate rate of stellar disruptions: up to 10⁻⁴–10⁻³ per yr

Tuesday, August 6, 2013 23

Long-term evolution

Reverberation Mapping

- Reconstruct morphology of central region around AGN.
- TDE provide very clean opportunity (e.g., Komossa+'08)
- Otherwise, "normal" accretion on to secondary BH.

Reverberation mapping of tidal disruption events in binaries

off-centre source produces asymmetric map

Brem, Cuadra, Amaro-Seoane, et al, in prep

Orbital phase could be inferred

Brem, Cuadra, Amaro-Seoane, et al, in prep

Circum-primary discs and streams could be detected

 Binaries surrounded by massive black holes shrink and become eccentric.

- Binaries surrounded by massive black holes shrink and become eccentric.
- Gas disc can achieve coalescence of $M < 10^7$ M_{sun} binaries. Luminous counterpart to LISA detections.

- Binaries surrounded by massive black holes shrink and become eccentric.
- Gas disc can achieve coalescence of $M < 10^7$ M_{sun} binaries. Luminous counterpart to LISA detections.
- Accretion on to black holes is periodic, an effect that increases with the binary eccentricity.

- Binaries surrounded by massive black holes shrink and become eccentric.
- Gas disc can achieve coalescence of $M < 10^7$ M_{sun} binaries. Luminous counterpart to LISA detections.
- Accretion on to black holes is periodic, an effect that increases with the binary eccentricity.
- Considering fragmentation: stars form numerously in the disc, many of them get tidally disrupted (up to ~one per 1000 yr!)

- Binaries surrounded by massive black holes shrink and become eccentric.
- Gas disc can achieve coalescence of $M < 10^7$ M_{sun} binaries. Luminous counterpart to LISA detections.
- Accretion on to black holes is periodic, an effect that increases with the binary eccentricity.
- Considering fragmentation: stars form numerously in the disc, many of them get tidally disrupted (up to ~one per 1000 yr!)
- Such disruptions should produce distinct rev.mapping signals.

- Binaries surrounded by massive black holes shrink and become eccentric.
- Gas disc can achieve coalescence of $M < 10^7$ M_{sun} binaries. Luminous counterpart to LISA detections.
- Accretion on to black holes is periodic, an effect that increases with the binary eccentricity.
- Considering fragmentation: stars form numerously in the disc, many of them get tidally disrupted (up to ~one per 1000 yr!)
- Such disruptions should produce distinct rev.mapping signals.
- N-body scattering of those stars keep driving binary shrinking, although at a slower pace.