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Motivation

-

f # How is energy apportioned between magnetic fields,
cosmic rays, and thermal plasma?
» How are magnetic fields generated in cosmic

plasma?
s How do cosmic rays transfer momentum & energy to

the thermal background?
» What limits the energy to which cosmic rays can be
accelerated?
We won'’t answer all of these questions. We just do linear
theory.
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Dynamo Problem

- N

#® Theory & simulation suggests that in diffuse plasmas
with high Pm = v/n, power builds up at the resistive
scale.

# Input of magnetic helicity can drive an inverse cascade
to larger scale.

# Nonresonant cosmic ray streaming instabilities amplify
right circularly polarized waves & thus inject helicity (on
the scale of the background field).
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The Plan of This Talk
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# Dispersion relation for RCP fluctuations in thermal
plasma with streaming cosmic rays (extends Reville et
al. 2008).

# Domains of instability on the (n..vp, B) plane.

# Application to interstellar medium (ISM) & intracluster
(ICM) medium.
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Schematic Domains of Instability
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Schematic domains of nonresonant instability in the
(nervp, B) plane, with n;, T held fixed. The cosmic rays must

Lbe unmagnetized, the thermal ions magnetized. J
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Basic Setup
-

Right circularly polarized fluctuations propagating
parallel to ambient B

Cosmic rays with density n.,. which are isotropic in a
frame moving along B with speed vp.

Thermal plasma of electrons & ions with density n; &
temperature T

Population of electrons with density n.,. drifting at vp.
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Note on the Electrons
-

In a cold plasma, an alternative setup in which
ne = n; + ne drifting at speed vp-—2<— gives same

ni+ncr
results (Amato & Blasi 09).

In a hot plasma the instability is sensitive to electron
distribution function f. (one hump or two?)

Two-hump distribution in high M shocks can be
electrostatically & electromagnetically unstable.

Self consistent determination of f. is an important
problem for the future.
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Dispersion Relation
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where we have dropped the displacement current, 7 is the
plasma dispersion function, representing the thermal

plasma response
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Land (- measures the cosmic ray response (Z2003). J
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Solutions
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Growth rate vs scaled wavenumber for B = 3uG, n; = 1
cm—3, n,vp = 10*cm~?s~ !, and T = 10*K (solid), T = 10K
L(Iong dashed), T'= 10" K (short dashed). J
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Fastest Growing Mode
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Maximum growth rate (left panel) and wavenumber of fastest
growing mode (right panel) vs B for T = 10*K, n; = 1,

NerVD = 104,
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Simplified Dispersion Relation

- N
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n; kv; ny;
(3)
We’'ve assumed here the electrons are cold (kve/wee < 1),

the ions are cold to warm (kv;/w.; < 1), and the cosmic rays

are hot (¢, — —1).
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Solutions to Full & Simplified DRs
B - -
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Solution to full (long dashed line) and simplified (short

dashed line) dispersion relations for 7 = 10K, B = 3uG,

Lni =1, nepvp = 104, J
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Standard Bell Instability
fWhen

VA v
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the fastest growing mode has scaled wavenumber

C 1 ne cop _9
krer = kBell— = 2 5 X B
W 2 n; ()

and frequency

0
W = Wpell = kBeliv4 X B".
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Thermally Modified Instability
fWhen
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the fastest growing mode is at scaled wavenumber
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Domains of Instability — ISM
- -
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Instability domains for n; = 1 cm™=3, T' = 10*K. Above the
blue line & outside the vertical bars only resonant instabil-
ities exist. Between the red & blue lines the nonresonant
Linstability Is standard Bell, and below the red line, modifiedJ
Bell.
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Domains of Instability — ICM
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Instability domains for n; = 1072 cm=3, T = 10" K. Above
the blue line & outside the vertical bars only resonant insta-
bilities exist. Between the red & blue lines the nonresonant

Linstability IS standard Bell, and below the red line, modifiedJ

B e I I " Nonresonant Instability in a Hot Plasma — p.16/21



Growth Rates — ISM

Log[ngVp/cm—2s

Contour plot of maximum growth rate for ISM parameters,

\_ni —1cm™3, T =10*K. J
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Growth Rates — ICM

Log[ngVp/cm™?s]

Contour plot of maximum growth rate for ICM parameters,

‘ n, =103 cm=3, T =10"K. \



Examples — ISM
- -

® An estimated young SNR cosmic ray flux of 10* cm~—2

s~ excites the Bell instability for 1.14G < B < 87uG if
n; =1, T = 10*K.

® The Galactic flux (n.,vp ~ 1072) excites the standard
Bell instability for 1.1 x 107G < B < 8.7 x 103G and the
modified Bell instability for B < 1.1 x 10~%G.

# Inlow density ISM (n; = 3 x 1079), if ne./n; ~ 1072,
WRell > Weive/c requires B < 1.3uG.
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Examples — ICM
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® Forn=107°T=10"K, Z= = 10~°, the standard Bell

Instability operates for 16uG < B < .87uG, and the
modified Bell instabllity for B < .16uG.

#® Stronger B sometimes observed, but nonresonant
Instability is plausible.
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Summary

- N

# We explored nonresonant instability in n.,.vp, B, T
space.

o If the ions are hot, any instability depends on the
thermal electron distribution function, which must be
determined self consistently.

# Nonresonant instability exists for a wide range of fluxes
& could be an important source of helical magnetic
fluctuations.
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