Science at the Time-scale of the Electron – Coherent Attosecond Soft and Hard X-Ray Harmonics

Henry Kapteyn and Margaret Murnane
Collaborators

Tenio Popmintchev, Ming-Chang Chen, Paul Arpin, Michael Gerrity, Ivan Christov Chan La-O-Vorakiat, Stefan Mathias, Mark Siemens, Luis Miaja-Avila
Wen Li, Xibin Zhou, Robynne Lock, Predrag Ranitovic
JILA, University of Colorado at Boulder

Andreas Becker, Agnieszka Becker, Ronggui Yang
University of Colorado at Boulder

Robin Santra
Argonne National Lab, Illinois

Janwei Miao
University of California, Los Angeles

Keith Nelson
MIT

Tom Silva, Justin Shaw, Hans Nembach
NIST

Martin Aeschlimann, Claus Schneider, Roman Adam, Patrick Grychtol
Kaiserslautern and Julich

Albert Stolow, Serguei Patchkovskii
NRC Canada

Lew Cocke, Xiao-Min Tong
Kansas State University, Manhattan

Anne Sakdinawat, David Attwood, Eric Anderson
University of California, Berkeley and LBL

Jorge Rocca, Carmen Menoni, Mario Marconi
Colorado State University
I. Bright coherent x-ray beams on a tabletop
 — Ultrafast lasers can manipulate electrons on their fundamental timescale to implement a coherent version of the x-ray tube
 — Bright coherent tabletop beams at > 0.5 keV
 — Duration of 10 attoseconds – soon zeptoseconds!

II. Ultrafast x-rays are an ideal probe of the nanoworld
 — Image reactions at the level of electrons
 — Understand energy/charge transport at the nanoscale
 — Capture correlated electron dynamics (spin, molecules, materials)
 — Elemental and chemical nanoprobe of thick samples
I. Bright coherent x-ray beams on a tabletop
 — Ultrafast lasers can manipulate electrons on their fundamental timescale to implement a coherent version of the x-ray tube
 — Bright coherent tabletop beams at > 0.5 keV
 — Duration of 10 attoseconds – soon zeptoseconds!

II. Ultrafast x-rays are an ideal probe of the nanoworld
 — Image reactions at the level of electrons
 — Understand energy/charge transport at the nanoscale
 — Capture correlated electron dynamics (spin, molecules, materials)
 — Elemental and chemical nanoprobe of thick samples
Coherent light has transformed society

In 1960, research physicist Theodore H. Maiman built the first ruby laser at Hughes Laboratory in Malibu, California.
And so have x-rays....
So, what about coherent x-rays? X-ray lasers

Spontaneous emission

\[\frac{A_{21}}{B_{21}} = \frac{8\pi h \nu^3}{c^3} \propto \nu^3 \]

Stimulated emission

\[
\text{Power} \propto \left(\frac{1}{\sigma_g} \right) \left(\frac{1}{\tau} \right) (h \nu) \propto \frac{1}{\lambda^5}
\]

- 1 µm -> 1 mW
- 1 nm -> TW
- 1 Å -> 1 PW

LCLS X-ray free electron laser at 1.5 nm
P.A. Franken et al, PRL 7, 118 (1961)

An alternative approach: Nonlinear Optics

An alternative approach: Nonlinear Optics

Ruby laser
Lens
Quartz crystal
Prism
Photographic plate

$E_{\text{Pump}}(t)$
$d(t)$ electric dipole moment

$E_\text{P}(\omega) = E_0 e^{i\omega t}$

$d(\omega) = a_1 e^{i\omega t} + a_2 e^{i2\omega t} + \ldots$

Log intensity
Frequency
Extreme NLO: start with an ultrafast laser pulse

10 fs light pulse:

Δx = 3 micrometers
= 1/50 human hair

First 10 fs Ti:sapphire laser
Optics Letters 18, 977 (1993)
High-order Harmonic Generation–NLO using unbound states

- Coherent x-rays generated by focusing an intense fs laser into a gas
- Broad range of harmonics generated simultaneously from UV – keV
- Discovered in 1987, explained in 1993

High Harmonic Generation

- Coherent x-rays generated by focusing an intense fs laser into a gas
- Broad range of harmonics generated simultaneously from UV - keV

Electron wriggle energy coherently converts to x-rays

\[h\nu_{\text{max}} \propto I_{\text{laser}} \lambda^2 \]
• Electron takes a few fs to leave vicinity of an atom after being ionized
• During that time, wavefunction is highly modulated due to recollisions
• Modulations give rise to high harmonics in radiated field

Electron wavefunction

X-ray field

40 Å
How to match the laser and x-ray phase velocities?

- Place gas inside a hollow fiber
- Tune the gas pressure to equalize the laser and x-ray phase velocities

\[\Delta k = q k_{\text{laser}} - k_{\text{HHG}} = 0 \]

\[\Delta k = q \left(\frac{u_{11}^2 \lambda_0}{4 \pi a^2} - P \left(1 - \eta \right) \frac{2\pi}{\lambda_0} \Delta \delta - \eta \left[N_{atm} r e \lambda_0 \right] \right) \]

\[V_{\text{laser}} = V_{\text{x-ray}} = C \]
Generating bright, coherent, x-ray beams

- Tune the gas pressure to equalize the laser and x-ray phase velocities
- Generate fully coherent, bright, harmonics in EUV region < 150 eV

Fully coherent bright EUV and soft x-rays
10^{-5} or nJ per harmonic, uW average powers
Femtosecond-to-attosecond duration

Science 280, 1412 (1998)
Science 297, 376 (2002)
Limits of phase matching

- To generate high energy x-rays, need high electron energy - ionize gas
- Presence of plasma speeds up laser - no phase matching above 150 eV

\[\Delta k = qk_{\text{laser}} - k_{\text{HHG}} = 0 \]

\[\Delta k = q\left(\frac{u^2 \lambda_0}{4\pi a^2}\right) - P\left(1 - \eta\right)\frac{2\pi}{\lambda_0}\Delta \delta - \eta [N_{\text{atm}} r_e \lambda_0] \]

\[V_{\text{laser}} = V_{\text{X-ray}} \neq C \]
Generating very high energy harmonics

Single atom cutoff photon energy: \(h \nu_{\text{cutoff}} = I_p + 3.2 I_L \lambda_L^2 \)

- \(\lambda_L = 0.8\mu m \)
- \(\lambda_L = 1.6\mu m \)

Ionization high - no phase matching

Single atom yield \(\propto \lambda_L^{-5.5} \)

Nature 433, 596 (2005)

PRL 98, 013901 (2007)
PRL 99 253903 (2007)
PRL 100, 173001 (2008)
Phase matching using mid-infrared lasers

- IR lasers need lower intensity for a given harmonic energy
- Lower laser intensity \Rightarrow lower ionization, better phase matching
- Predict $h\nu_{PM} \propto \lambda_L^{(1.6-1.7)}$
- Single atom response also lower for mid-IR drivers ($\lambda^{-5.5}$)
- BUT phase matching pressure and gas transparency increase and compensate for low yield!

T. Popmintchev et al. CLEO Postdeadline CPDA9 (2008)
Optics Letters 33, 2128 (2008); PNAS, 106, 10516 (2009);
Nature Photonics, tbp (2010)
Full phase matching at >0.13 keV using $\lambda_L = 0.8 \mu m$

Full phase matching at >0.3 keV using $\lambda_L = 1.3 \, \mu m$

Popmintchev et al.,
CLEO Postdeadline CPDA9 (2008);
Opt. Lett. 33, 2128 (2008);
PNAS 106, 10516 (2009);
Nature Photonics to be publ. (2010)
Full phase matching at >0.5 keV using $\lambda_L = 2 \mu$m
Broad soft x-ray supercontinuum spans > 300 eV

HHG flux high: 10^6 photons/s in $\lambda/\Delta\lambda$ of 100

- He / 1000 torr
- Ne / 2400 torr
Bright spatially coherent laser-like output

HHG flux high: 10^6 photons/s in $\lambda/\Delta\lambda$ of 100

Spatially coherent beams
200 attosecond pulse generation at 50eV

- Phase matching occurs over 1 laser cycle
- Using 15 fs driving laser at 0.8 μm, 200 attosecond pulses can easily be generated
- Full characterization using FROGCRAB

Thomann et al., Optics Express 17, 4611 (2009)
10 attosecond pulse generation at 400eV

- Phase matching occurs over 1 laser cycle
- Using 35 fs driving laser at 2 μm, 10 attosecond pulses can easily be generated
- Predict zeptosecond pulses at > keV
Scaling of phase matched HHG flux to keV and beyond

- Very favorable scaling to multi-keV region!!
- Low gas absorption of HHG
- Large pressure-length products mitigate the low χ_{eff}
- Low nonlinear distortion of laser pulse due to ionization
- At laser wavelengths $> 3 \, \mu m$, group velocity mismatch and magnetic field effects may reduce the HHG flux

$$dI_q \propto \frac{\omega_q^2 \rho^2 |s_q|^2}{\alpha_q^2 + \Delta k^2} \left(1 + e^{-\frac{L}{L_{\text{abs}}}} - 2e^{-\frac{2L}{L_{\text{abs}}}} \cos \Delta kL\right)$$
First high harmonics driven by 3.55 µm light

- Observed first UV/EUV/SXR high-order harmonics driven by 3 µm lasers
- Magnetic field effects do not reduce HHG yield
- Route to zeptosecond keV harmonics using mid-IR driving lasers at 3.55 µm!
I. Bright coherent x-ray beams on a tabletop
 — Ultrafast lasers can manipulate electrons on their fundamental timescale to implement a coherent version of the x-ray tube
 — Bright coherent tabletop beams at > 0.5 keV
 — Duration of 10 attoseconds – soon zeptoseconds!

II. Ultrafast x-rays are an ideal probe of the nanoworld
 — Image reactions at the level of electrons
 — Understand energy/charge transport at the nanoscale
 — Capture correlated electron dynamics (spin, molecules, materials)
 — Elemental and chemical nanoprobe of thick samples
Applications of ultrafast coherent x-rays

Nanoscience (50 nm)
- Ultrafast, elemental, magnetic switching speeds (thin samples)
- Nanoscale heat flow

Metrology for EUV Lithography
- EXAFS/PEEM: Image reactions at the level of atoms and electrons. Understand and control function.

Bio-imaging
- Cellular and materials tomography (10 nm, elemental)

Nanoscience (<10 nm)
- Dynamic imaging of advanced nano-structures (magnetic, thermal etc.)
- Protein crystallography

Soft x-rays are ideal probes of nanoworld:
- Penetrate thick objects and image small features
- Elemental and chemical specificity if HHG can extend to x-ray absorption edges
- Applications to date limited to ≈ 100 eV
Applications of coherent ultrafast x-rays span broad range of science

Molecular imaging: image changing electronic orbital and molecular structure

Surface science: probe electronic dynamics on catalysts, photovoltaics

Magnetics: Probe nanodomains, magnetic dynamics

Nanoimaging: High resolution 3D imaging of thick samples using coherent lensless imaging

High frequency acoustic metrology: Characterize thin films, interfaces, adhesion

Nanothermal transport: probe heat flow in nanostructures
Ultrafast coherent magnetism – faster, denser, more efficient?

Beaurepaire et. al PRL 76, 4250 (1996)

Coherent ultrafast magnetism induced by femtosecond laser pulses
Jean-Yves Bigot*, Mircea Vormir and Eric Beaurepaire

Stamm, et al., Nature Mat. 6, 740 (2007)
Ultrafast element-selective demagnetization dynamics

- Demagnetize permalloy using IR laser, probe using M-edge harmonics
- Highest time resolution ≈ 55fs and elemental specific measurement
- First result: Fe and Ni in Permalloy both decay within ≈ 400 fs since they are strongly exchanged coupled even during non-adiabatic heating
- Next steps – attosecond, domain imaging, L-edges etc.
- Collaboration with NIST, Kaiserslautern, Julich

Phys. Rev. Lett. **103**, 257402 (Dec 2009)
Ultrafast element-selective demagnetization dynamics

- Demagnetize permalloy using IR laser, probe using M-edge harmonics
- Highest time resolution ≈ 55fs and elemental specific measurement
- Second result: Fe and Ni in Permalloy both decay within ≈ 100 fs at lower sample temperatures
- Next steps – attosecond, domain imaging, L- edges etc.

Phys. Rev. Lett. 103, 257402 (Dec 2009)
Understanding nanoscale heat flow

- Heat is carried by phonons
- In the macroscopic world, Fourier Law applies
 \[q = -k \nabla T \]
- What happens when a nanostructure is smaller than the phonon mean free path?
- Existing theories of nanoscale heat dissipation disagree
- Fourier law over-estimates the heat flow - need to think of interface \(\approx \) phonon mean free path
- Ronggui Yang, Keith Nelson, Erik Anderson (Nature Materials 9, 26 (2010))
Following entire valence shell electron density rearrange as a bond breaks

W. Li, A. Becker et al., submitted (2010)
Following entire valence shell electron density rearrange as a bond breaks
Following entire valence shell electron density rearranges as a bond breaks

- SFI sensitive to electron density dynamics of entire valence shell
- Many electrons must rearrange as bond breaks!
- Electrons take a surprisingly long time to localize onto the atoms and it happens abruptly!
- See Andreas Becker talk on friday
How fast can we switch the electronic state of a solid?

- TiSe$_2$ undergoes a photo-induced phase transition
- Probe entire band structure using angle-resolved HHG photoemission
- Prof. Michael Bauer, University of Kiel

$T < 200K$: insulating charge density wave state

$T < 200K$: normal metallic phase
Radiation Femtochemistry

- Expt #1: Decay of N_2^+ excited by 43eV
 - Can identify the Rydberg dissociative states
 - Can follow dynamics as system changes from symmetric to 2-center
 - Theory by Xiao-Min Tong

$\text{N} - \text{N} \quad + \quad \text{N} \quad + \quad - \quad \text{N} \quad +$

$\text{N}^+ - \text{N}^+$

$\text{N} - \text{N}^+$

shake-up state

43eV

Time (fs)

$0 \quad 100 \quad 200$

$\text{Science 317, 1374 (2007)}$
• Expt #2: Decay of O_2^+ excited by 43eV, theory by Robin Santra
 – Create long-lived superexcited states in O through Feschbach resonance
 – System still bound up to 30 Å

Sandhu et al., Science 322, 1081 (2008)*
Lensless microscopy using coherent x-ray beams

- No aberrations - diffraction-limit in theory
- Image thick samples
- Inherent contrast of x-rays
- Robust geometry, insensitive to vibrations
- Requires a coherent beam of light and an isolated sample

Sayre, Acta Cryst 5, 843 (1952)
High rep rate (1 - 10kHz) femtosecond laser

High average power fs laser system + High harmonic converter + Coherent diffractive microscope
Lensless coherent imaging – 50nm resolution

- Combine lensless imaging with holography for faster, high resolution imaging
- Resolution of 50 nm represents 1.6 λ
- Future: sub-10 nm imaging of thick samples with element specificity
- Applications in bioimaging, magnetics, nano, thermal, lithography…….

Sandberg et al., Opt. Lett. 34, 1618 (2009)
• Take attosecond electron rescattering physics, discovered just over 20 years ago, to generate coherent x-rays and electrons

• Now have coherent soft x-ray laser beams that span to 0.5 keV, with enough flux for expts., and with attosecond pulse duration, and with excellent prospects for hard x-ray laser beams on a tabletop

• Table-top microscopes, nanoprobe, nanomanipulation and x-ray imaging with unprecedented spatial and temporal resolution

• Thanks to NSF, DOE, DOD
Students and postdocs

STUDENTS Paul Arpin, Susannah Brown, Tory Carr, Ming-Chang Chen, Michael Gerrity, Craig Hogle, Kathy Hoogeboom, Robynne Lock, Chan La-O-Vorakiat, Qing Li, Dimitar Popmintchev, Emrah Turgut, Matt Seaberg
POSTDOCS Xibin Zhou, Alon Bahabad, Predrag Ranitovic, Stefan Mathias, Tenio Popmintchev