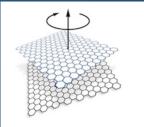
Superconductivity in twisted graphene layers: electronic structure and interactions.


Outline

- Superconductivity in twisted graphene bilayers.
- Electronic structure.
- Electrostatic interactions.
- Electron assisted hopping and superconductivity.
- Open challenges.

MANCHESTER
1824
The University of Manchester

F. Guinea KITP, January 16th, 2019

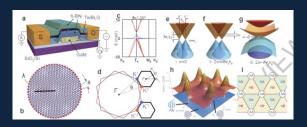
Correlations in Moire Flat Bands

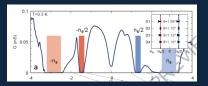
In colaboration with N. R. Walet, U. Manchester Acknowledgments to P. San Jose and J. Gonzalez, CSIC, Madrid.

Superconductivity in graphene

Superconductivity in graphene. March Meeting, Los Angeles 2018

nature A


Accelerated Article Preview

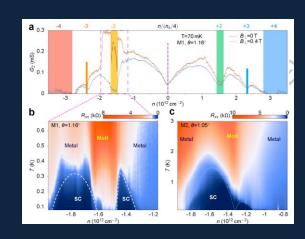

LETTER

doi:10.1038/natura26154

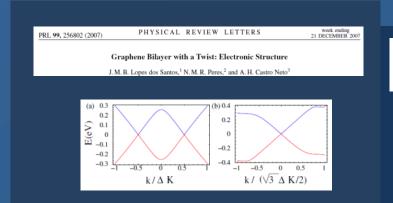
Correlated insulator behaviour at half-filling in magic-angle graphene superlattices

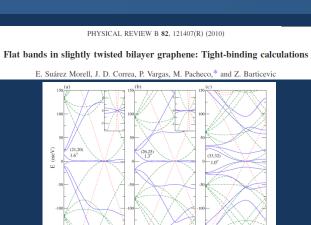
Yuan Cao, Valla Fatemi, Ahmet Demir, Shiang Fang, Spencer L. Tomarken, Jason Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori & P. Jarillo-Herrero

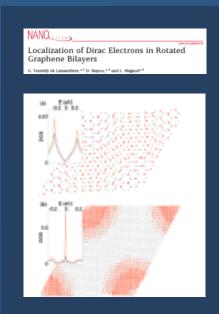
nature Accelera


Accelerated Article Preview

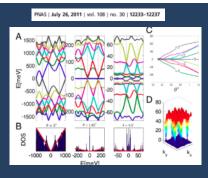
ARTICLE


doi:10.1038/nature26160

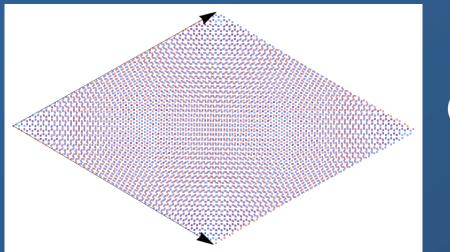

Unconventional superconductivity in magic-angle graphene superlattices


Yuan Cao, Valla Fatemi, Shiang Fang, Kenji Watanabe, Takashi Taniguchi, Efthimios Kaxiras & Pablo Jarillo-Herrero

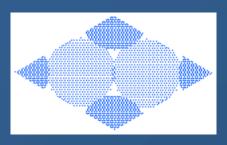
Twisted graphene layers: theory

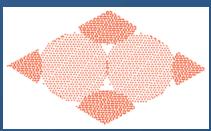


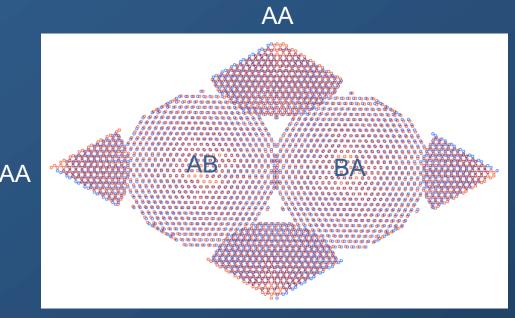



Moiré bands in twisted double-layer graphene

Rafi Bistritzer and Allan H. MacDonald

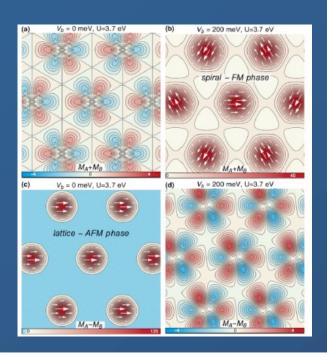





Structure of twisted bilayers

 $\theta = 1,35^{\circ}$

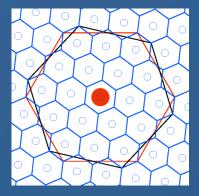
AA

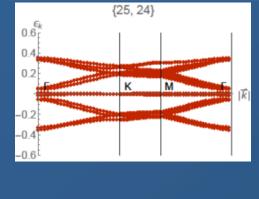

Hubbard interaction

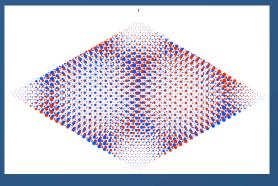

PRL 119, 107201 (2017) PHYSICAL REVIEW LETTERS

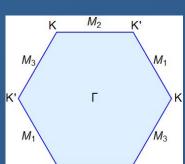
**Week ending 8 SEPTEMBER 2017

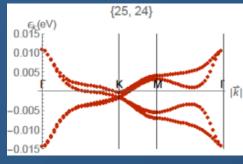
**Electrically Controllable Magnetism in Twisted Bilayer Graphene

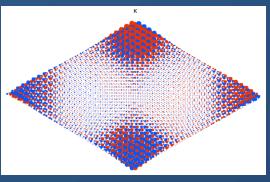

**Luis A. Gonzalez-Arraga, 1 J. L. Lado, 2 Francisco Guinea, 1,3 and Pablo San-Jose 4

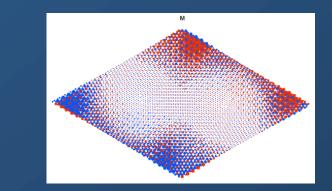





- Mean field theory. Hubbard model. Calculations done in a scaled Moiré unit cell.
- No bias: antiferromagnetism at low values of $\frac{U_c}{t}$
- Finite bias: ferromagnetism due to the existence of flat bands.
 Antiferromagnetic coupling between neighboring AA regions.


Electronic structure





Low energy bands

Brillouin zones

Charge density distribution

Charge-transfer insulation in twisted bilayer graphene

PHYSICAL REVIEW B 98, 235158 (2018)

Local orbitals and Wannier functions

PHYSICAL REVIEW B 98, 045103 (2018)

Editors' Suggestion

Model for the metal-insulator transition in graphene superlattices and beyond

Noah F. Q. Yuan and Liang Fu

PHYSICAL REVIEW X 8, 031087 (2018)

Maximally Localized Wannier Orbitals and the Extended Hubbard Model for Twisted Bilayer Graphene

Mikito Koshino, 1,4 Noah F. Q. Yuan, 2 Takashi Koretsune, 3 Masayuki Ochi, 1 Kazuhiko Kuroki, 1 and Liang Fu2

PHYSICAL REVIEW X 8, 031088 (2018)

Symmetry, Maximally Localized Wannier States, and a Low-Energy Model for Twisted Bilayer Graphene Narrow Bands

Jian Kang^{1,*} and Oskar Vafek^{1,2,†}

PHYSICAL REVIEW X 8, 031089 (2018)

Origin of Mott Insulating Behavior and Superconductivity in Twisted Bilayer Graphene

Hoi Chun Po,1 Liujun Zou,1,2 Ashvin Vishwanath,1 and T. Senthil2

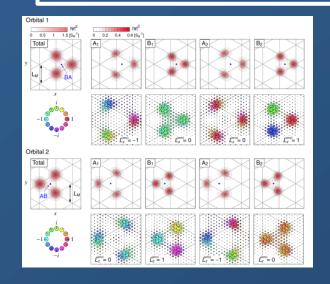
PHYSICAL REVIEW B 98, 085435 (2018)

Editors' Suggestion

Band structure of twisted bilayer graphene: Emergent symmetries, commensurate approximants, and Wannier obstructions

Liujun Zou, 1,2 Hoi Chun Po,1 Ashvin Vishwanath,1 and T. Senthil2

Electronic bands of twisted graphene layers


- Model for Metal-Insulator Transition in Graphene Superlattices and Beyond
 Anthors: Noah F. Q. Yuan, Liang Fu arXiv:1803.09699, Phys. Rev. B 98, 079901 (2018)
- Origin of Mott Insulating Behavior and Superconductivity in Twisted Bilayer Graphene
 Authors: Hoi Chan Po, Liujun Zou, Ashvin Vishwanath, and T. Senthil arXiv:1803.0942, Phys. Rev. X 8, 031099 (2018)
- Symmetry, Maximally Localized Wannier States, and a Low-Energy Model for Twisted Bilayer Graphene Narrow Bands Authors: Jian Kang and Osiar Vafek arXiv:1805.04918, Phys. Rev. X 8, 031098 (2018)
- Maximally-localized Wannier orbitals and the exterior the twisted bilay
 Authors: Mixto Koshi
 - Journal Club for Condensed Matter Physics
- 5. Band Structure of T Commonwrate App Authors: Lights Zov, 1

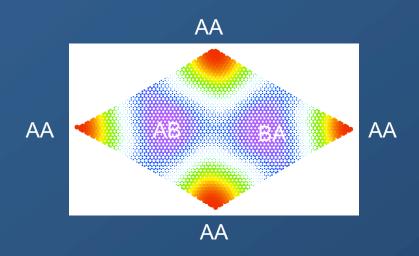
Authors: Linjun Zou, I arXiv:1806.07873, Phys. Rev. B 98, 085435 (2018)

arXiv:1805.06819, Phys

Recommended with a Commentary by Francisco Guinea, Imdea

- The underlying structure of the superlattice is a honeycomb lattice.
- The lattice nodes are at the centers of the regions where the stacking is AB aor BA.
- The Wannier functions have maxima at three lobes around the nodes, and non trivial phases.

This description differs significantly from an array of mesoscopic quantum dots in a triangular lattice.

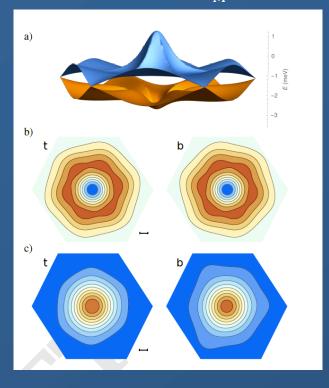

More about interactions

Moiré lattice unit: $\ell_M \approx 15 \text{ nm}$

Radius of the charge distribution: $\ell_{\it C} \approx 5~{\rm nm}$

Coulomb energy: $E_C \approx \frac{e^2}{\ell_C} \approx 0.1 \text{ eV}$

On site repulsion: $E_H \approx \frac{U}{N} \approx \frac{U}{(\ell_C/a_0)^2} \approx \frac{e^2 a_0}{\ell_C^2} \approx 0.01 \text{ eV}$



Coulomb potential,

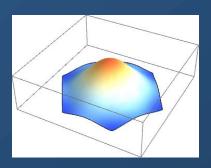
 V_{max} =0.029 eV , V_{min} =-0.014eV

Coulomb interactions and screening in twisted graphene bilayers

Angle: $\theta = 1.05^{\circ}$ Moiré unit cell: $L_M \approx 15$ nm

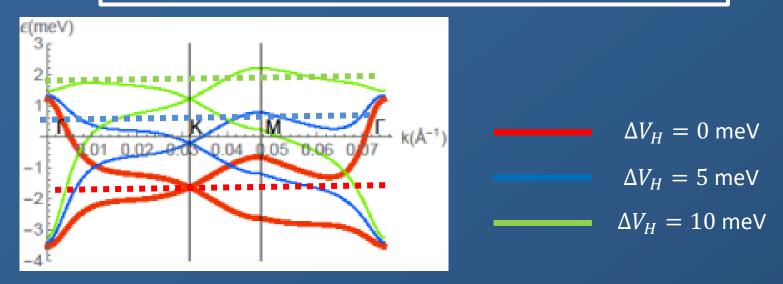
 Γ point

K point


Bands, wavefunctions

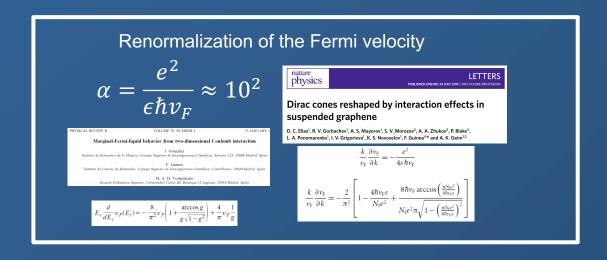
Electrostatic effects, band distortions, and superconductivity in twisted graphene bilayers

Francisco Guinea^{a,b,1,2} and Niels R. Walet^{b,1,2}


arXiv:1806.05990 Proc. Nat. Acad. Sci. (USA) **115**, 13174 (2019)

- The charge distribution within the Moiré unit cell depends on the state.
- Away from the neutrality point, the charge is concentrated at the center of the unit cell.
- A non uniform electrostatic potential is induced.

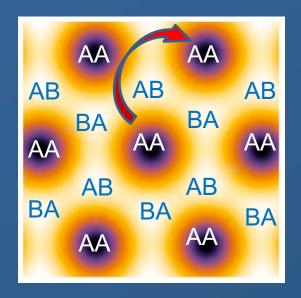
Sketch of the electrostatic potential


Twisted bilayers, Hartree approximation

Hartree bands, different fillings.

- The band structure is dependent on filling → new interactions
- The bandwidth increases away from the neutrality point

Exchange term



Shift of the occupied Γ point

$$\delta \epsilon_{\Gamma}^{ex} \approx -\frac{1}{2\pi} \int_{0}^{\Lambda} \frac{e^{2}}{\epsilon k} k dk \approx -\frac{e^{2} \Lambda}{2\pi \epsilon} \approx -0.07 \frac{e^{2}}{\epsilon L_{M}}$$

The exchange term will increase the bandwidth

New interactions in twisted bilayers

PHYSICAL REVIEW B VOLUME 41, NUMBER 10 1 APRIL 1990 Hole superconductivity and the high- T_c oxides F. Marsiglio and J. E. Hirsch

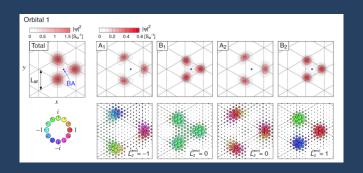
41 6435

© 1990 The American Physical Society

$$\tilde{t} \sum_{i,j} (c_i^{\dagger} c_j + c_j^{\dagger} c_i) (n_i + n_j) \qquad \tilde{t} \approx V_H$$

- Electron assisted hopping
- Favorable for superconductivity

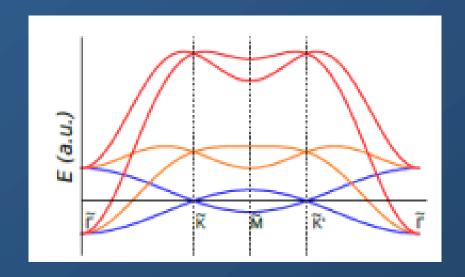
See also

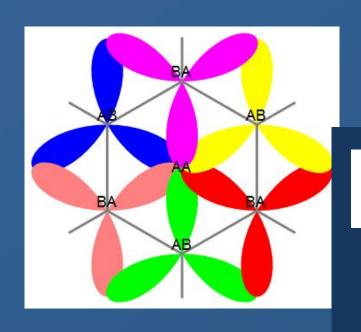

Strong coupling phases of partially filled twisted bilayer graphene narrow bands $\mbox{\sc Jian Kang}^{1,*} \mbox{\sc and Oskar Vafek}^{1,2,\dagger}$

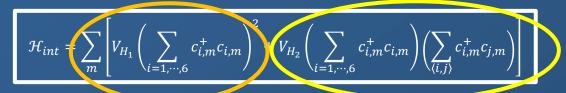
arXiv:1810.08642

PHYSICAL REVIEW X 8, 031087 (2018)

Maximally Localized Wannier Orbitals and the Extended Hubbard Model for Twisted Bilayer Graphene


Mikito Koshino, 1.* Noah F. Q. Yuan, Takashi Koretsune, Masayuki Ochi, Kazuhiko Kuroki, and Liang Fu


Simple tight binding model


- Description using two orbitals, one at each inequivalent site of the honeycomb lattice.
- Long range hoppings (M. Koshino, N. Yuan, N. Koretsune, K. Kiroki, L. Fu, Phys. Rev. X 8, 031087 (2018)).
- A simple model for the electrostatic potential describes well the results obtained more sophisticated models.

$$\mathcal{H}_{local} = \mathcal{H}_0 + \mathcal{H}_H = t_1 \sum_{\langle i,j \rangle} c_i^+ c_j + i t_2 \sum_{\langle \langle i,j \rangle \rangle} c_i^+ c_j + V_H \sum_{\langle \langle i,j \rangle \rangle, \{i,j\} \in \{A,B\}} c_i^+ c_j + h.c.$$

Analysis of the interactions at the Fermi level

Local repulsion


Assisted hopping

PHYSICAL REVIEW B 98, 121406(R) (2018)

Kekulé valence bond order in an extended Hubbard model on the honeycomb lattice with possible applications to twisted bilayer graphene

Xiao Yan Xu, 1 K. T. Law, 1 and Patrick A. Lee^{2,3}

$$H_{t} = -\sum_{ij} \sum_{\alpha} t_{ij} c_{i\alpha}^{\dagger} c_{j\alpha} + \text{H.c.},$$

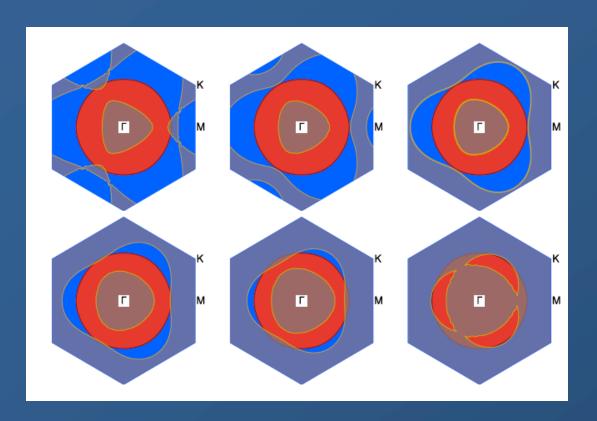
$$H_{U} = U \sum_{O} (Q_{O} - 2)^{2}.$$

$$\left[\vec{l}_{2}\right] + e^{i\vec{k}\cdot(\vec{a}_{1}-\vec{a}_{2})} \left] V_{H_{1}}\sigma_{+}\tau_{\chi} \right]$$

miltonian

- $\Delta_1(\vec{k}) = V_{H_1} \sum_{\vec{k}'} f(\vec{k} \vec{k}') \langle \mathbb{I}_{\sigma} \tau_x \rangle_{\vec{k}'}$
- $\Delta_2(\vec{k}) = \frac{V_{H_1}}{3} \sum_{\vec{k}} f(\vec{k} \vec{k}') \left(1 + e^{-i\vec{k}'\vec{a}_1} + e^{-i\vec{k}'\vec{a}_2} \right) \langle \sigma_- \tau_x \rangle_{\vec{k}'}$

$$\Delta_{3}(\vec{k}) = \frac{V_{H_{1}}}{3} \sum_{\vec{k}'} f(\vec{k} - \vec{k}') \left(1 + e^{i\vec{k}'(\vec{a}_{1} + \vec{a}_{2})} + e^{i\vec{k}'(\vec{a}_{1} - \vec{a}_{2})} + e^{i\vec{k}'(-\vec{a}_{1} + \vec{a}_{2})} \right) \langle \sigma_{-}\tau_{x} \rangle_{\vec{k}'}$$


$$\Delta_{4}(\vec{k}) = V_{H_{2}} \sum_{\vec{k}'} f(\vec{k} - \vec{k}') \left[g(\vec{k}) + g(\vec{k}') \right] \langle \mathbb{I}_{\sigma} \tau_{x} \rangle_{\vec{k}'}$$

$$\Delta_{5}(\vec{k}) = V_{H_{2}} \sum_{\vec{k}} f(\vec{k} - \vec{k}') \left[g(\vec{k}) + g(\vec{k}') \right] \langle \sigma_{-} \tau_{x} \rangle_{\vec{k}'}$$

 Many superconducting gaps are possible

$$f(\vec{k}) = 3 + 2\cos(k_x) + 4\cos\left(\frac{k_x}{2}\right)\cos\left(\frac{\sqrt{3}k_y}{2}\right)$$
$$g(\vec{k}) = 2\cos(k_x) + 4\cos\left(\frac{k_x}{2}\right)\cos\left(\frac{\sqrt{3}k_y}{2}\right)$$

Superconductivity due to assisted hopping in twisted bilayers

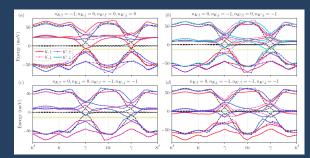
- Example: s-wave superconductivity.
- An attractive interaction appears in some regions of the Brillouin Zone.
- The Fermi surface has two pockets.
- Superconductivity is favored in the blue regions of the Brillouin Zone.

Hartree approximation.

Fermi surfaces for different fillings.

$$T_c \sim We^{-(WL_M\epsilon)/e^2}$$

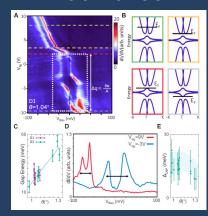
Electrostatic interactions and superconductivity


- The low energy electronic states of twisted graphene layers show inhomogeneous charge distributions in the Moiré unit cell.
- Away from the neutrality point, these charge inhomogeneities lead to an electrostatic potential, with a strength comparable or larger than the bandwidth.
 - This potential defines the largest interaction between the electrons.
- The electrostatic potential modifies significantly the bands. These
 deformations can be adscribed to the emergence of new interactions, which
 can be defined as assisted hopping terms.
- The presence of assisted hopping terms fits naturally with the complex structure of the Wannier functions of the system.
- Assisted hopping is an interaction that favors superconductivty.

Some recent developments

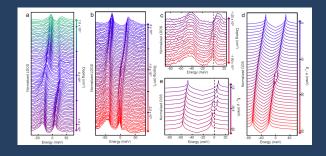
On the Nature of the Correlated Insulator States in Twisted Bilayer Graphene

Ming Xie and A. H. MacDonald


arXiv:1812.04213

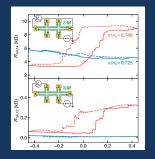
Imaging Electronic Correlations in Twisted Bilayer Graphene near the Magic Angle

Youngjoon Choi^{1,2,4}, Jeannette Kemmer^{1,2}, Yang Peng ^{2,3,4}, Alex Thomson^{2,3,4}, Harpreet Arora^{1,2}, Robert Polski^{1,2}, Yiran Zhang^{1,2,4}, Hechen Ren^{1,2}, Jason Alicea^{2,3,4}, Gil Refael^{2,3,4}, Felix von Oppen^{2,5}, Kenji Watanabe⁶, Takashi Taniguchi⁶, and Stevan Nadj-Perge^{1,2*}


arXiv:1901.02997

Magic Angle Spectroscopy

Alexander Kerelsky, ¹ Leo McGilly, ¹ Dante M. Kennes, ² Lede Xian, ³ Matthew Yankowitz, ¹ Shaowen Chen, ^{1,4} K. Watanabe, ⁵ T. Taniguchi, ⁵ James Hone, ⁶ Cory Dean, ¹ Angel Rubio, ^{3,7,*} and Abhay N. Pasupathy, ¹, [†]

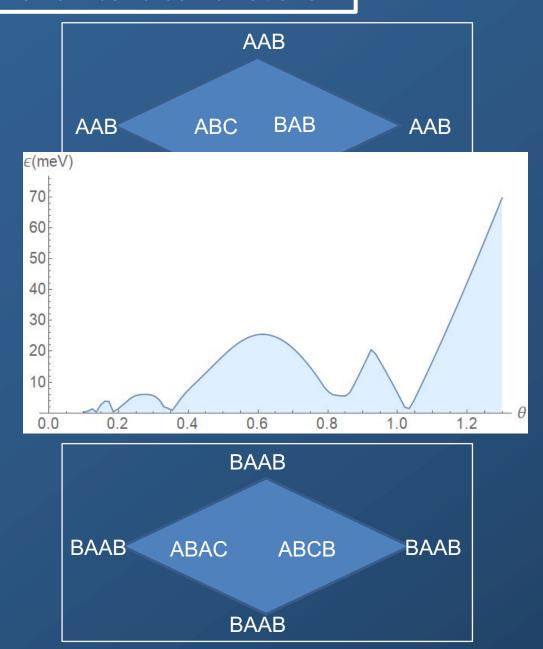

arXiv:1812.08776

Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene

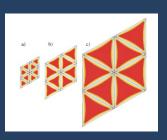
Aaron L. Sharpe, ^{1,2*} Eli J. Fox, ^{2,3*} Arthur W. Barnard, ³ Joe Finney, ³ Kenji Watanabe, ⁴ Takashi Taniguchi, ⁴ M. A. Kastner, ^{3,5,6} David Goldhaber-Gordon ^{2,3†}

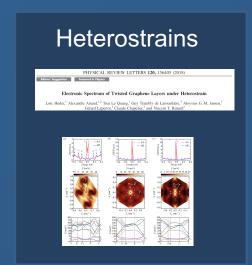
arXiv:1901.03520

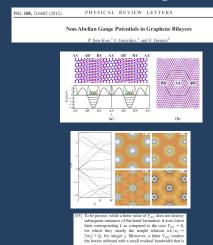

Other narrow band combinations


Twisted monolayer on bilayer

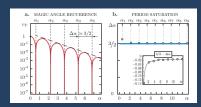
Twisted bilayer on bilayer



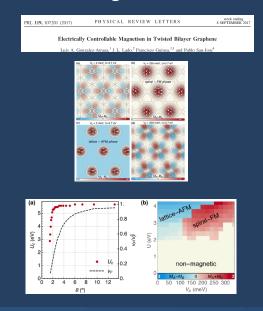

Twisted bilayer on bilayer


Future work

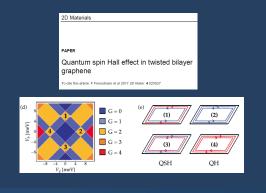
Strains, lattice relaxation



Origin of the magic angles

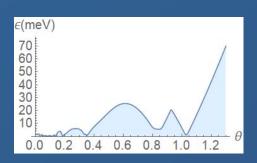


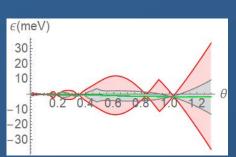
Origin of Magic Angles in Twisted Bilayer Graphene
Grigory Tarnopolsky, Alex J. Kruchkov, and Ashvin Vishwanath

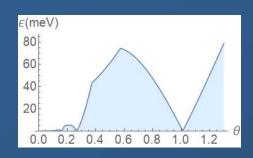


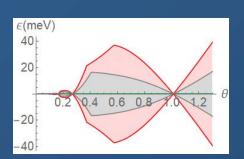
$$\frac{wL_M}{v_F} \approx 2\pi \left(j + \frac{1}{2}\right)$$

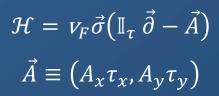
Short range interactions


Magnetic and electric fields

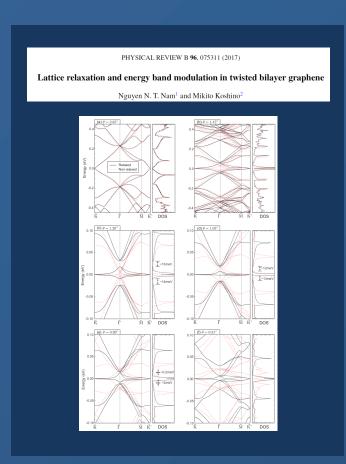


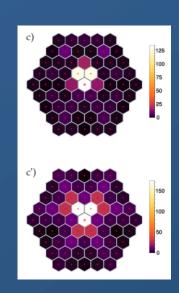

Origin of magic angles

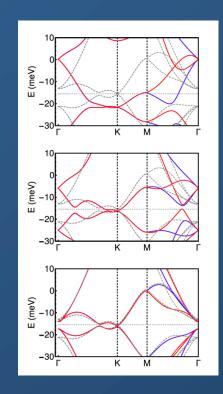

In collaboration with P. San José and J. González


No AA hopping, non Abelian gauge field

$$\frac{wL_M}{v_F} \approx 2\pi \left(j + \frac{1}{2} \right)$$


- Multiple topological transitions in twisted bilayer graphene near the first magic angle
 - Kasra Hejazi, 1, * Chunxiao Liu, 1, * Hassan Shapourian, 2, 3 Xiao Chen, 3 and Leon Balents 3


arXiv:1808.0568


- Magic angles are associated to level crossings.
- Level crossings persist outside high symmetry points.
- Flat bands require non Abelian gauge fields.

Lattice relaxation, bands

In collaboration with N. Walet

3 harmonics

12 harmonics

48 harmonics

Fully relaxed 32x31 Moiré, $\theta \approx 1.05^{o}$. Environment dependent interlayer hoppings. Comparison between tight binding and continuum models