Is Black Hole Growth in Galaxies Self-Regulated?

Daniel Anglés-Alcázar

PhD Graduate Student University of Arizona

with

Feryal Özel and Romeel Davé

Multiple physical processes operating at a remarkable range of scales...

0.01 pc

10 kpc

Daniel Anglés-Alcázar

Massive Black Holes: Birth, Growth, and Impact, KITP 2013

(1) Accretion disk physics:

→Black hole feeding by viscous transport of angular momentum

→Significant mass loss to winds and outflows

Proga+00, Proga+08, Sądowski+13,... Reynolds97, King+13, Tombesi+13,...

(2) Feedback regulation:

→Impact of energy and/or momentum output on the inflowing gas from larger scales

→AGN feedback invoked to regulate BH growth and fix galaxy formation problems

Silk&Rees98, King03, Murray+05, DiMatteo+05,08, Dubois+13,...

(3) Transport of gas from galactic scales down to the accretion disk

→Angular momentum neglected in cosmo sims by using Bondi prescription

→How much feedback do we need if we account for angular momentum?

→Gravitational torques dominate transport of angular momentum

What is the role of gravitational torques on the evolution of massive BHs over cosmic time?

Cosmological zoom simulations

Central BH accretion rate in post-processing:

Gravitational torque model

(Hopkins & Quataert 2010,2011)

$$\dot{M}_{\text{Torque}} \approx \alpha_{\text{T}} f_{\text{disk}}^{5/2} \times \left(\frac{M_{\text{BH}}}{10^8 \,\text{M}_{\odot}}\right)^{1/6} \left(\frac{M_{\text{disk}}(R_0)}{10^9 \,\text{M}_{\odot}}\right)$$
$$\times \left(\frac{R_0}{100 \,\text{pc}}\right)^{-3/2} \left(1 + \frac{f_0}{f_{\text{gas}}}\right)^{-1} \,\text{M}_{\odot} \,\text{yr}^{-1}$$

- Parameterize angular momentum transport below the resolution
- Gas inflows down to 0.01 pc scales as a function of galaxy properties

Cosmological zoom simulations

Cosmological Zoom Simulations

\rightarrow Gadget2 (Springel05) extended (Oppenheimer & Davé):

Multi-phase ISM, metal cooling, UV background, feedback (energy, mass, metals) from type Ia-II SNe, AGB stars, momentum-driven winds,...

Massive Black Holes: Birth, Growth, and Impact, KITP 2013

Accretion rates

\rightarrow Bondi \rightarrow Gravitational torque

→ Eddington

Massive Black Holes: Birth, Growth, and Impact, KITP 2013

Torque-limited growth

Extended galaxy sample down to z = 0 from full cosmological simulation

Massive Black Holes: Birth, Growth, and Impact, KITP 2013

Smooth accretion vs BH mergers

DAA et al., in preparation

Smooth accretion vs BH mergers

DAA et al., in preparation

Evolution of Eddington ratios

Evolution of Eddington ratios

SFR - AGN connection

Averaging over galaxy evolution time-scales!

Massive Black Holes: Birth, Growth, and Impact, KITP 2013

Conclusions

DAA, Özel, & Davé 2013, ApJ,770, 5

DAA et al., in preparation

- Torque-limited growth yields black holes and host galaxies evolving towards the M_{BH} - M_{bulge} relation with no need for mass averaging through mergers or additional self-regulation processes.
- Strong outflows are required to suppress black hole growth by ejecting a significant amount of mass but there is no need for coupling to galaxy-scale gas in order to regulate black holes in a non-linear feedback loop.
- Eddington ratios can be described by a broad lognormal distribution with median value evolving roughly as $\lambda_{MS} \propto (1 + z)^{1.9}$, suggesting a main sequence for black hole growth similar to the cosmic evolution of specific SFRs.
- Cosmological gas infall and transport of angular momentum in the galaxy by gravitational instabilities regulate the long-term coevolution of black holes and star-forming galaxies.