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Surprises in twisted bilayer graphene (TBG)
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Surprises in twisted bilayer graphene (TBG)
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Surprises in twisted bilayer graphene (TBG)

- Electronic states can also be controlled with pressure
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Yankowitz et al, arXiv (2018)

- Similar phenomena seen in other twisted systems (TB?G,
trilayer graphene, ...) P.Kim group, F. Wang group



Surprises in twisted bilayer graphene (TBG)

- Magic angle: isolated nearly-flat bands in the moiré Brillouin zone.
Bistritzer and MacDonald, PNAS (2011)

- Small bandwidth: interactions become important
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Cao et al, Nature (2018) K r MK

Kaxiras et al, arXiv (2019)



L
Surprises in twisted bilayer graphene (TBG)

- New platform to understand strong interactions,
superconductivity, and their interplay with topology

- Bringing two communities together
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2. Strong-coupling phase diagram: spin, orbital, and
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Low-energy model

- Energy scales (estimates):

» focus only on narrow

E/meV W ~ 10 meV bands as long as A > U
\W A ~ 30 meV
U ~ 20meV » most likely, the narrow-
5| ]I A band subsystem is in the

W 1 intermediate coupling
T - regime U~ W

M » starting point: weak-coupling
or strong-coupling?

1
o
T

Kang & Vafek, PRX (2018)



Low-energy model

- Energy scales (estimates):
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observation of insulating

n behavior at commensurate
filling motivates us to start with

Kang & Vafek, PRX (2018) a strong-coupling approach




Low-energy model: non-interacting part

- Commensurate twist from AA center: moiré superlattice

BA

AB

absence of C,,

symmetry (D5 space
group) removes any
Subtleties related to
Wannier obstruction

Yuan & Fu, PRB (2018)
Kang & Vafek, PRX (2018)
Zou, Po, Vishwanath, Senthil, PRB (2018)
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Low-energy model: non-interacting part

- Wannier states are peaked near AA points, but centered at
AB/BA points: emergent honeycomb lattice

(. v
0 05 1 15[Sy]

Koshino et al, PRX (2018) 8 states per moire unite cell:
Kang & Vafek, PRX (2018) 2 (spin) x 2 (sublattice) x 2 (“orbitals”)
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Low-energy model: non-interacting part

- Two “p-orbital” honeycomb lattice model:

» the 2 “orbitals” in each honeycomb
sublattice site are eigenstates of C,,

> L., = +1 angular momentum eigenstates
(nearly valley-polarized): equivalent to
P = 1, “orbitals”

» unitary transformation: Pz and Py,
“orbitals” on a honeycomb lattice

Yuan & Fu, PRB (2018)
Kang & Vafek, PRX (2018)  » hopping amplitudes not given by
Slater-Koster rules



Low-energy model: non-interacting part

« Two-orbital honeycomb
lattice model: tight-
binding band dispersions

Brillouin zone is
folded due to moirée

He =Y clT@;)e; +He. superlattice

ij
E/meV

10+ \W — DFT bands

« Wannier based

J%

o i

Kang & Vafek, PRX (2018) Koshino et al, PRX (2018)
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Low-energy model: interaction terms

- Extended Hubbard-Kanamori model: density-density and
exchange-like interactions

Z VU Nial jg + 5 Z Jl Jij zaa ],So 'Cipo'C jao
U apf

+ Z J2 Jij laU ]ﬂa 'Ciao'C jpo
U aFp

Z
+ Z J3 Jij Ciao jaa 1CiBo’ CjBo »
U a#p

- Main challenges: determine the most important interaction terms
and solve the problem in the intermediate coupling regime.



Outline

Low-energy model and interactions

2. Strong-coupling phase diagram: spin, orbital, and
superconducting degrees of freedom

Potts-nematicity and nematic superconductivity
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Strong-coupling expansion

- What to expect? In the insulating regime, with one electron per
site (“half-filling”), two unquenched degrees of freedom are left.

S; T
SU(2) spin SU(2) orbital
preserved if spin-orbit broken by
coupling is absent the symmetries

of the system

see also: Xu & Balents, PRL (2018); Dodaro et al, PRB (2018)
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Strong-coupling expansion

- What to expect? In the insulating regime, with one electron per
site (“half-filling”), two unquenched degrees of freedom are left.

T < (1) ) — Dz T~ orbital order (C;
> symmetry breaking)
SU(2) orbital Np, 7 Np,
broken by

the symmetries
of the system




Strong-coupling expansion

- What to expect? In the insulating regime, with one electron per
site (“half-filling”), two unquenched degrees of freedom are left.

T < (1) ) — Dx T7: orbital order (Cs,
z symmetry breaking)
SU(2) orbital Ny, L Np,
l T orbital order (Cs,
broken by symmetry breaking)

the symmetries Npotpy 7 Mpu—py

of the system




Strong-coupling expansion

- What to expect? In the insulating regime, with one electron per
site (“half-filling”), two unquenched degrees of freedom are left.

T < (1) T7: orbital order (Cs,
symmetry breaking)
SU(2) orbital Ny, L Np,
l T orbital order (Cs;
broken by symmetry breaking)
the symmetries (I + Npy—py,
of the system

T Y. orbital magnetism (T
symmetry breaking)
Np.+ipy 7 Npy—ipy



L
Strong-coupling expansion

- What to expect? In the insulating regime, with one electron per
site (“half-filling”), two unquenched degrees of freedom are left.

T, —> TL' = (17,77) & T/
SU(2) orbital > approximate U(1) > orbital magnetism
symmetry (no
l intervalley scattering)
» Cz, symmetry-
broken by breaking: nematic

the symmetries
of the system
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Strong-coupling expansion
- Strong-coupling expansion: Hamiltonian in terms of S; and T

Crystal structure and magnetic properties

» Kugel-Khomskii Hamiltonian of substances with orbital degeneracy

K. I. Kugel’ and D. I. Khomskil

P. N. Lebedev Physics Institute

(Submitted November 13, 1972)

Zh. Eksp. Teor. Fiz. 64, 1429-1439 (April 1973)

- First step: onsite interactions (Hubbard U and Hund'’s J) and
nearest-neighbor hopping only.

HOM — Uznmn,w +(U - 2J)Zn,xn,y Hx =) ciT(ry)e;

(1) 1.2
+J Z Cixg tya 'Cixo’' Ciyo Tl =0 + tlt

i,o,0’

+7° Y el cinicit. approximately zero
Iy (intervalley scattering)




Strong-coupling Hamiltonian

- One electron per site (“half-filling”, but moiré unit cell is 1/4 filled)

12 3
H= s W(Z+Si-sj)(ri-q—l)
(i)
_r (l—s s)(1+r 7, —2777))
U+J\4 SR
2
B UziJG_S’"S")(T"yr"yH)}'

several approaches to capture the effects of interactions: Balents, Xu, Fu,

Vafek, Kang, Isibo, Sachdev, Kivelson, Rademaker, Mellado, Senthil,
Vishwanath, Guinea, Bascones, Martin, MacDonald, Lee, Law, Ma, Koshino,
Kuroki, Kennes, Thomson, Phillips, Betouras, Nandkishore, Bernevig, Thanos, ...



- Strong-coupling phase diagram: either S, or T ; (but not both) are
staggered (translational symmetry-breaking)

E bond
A

1 1 1 1 1 1 1 1 1
-05 -04 -03 -02 -0.1 0 01 02 03 04 05 U

/

AFM
FO nematic




- Strong-coupling phase diagram: either S, or T ; (but not both) are
staggered (translational symmetry-breaking)

E bond
A
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- Strong-coupling phase diagram: either S, or T ; (but not both) are
staggered (translational symmetry-breaking)
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- Strong-coupling phase diagram: either S, or T ; (but not both) are
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What about superconductivity?

- Decomposition of the interaction terms in pair operator.
- Three types of onsite pairing: A<, ol

1,00 ’LOAO’

A=7"® (icY) A= (177" ® (icY) A=(Gr")®(d-oid?)
S-wave spin-singlet degenerate d-wave S-wave spin-triplet
(A; symmetry) (E symmetry) (A, symmetry)

superconductivity proposals: Balents, Xu, Fu, Kivelson, Rademaker, Mellado,
Guinea, Scalletar, Martin, MacDonald, Lee, Ma, Kennes, Nandkishore, Bernevig, ...
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What about superconductivity?

- s-wave spin-triplet channel is attractive already in the bare level
in the regime of the phase diagram dominated by orbital
ferromagnetism. J > U/3

Ebond

1 1 1 1 1 1 1 1 1 1 > .i_

-0.5 -04 -03 -02 -0.1 0 01 02 03 04 05 U
) FM

| < AFO SU(2) I

- 4 \
AFM AFM
. -6 :
FO nematic FO magnetic

speculation: s-wave spin-
triplet SC near orbital FM?

c.f. P. Kim’s talk and
Goldhaber-Gordon’s talk
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Strong-coupling expansion

- Our onsite approximation neglects the impact of extended interactions,

which are expected due to the extended nature of the Wannier functions.
Koshino et al, PRX (2018)

- Kang and Vafek: assisted-hopping interaction favors “ferro” alignment of
both S,L- and T ; already in the atomic limit. Kang & Vafek, PRX (2018)
see also Senthil’s talk

Vo 1

- Hopping beyond nearest neighbors are fundamental to correctly describe
the narrow bands dispersions. Can they introduce frustration?
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Low-energy model and interactions

Strong-coupling phase diagram: spin, orbital, and
superconducting degrees of freedom

3. Potts-nematicity and nematic superconductivity



Electronic nematicity in TBG: experimental hints

» STM: spatial map of the local density > superconducting upper critical
of states is not three-fold symmetric field is two-fold symmetric

T=0.9 K
b~ c
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Kerelsky et al, arXiv (2018) Jarillo-Herrero’s talk
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Electronic nematicity: phenomenology

- Nematic order in liquid crystals: orientational order without

translational symmetry-breaking.

Crystal SmecticC  Smectic A Nematic Isotropic Mbanga PhD thesis (20 1 2)

Heating 2> < Cooling

- Order parameter (2D): Q;; = Q (Xd)d; — d;;d°)

director



Electronic nematicity: phenomenology

- Electronic nematicity: Q;; = ¥'(r) (20;0; — 6;;V?) ¥(r)
Kivelson, Fradkin, Emery Nature (1998)



Electronic nematicity: phenomenology
- Electronic nematicity: Q;; = ¥'(r) (20;0; — 6;;V?) ¥(r)
Kivelson, Fradkin, Emery Nature (1998)

» order parameter can be expressed in terms of quadrupolar charge densities:

(o) - ( Prioys  Pag ) pre e = (K2 = K2 () ¥ (K))
Pay  “PaP=y? puy = ((2hak, )01 ()9 (K))



Electronic nematicity: phenomenology

- Electronic nematicity: Q;; = ¥'(r) (20;0; — 6;;V?) ¥(r)
Kivelson, Fradkin, Emery Nature (1998)

» order parameter can be expressed in terms of quadrupolar charge densities:

(o) - ( Prioys  Pag ) pre e = (K2 = K2 () ¥ (K))
Pay  “PaP=y? puy = ((2hak, )01 ()9 (K))

» XY-nematic order parameter ®

<Q> — px2—y20'z =+ pxyax = P = ( P —y? )



Electronic nematicity: impact of the lattice

- Lattice generally breaks the continuous symmetry of the nematic OP:

» square lattice: the two
components of ® transform

as two different irreducible -
representations \
b = ( P2 —y? > By, Bag
Py P2 —y2 Py

Ising-nematicity: cuprates, pnictides, ruthenates, heavy fermions, ...




Electronic nematicity: impact of the lattice

- Lattice generally breaks the continuous symmetry of the nematic OP:

» honeycomb lattice: the
two components of @
transform as the same
two-dimensional irrep E

Pd — ( P2 —y2 )
Py
Px2—qy2 Pxy



Electronic nematicity: impact of the lattice

- Lattice generally breaks the continuous symmetry of the nematic OP:

» honeycomb lattice: the
two components of @
transform as the same
two-dimensional irrep E

P — ( Pp2—y2 > E(I)()( C9S2a )
Py sin 2«

<\a

Px2—qy2 Pxy

XY-nematicity?



Electronic nematicity: impact of the lattice

- Lattice generally breaks the continuous symmetry of the nematic OP:

» honeycomb lattice: the
two components of @
transform as the same
two-dimensional irrep E

A
f= g¢8+—@3008(6a)+%®§

2 3 , )
x2—y? x
<\a Y Y
3-state lso:
N see also:
Potts nematICIty' Hecker & Schmalian, npj Quant Mat (2017)

Fu et al, PRB (2016)
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Electronic nematicity: impact of the lattice

- General properties of the two-dimensional 3-state Potts model:

» despite the cubic invariant,
transition is second order

0.5

M(=|7])

Shchur et al, PRB (2008)
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Electronic nematicity: impact of the lattice

- General properties of the two-dimensional 3-state Potts model:

5
> despite the cubic invariant, > Harris inequality is violated: dv = — < 2
transition is second order 3

importance of disorder, which
is ubiquitous in TBG

0.5

M(=|7])

Shchur et al, PRB (2008)



Electronic nematicity: impact of the lattice

- General properties of the two-dimensional 3-state Potts model:

5
> despite the cubic invariant, > Harris inequality is violated: dy = = < 2
transition is second order

importance of disorder, which

is ubiquitous in TBG
0.5
- » may explain the financial market
I
= Simulations of financial markets in a Potts-like model
0 0 ro Oi 5 rororTT Tetsuya Takaishi A
|7_| 1 / 9 CERN, Physics Department, TH Unit, CH-1211 Genéve 23, Suntzerland

Hiroshima University of Economics, Hiroshima 731-0124, Japan

June 29, 2018
Shchur et al, PRB (2008)



Electronic nematicity in TBG

- Possible microscopic origins:
» spontaneous order of the emergent “orbital” degrees of freedom.

0.8

0.6 Dodaro et al, PRB (2018)
2 Venderbos & RMF, PRB (2018)
[ nematic Kang & Vafek, arxiv (2018)
§ ®- 1N +I-11)
g sC
02}

SC




Electronic nematicity in TBG

- Possible microscopic origins:

» spontaneous order of the emergent “orbital” degrees of freedom.

» weak-coupling instability related to van Hove singularities? But no
gap is opened by nematic order.

in the context of graphene doped to the vHS: Isobe et al, PRX (2018)
Valenzuela & Vozmediano, NJP (2008)
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Electronic nematicity in TBG

- Possible microscopic origins:

» spontaneous order of the emergent “orbital” degrees of freedom.

» weak-coupling instability related to van Hove singularities? But no
gap is opened by nematic order.

» vestigial phase of a nematic superconducting state.

Venderbos & RMF, PRB (2018)



Vestigial order: partial melting of an ordered state
- Similarity with the physics of liquid crystals

i

iy

%

partial total
melting melting
Smectic A Nematic Isotropic
translational X translational «/ translational «/
rotational X rotational X rotational v

m

- In quantum matter: composite order (1) = 0 but (n.ng) # 0

RMF, Orth, Schmalian, Ann. Rev. Cond. Matt. Phys, in press



L
Vestigial nematic order in TBG

- One of the candidates for the superconducting state:

Balents, Xu, Fu, Rademaker, Mellado, Ma, Yang, Lin, Kennes, Nandkishore, ...

A= (7%,7")® (10Y)

degenerate d-wave
(E symmetry)

A =m7%(i0Y) + no7” (icY)

[

dy2_y2-wave  dgy-wave



Vestigial nematic order in TBG

- One of the candidates for the superconducting state:
Balents, Xu, Fu, Rademaker, Mellado, Ma, Yang, Lin, Kennes, Nandkishore, ...

A= (7%,7")® (10Y)

degenerate d-wave
(E symmetry)

A =m7%(i0Y) + no7” (icY)
1
» d+id chiral superconductivity 7 = ( w ) NG

» d+d nematic superconductivity n = ( ijg )



Vestigial nematic order in TBG
- What are the possible composite operators? 1 = Z;

FRQFE=A9A, & F
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Vestigial nematic order in TBG

- What are the possible composite operators? 1 = Z; )

EFE®FE=A

Po = |771|2 T |772|2 A; amplitude fluctuations (no broken symmetries)
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Vestigial nematic order in TBG

- What are the possible composite operators? 7 = Z; )
E®FE = Ay
Po = |771|2 T |772|2 A; amplitude fluctuations (no broken symmetries)

P2 =1 (77>1k772 - 771775) A, chiral order, breaks time-reversal symmetry
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Vestigial nematic order in TBG
- What are the possible composite operators? 71 = ( n )

T2
EQFE = E
b0 = |m|? + |n2)? A, amplitude fluctuations (no broken symmetries)
Q2 =1 (77>1k772 — 771775) A, chiral order, breaks time-reversal symmetry
2 2
P — 7l = [l E nematic order, breaks three-fold rotational
nin2 +mmns symmetry

none of them break U(1) symmetry



Vestigial nematic order in TBG

- Can the composite nematic order parameter condense even in the
absence of long-range superconductivity?

- Two phase variables: global phase and relative angle.
i0 [ COSCx > —1Im2l* \ |, 2 cos2a

N Qe

i 2
0= [n]e® @:MP(mS“)

sin 2«

U(1) symmetry Z3 symmetry




Vestigial nematic order in TBG

¢

_ i0 9 cos2«
n = Ine ® = |n] ( sin 2 )

Z3 symmetry

U(1) symmetry

- Mean-field: both order parameters condense simultaneously

(®) £0 (®) =0
(n) #0 (n) =0
_

temperature



Vestigial nematic order in TBG

¢

_ i0 9 cos2«
n = Ine ® = |n] ( sin 2 )

Z3 symmetry

U(1) symmetry

- Fluctuations kill superconductivity in 2D (Mermin-Wagner), but
enhance the Potts transition. x .., o< C — Eso

7(nem) temperature



Vestigial nematic order in TBG

¢

n = |77|€i9 P — ‘nlg ( 09820: )

U(1) symmetry Z3 symmetry

- Kosterlitz-Thouless transition: quasi-long-range SC order (microscopic

calculation needed). similar results for Cu,Bi,Se;, but in 3D
Hecker and Schmalian, npj Quant. Mat. (2018)
(®) #0 (®) #0 (®) =0
() # 0 (n) =0 (n) =0
X O © © >
T=0 7(80) 7(nem) temperature
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Vestigial nematic order in TBG

- Experiments indicate that the entire superconducting dome is nematic.

- Possible nematicity in the normal state could be probed, for instance,
by the Raman splitting of the E, phonon mode (like in pnictides).
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Electronic nematicity in TBG

- Possible microscopic origins:

» spontaneous order of the emergent “orbital” degrees of freedom.

» weak-coupling instability related to van Hove singularities? But no
gap is opened by nematic order.

» vestigial phase of a nematic superconducting state.
» vestigial phase of a spin-density wave (SDW).



Vestigial nematic order in TBG: SDW case

Similarly to monolayer graphene doped to the van Hove
singularity, TBG may be unstable towards a SDW.

Nandkishore et al, Nat Phys (2013)
Platt et al, Adv Phys (2013)

Wang et al, PRB (2012)

Chern et al, PRB (2011)

S(r)= Z m, cos(Qq - 1)

a=1,2.3

three-fold degenerate SDWs



Vestigial nematic order in TBG: SDW case

- Three possible magnetic ground states

SV

[ OB

single-Q collinear non-coplanar

triple-Q triple-Q
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Vestigial nematic order in TBG: SDW case

- Composite 3-state Potts (Z;) nematic order parameter can
condense already in the paramagnetic phase.

»long-range SDW not allowed in 2D

v 2 2 1 2 2 2}
=<3<mj —ms, — (mj+ ms—2m
®(1,0) { 1 2 \/§( 1 2 3)

bond

order single-Q

RMF, Orth, Schmalian,
Ann. Rev. Cond. Matt. Phys, in pre




Conclusions

Ebond <\ O{

1 1 1 1 1 i
-05 -04 -03 -02 -0.1 0 01 02 03 04 05 U
FM

e < AFO SU(2)
- 4 \
AFM ] AFM

FO nematic I FO magnetiwc .

%

- Rich interplay between spin and emergent orbital degrees of freedom in the
strong-coupling insulating state of TBG.

- Potts-nematicity offers a new window to explore electronic nematic order.
- Nematic order expected to survive in the normal state as a vestigial order.

Venderbos and RMF, Phys. Rev. B 98, 245103 (2018)



