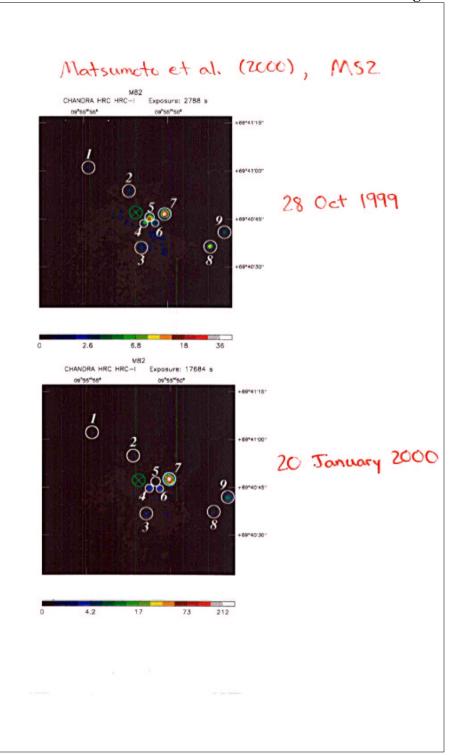
Intermediate-Mass Black Holes

Cole Miller, University of Maryland


Observational evidence.

Dense stellar systems.

Detectability in globulars.

Implications for gravitational radiation.

Future observations and theory.

Observations

Odd point sources seen in several galaxies: X-ray flux $\Rightarrow L_{\rm iso} > 10^{40} {\rm erg \ s^{-1}}$ Off-center, strongly variable \Rightarrow BH.

$$L < L_{\rm Edd} \Rightarrow M > L_{38} M_{\odot} \approx 10^{2-3} M_{\odot}$$
.

Dynamical friction implies $M < 10^{5-6} M_{\odot}$. New class of black hole?

Associated with star-forming regions.

One source in superbubble.

Velocity cusps in globulars, $M \sim 10^{3-4} M_{\odot}$. Some $L > 10^{39} {\rm erg \ s^{-1}}$ sources in extragalactic globulars.

Motivation for Dense Stellar Systems

Will proceed assuming $M \sim 10^{2-3} M_{\odot}$. Might be beamed, super-Eddington. Beaming not favored (He II nebula). Binary measurements would clinch.

What is the source of the accreting matter?

Not Bondi-Hoyle; rate is too low. Even in MC, $L < 10^{36} M_3^2 \text{ erg s}^{-1}$. Must be accreting from binary.

Where did companion come from?
Co-evolution? No, BH too massive.
Captured? Need high stellar density.

Thus, dense stellar clusters.

Dynamics of Dense Stellar Systems

What processes go on when $n \sim 10^{5-6} \,\mathrm{pc^{-3}}$ and $M_{\mathrm{tot}} \sim 10^{5-6} \,M_{\odot}$?

Mass segregation.

Binary hardening, exchanges.

In young cluster, direct collisions (Portegies Zwart & McMillan).

Evolved cluster, interactions of BH, NS.

If $M_{\rm BH} < 10 \, M_{\odot}$, recoil \Rightarrow ejection.

If $M_{\rm BH} > 50\,M_{\odot}$, inertia \Rightarrow merger.

Binary-binary can leave stable triple.

High inclinations ⇒ Kozai resonance. Mergers? Miller & Hamilton 2002. Detection of IMBH in Globulars

If many globulars have $10^{2-4} M_{\odot}$ BH, how could we see them?

Accretion from main sequence stars? Exchanges favor more massive objects. In globulars, $M_{\text{compact}} > M_{\text{MS}}$.

Density or velocity cusp.

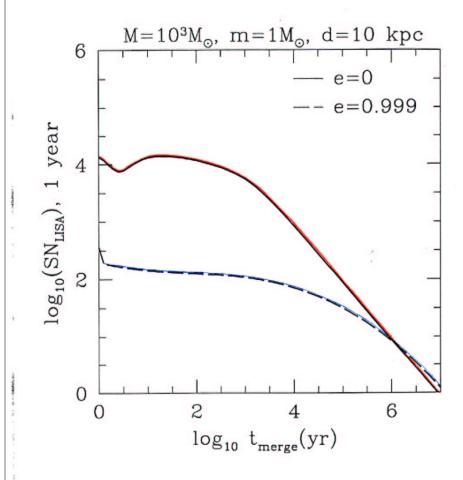
But, wandering can be significant. $(\langle m \rangle/M)^{1/2} r_{\rm core} < GM/\sigma^2$. For $\sigma{=}10~{\rm km~s^{-1}}$, need $M > 500~M_{\odot}$.

Radiation from Bondi accretion?

Uncertain efficiency, \dot{M} , preheating.

Gravitational radiation.

Gravitational Radiation


If this model is correct, many $\sim 10^3 \, M_{\odot}$ BH exist in globulars.

What are the properties of these sources? After last encounter: $f_{\rm bin} \sim 10^{-4}$ Hz. Unknown eccentricity.

Mass supply, M/\dot{M} limit rates.

If $t_{\rm merge} > 10^6 {\rm ~yr, S/N(LISA)} = {\rm S/N}(t_{\rm merge})$. In 1 yr, detect \sim few around Galaxy. Also, \sim few detectable in Virgo. May be usable as distance measure.

Final merger detectable with LIGO-II. If 10% of clusters have $100 M_{\odot}$ BH, 10-100 visible mergers per year.

Future Work

(A. Wilson): nature of companion should evolve with age of young star cluster.

Variation in globular sources around ellipticals?

Binary companion plus period would clinch mass range (Liu & Bregman 2002).

Theoretical work, e.g.:

Four-body dynamics.

High mass ratio encounters (Gultekin). Waveforms for 100:1, 1000:1 inspirals.