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moire superlattice
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• emergence of correlated 

insulator at “half filling” 
for magic twist angle

• superconductivity near 
an insulating state

[Cao et al, Nature (2018)]2



Surprises in twisted bilayer graphene (TBG)
• Electronic states can also be controlled with pressure

• Similar phenomena seen in other twisted systems (TB2G, 
trilayer graphene, …) P. Kim group, F. Wang group

Yankowitz et al, arXiv (2018)



Surprises in twisted bilayer graphene (TBG)
• Magic angle: isolated nearly-flat bands in the moiré Brillouin zone.

• Small bandwidth: interactions become important

Bistritzer and MacDonald, PNAS (2011)

Kaxiras et al, arXiv (2019)
Cao et al, Nature (2018)
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• Energy scales (estimates):

Low-energy model

Kang & Vafek, PRX (2018)

W

�
Ø most likely, the narrow-

band subsystem is in the 
intermediate coupling 
regime U ~ W

Ø focus only on narrow 
bands as long as D > U

Ø starting point: weak-coupling 
or strong-coupling? 

W ⇠ 10meV

� ⇠ 30meV

U ⇠ 20meV



• Energy scales (estimates):

Low-energy model

Kang & Vafek, PRX (2018)

W

�

W ⇠ 10meV

� ⇠ 30meV

U ⇠ 20meV

observation of insulating 
behavior at commensurate 

filling motivates us to start with 
a strong-coupling approach

Yankowitz et al, arXiv (2018)



• Commensurate twist from AA center: moiré superlattice

Low-energy model: non-interacting part

AA

ABBA

AA

Yuan & Fu, PRB (2018)
Kang & Vafek, PRX (2018)
Zou, Po, Vishwanath, Senthil, PRB (2018)

absence of C2x
symmetry (D3 space 
group) removes any 
subtleties related to 
Wannier obstruction



• Wannier states are peaked near AA points, but centered at 
AB/BA points: emergent honeycomb lattice 

Low-energy model: non-interacting part

Koshino et al, PRX (2018)

Kang & Vafek, PRX (2018)
8 states per moiré unite cell: 

2 (spin) x 2 (sublattice) x 2 (“orbitals”)



• Two “p-orbital” honeycomb lattice model:

Low-energy model: non-interacting part

Yuan & Fu, PRB (2018)

Kang & Vafek, PRX (2018)

Ø the 2 “orbitals” in each honeycomb 
sublattice site are eigenstates of C3z

Lz = ±1Ø angular momentum eigenstates 
(nearly valley-polarized): equivalent to 

“orbitals”p
x

± ip
y

Ø unitary transformation:       and 
“orbitals” on a honeycomb lattice

p
x

py

Ø hopping amplitudes not given by 
Slater-Koster rules



Low-energy model: non-interacting part

Koshino et al, PRX (2018)Kang & Vafek, PRX (2018)

• Two-orbital honeycomb 
lattice model: tight-
binding band dispersions

Brillouin zone is 
folded due to moiré 
superlattice



• Extended Hubbard-Kanamori model: density-density and 
exchange-like interactions

• Main challenges: determine the most important interaction terms 
and solve the problem in the intermediate coupling regime.

Low-energy model: interaction terms
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• What to expect? In the insulating regime, with one electron per 
site (“half-filling”), two unquenched degrees of freedom are left.

Strong-coupling expansion

see also: Xu & Balents, PRL (2018); Dodaro et al, PRB (2018)

SU(2) spin

Si ⌧ i

SU(2) orbital

preserved if spin-orbit 
coupling is absent

broken by 
the symmetries 
of the system
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• What to expect? In the insulating regime, with one electron per 
site (“half-filling”), two unquenched degrees of freedom are left.

Strong-coupling expansion

⌧ i

SU(2) orbital

broken by 
the symmetries 
of the system

: orbital order (C3z
symmetry breaking)

: orbital order (C3z
symmetry breaking)

: orbital magnetism (T 
symmetry breaking)
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• What to expect? In the insulating regime, with one electron per 
site (“half-filling”), two unquenched degrees of freedom are left.

Strong-coupling expansion

⌧ i

SU(2) orbital

broken by 
the symmetries 
of the system

⌧ k
i

= (⌧z
i

, ⌧x
i

) ⌧yi
Ø approximate U(1) 

symmetry (no 
intervalley scattering)

Ø C3z symmetry-
breaking: nematic

�! &

Ø orbital magnetism



• Strong-coupling expansion: Hamiltonian in terms of       and 

Ø Kugel-Khomskii Hamiltonian

• First step: onsite interactions (Hubbard U and Hund’s J) and 
nearest-neighbor hopping only.

Strong-coupling expansion
Si ⌧ i

approximately zero 
(intervalley scattering)



• One electron per site (“half-filling”, but moiré unit cell is 1/4 filled)

Strong-coupling Hamiltonian

several approaches to capture the effects of interactions: Balents, Xu, Fu,
Vafek, Kang, Isibo, Sachdev, Kivelson, Rademaker, Mellado, Senthil,
Vishwanath, Guinea, Bascones, Martin, MacDonald, Lee, Law, Ma, Koshino,
Kuroki, Kennes, Thomson, Phillips, Betouras, Nandkishore, Bernevig, Thanos, …  



• Strong-coupling phase diagram: either        or        (but not both) are 
staggered (translational symmetry-breaking)

Si ⌧ i
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• Decomposition of the interaction terms in pair operator.
• Three types of onsite pairing:

What about superconductivity?

�↵↵0

��0 c†i,↵�c
†
i,↵0�0

s-wave spin-singlet
(A1 symmetry)

degenerate d-wave 
(E symmetry)

s-wave spin-triplet
(A2 symmetry)

� = (⌧z, ⌧x)⌦ (i�y)� = ⌧0 ⌦ (i�y) � = (i⌧y)⌦ (d · � i�y)

superconductivity proposals: Balents, Xu, Fu, Kivelson, Rademaker, Mellado,
Guinea, Scalletar, Martin, MacDonald, Lee, Ma, Kennes, Nandkishore, Bernevig, …  



What about superconductivity?
• s-wave spin-triplet channel is attractive already in the bare level 

in the regime of the phase diagram dominated by orbital 
ferromagnetism.

speculation: s-wave spin-
triplet SC near orbital FM?

c.f. P. Kim’s talk and
Goldhaber-Gordon’s talk

J > U/3



Strong-coupling expansion
• Our onsite approximation neglects the impact of extended interactions, 

which are expected due to the extended nature of the Wannier functions.

• Kang and Vafek: assisted-hopping interaction favors “ferro” alignment of 
both     and       already in the atomic limit.

• Hopping beyond nearest neighbors are fundamental to correctly describe 
the narrow bands dispersions. Can they introduce frustration? 

Si ⌧ i
see also Senthil’s talk

Kang & Vafek, PRX (2018)

Koshino et al, PRX (2018)
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Electronic nematicity in TBG: experimental hints

Kerelsky et al, arXiv (2018) Jarillo-Herrero’s talk

Ø STM: spatial map of the local density 
of states is not three-fold symmetric

Ø superconducting upper critical 
field is two-fold symmetric
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• Nematic order in liquid crystals: orientational order without 
translational symmetry-breaking.

• Order parameter (2D):

Electronic nematicity: phenomenology

Mbanga, PhD thesis (2012)

Qij = Q
�
2didj � �ijd

2
�

director



• Electronic nematicity:

Electronic nematicity: phenomenology

Kivelson, Fradkin, Emery Nature (1998)

Q̂ij =  †(r)
�
2@i@j � �ijr2

�
 (r)



• Electronic nematicity:

Øorder parameter can be expressed in terms of quadrupolar charge densities:

Electronic nematicity: phenomenology

Kivelson, Fradkin, Emery Nature (1998)
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• Electronic nematicity:

Øorder parameter can be expressed in terms of quadrupolar charge densities:

ØXY-nematic order parameter F

Electronic nematicity: phenomenology

Kivelson, Fradkin, Emery Nature (1998)
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• Lattice generally breaks the continuous symmetry of the nematic OP:

Electronic nematicity: impact of the lattice

Ø square lattice: the two 
components of F transform 
as two different irreducible 
representations

⇢
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� =

✓
⇢
x

2�y

2

⇢
xy

◆
⌘ �0

✓
cos ✓
sin ✓

◆



• Lattice generally breaks the continuous symmetry of the nematic OP:

Electronic nematicity: impact of the lattice

Ø honeycomb lattice: the 
two components of F
transform as the same 
two-dimensional irrep E
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• Lattice generally breaks the continuous symmetry of the nematic OP:

Electronic nematicity: impact of the lattice

Ø honeycomb lattice: the 
two components of F
transform as the same 
two-dimensional irrep E

⇢
x

2�y

2 ⇢
xy

XY-nematicity?

↵

� =

✓
⇢
x

2�y

2

⇢
xy

◆
⌘ �0

✓
cos 2↵
sin 2↵

◆



• Lattice generally breaks the continuous symmetry of the nematic OP:

Electronic nematicity: impact of the lattice

Ø honeycomb lattice: the 
two components of F
transform as the same 
two-dimensional irrep E

⇢
x

2�y

2 ⇢
xy

see also: 
Hecker & Schmalian, npj Quant Mat (2017)
Fu et al, PRB (2016)

3-state 
Potts nematicity!

↵

f =

a
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2
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• General properties of the two-dimensional 3-state Potts model:

Electronic nematicity: impact of the lattice

Shchur et al, PRB (2008)

Ø despite the cubic invariant, 
transition is second order
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• General properties of the two-dimensional 3-state Potts model:

Electronic nematicity: impact of the lattice

Shchur et al, PRB (2008)

Ø despite the cubic invariant, 
transition is second order

Ø Harris inequality is violated: d⌫ =
5

3
< 2

importance of disorder, which 
is ubiquitous in TBG

Ø may explain the financial market $$$



• Possible microscopic origins:
Ø spontaneous order of the emergent “orbital” degrees of freedom.

Electronic nematicity in TBG

Dodaro et al, PRB (2018)
Venderbos & RMF, PRB (2018)
Kang & Vafek, arxiv (2018)



• Possible microscopic origins:
Ø spontaneous order of the emergent “orbital” degrees of freedom.
Ø weak-coupling instability related to van Hove singularities? But no 

gap is opened by nematic order.

Electronic nematicity in TBG

in the context of graphene doped to the vHS:
Valenzuela & Vozmediano, NJP (2008)

Isobe et al, PRX (2018)



• Possible microscopic origins:
Ø spontaneous order of the emergent “orbital” degrees of freedom.
Ø weak-coupling instability related to van Hove singularities? But no 

gap is opened by nematic order.
Ø vestigial phase of a nematic superconducting state.

Electronic nematicity in TBG

Venderbos & RMF, PRB (2018)



Vestigial order: partial melting of an ordered state
• Similarity with the physics of liquid crystals

• In quantum matter: composite order

translational  
rotational

total
melting

partial 
melting

translational  
rotational

translational  
rotational

h⌘↵i = 0 but h⌘↵⌘�i 6= 0
RMF, Orth, Schmalian, Ann. Rev. Cond. Matt. Phys, in press



• One of the candidates for the superconducting state:

Vestigial nematic order in TBG

s-wave spin-singlet
(A1 symmetry)

degenerate d-wave 
(E symmetry)

s-wave spin-triplet
(A2 symmetry)

� = (⌧z, ⌧x)⌦ (i�y)� = ⌧0 ⌦ (i�y) � = (i⌧y)⌦ (d · � i�y)

Balents, Xu, Fu, Rademaker, Mellado, Ma, Yang, Lin, Kennes, Nandkishore, …
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• One of the candidates for the superconducting state:

Ø d+id chiral superconductivity

Ø d+d nematic superconductivity

Vestigial nematic order in TBG

s-wave spin-singlet
(A1 symmetry)

degenerate d-wave 
(E symmetry)

s-wave spin-triplet
(A2 symmetry)

� = (⌧z, ⌧x)⌦ (i�y)� = ⌧0 ⌦ (i�y) � = (i⌧y)⌦ (d · � i�y)

Balents, Xu, Fu, Rademaker, Mellado, Ma, Yang, Lin, Kennes, Nandkishore, …
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• What are the possible composite operators?

Vestigial nematic order in TBG
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• What are the possible composite operators?

Vestigial nematic order in TBG
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• What are the possible composite operators?

Vestigial nematic order in TBG

E ⌦ E = A1 �A2 � E

E nematic order, breaks three-fold rotational 
symmetry

A2 chiral order, breaks time-reversal symmetry

A1 amplitude fluctuations (no broken symmetries)
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• Can the composite nematic order parameter condense even in the 
absence of long-range superconductivity?

• Two phase variables: global phase and relative angle.

Vestigial nematic order in TBG
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• Mean-field: both order parameters condense simultaneously

Vestigial nematic order in TBG

temperature
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• Fluctuations kill superconductivity in 2D (Mermin-Wagner), but 
enhance the Potts transition.

Vestigial nematic order in TBG
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• Kosterlitz-Thouless transition: quasi-long-range SC order (microscopic 
calculation needed).

Vestigial nematic order in TBG
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similar results for CuxBi2Se3, but in 3D
Hecker and Schmalian, npj Quant. Mat. (2018)
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• Experiments indicate that the entire superconducting dome is nematic. 
• Possible nematicity in the normal state could be probed, for instance, 

by the Raman splitting of the Eg phonon mode (like in pnictides).

Vestigial nematic order in TBG

Jarillo-Herrero’s talk Hu et al, PRB (2016)



• Possible microscopic origins:
Ø spontaneous order of the emergent “orbital” degrees of freedom.
Ø weak-coupling instability related to van Hove singularities? But no 

gap is opened by nematic order.
Ø vestigial phase of a nematic superconducting state.
Ø vestigial phase of a spin-density wave (SDW).

Electronic nematicity in TBG



• Similarly to monolayer graphene doped to the van Hove 
singularity, TBG may be unstable towards a SDW.

Vestigial nematic order in TBG: SDW case

three-fold degenerate SDWs

Nandkishore et al, Nat Phys (2013)
Platt et al, Adv Phys (2013)
Wang et al, PRB (2012)
Chern et al, PRB (2011)



• Three possible magnetic ground states
Vestigial nematic order in TBG: SDW case

single-Q collinear 
triple-Q

non-coplanar
triple-Q



Vestigial nematic order in TBG: SDW case
• Composite 3-state Potts (Z3) nematic order parameter can 

condense already in the paramagnetic phase.
Ølong-range SDW not allowed in 2D

single-Qbond 
order

RMF, Orth, Schmalian, 
Ann. Rev. Cond. Matt. Phys, in press



• Rich interplay between spin and emergent orbital degrees of freedom in the 
strong-coupling insulating state of TBG.

• Potts-nematicity offers a new window to explore electronic nematic order.
• Nematic order expected to survive in the normal state as a vestigial order.

Conclusions

Venderbos and RMF, Phys. Rev. B 98, 245103 (2018)

↵


