

4.2-6.0 keV continuum, from 2000, 2002, 2004, 2007 (courtesy Dan Patnaude)

Acceleration, Cooling Times


```
\tau_{acc} = \int_{p_0}^{p_1} (D_1/pU_1 + D_2/pU_2) dp \ 3/(U_1-U_2)
\approx 8D_1/U_1^2
\approx 1.7 / B(mG) \text{ years,}
for D_1=4D_2=r_gc/3, U_1=4U_2=v_{for}=5000 \text{ km/s,}
electron energy = 50 TeV, (\gamma=10^8).

Longer at reverse shock by (v_{for}/v_{rev})^2.

B(mG) is upstream magnetic field.
```

 $\tau_{\text{cool}} = 0.3/\text{B}(\text{mG})^2$ years @ energy = 50 TeV, requires B=0.4 mG. B is average magnetic field seen by cr electrons.

Magnetic Field Saturation

Luo & Melrose (2009)

$$\delta B^2/B^2 \approx 10 \sqrt{\eta} \ (v_s/c)^{3/2} (k_0 r_{g0})^{3/2} ln(v_s/v_{cr}) \approx 39$$

My estimates for Cas A; with $n_{cr}/n_i=10^{-3}$, B=10⁻⁵-10⁻⁶G, $\delta B^2/B^2=10-10^4$ ($\delta B=0.03-0.1$ mG)

Gargaté et al. (2009 in prep)

run B1 rescaled to v_s =5000 km/s, V_A =32 km/s, B=2.1x10⁻⁵G, n_{cr}/n_i =10⁻³, $\delta B^2/B^2\sim$ 10

run B2, $V_A=3.2$ km/s, $B=2.1x10^{-6}$ G, $n_{cr}/n_i=10^{-4}$, $\delta B^2/B^2\sim 30$

Magnetic Field Amplification versus Electron Heating

Linear theory:

B-field growth $\gamma_B = n_{CR} M_A v_s / 2n_i r_{g,inj}$, parallel shock = 0, perpendicular (Bell 2004, MNRAS, **353**,550)

LH-wave growth $\gamma_{LH} = 32n_{CR}\omega_{LH}/225n_i$, perpendicular shock = 0, parallel (Rakowski, Laming, & Ghavamian 2008, ApJ, **684**, 348)

High M_A , cosmic rays amplify B, low M_A , cosmic rays grow LH waves, heat electrons. Equality at $M_A \sim 6 v_{inj}/v_s \sim 12$ -60? (depending on geometry) M_A =12 gives B=0.27 mG.

Measurements at Cas A forward shock, 0.1 - 0.4 mG *postshock* (i.e. compressed) magnetic field.

Another Possibility: Reflected Shocks from Blast Wave Carry CR Electrons back to Contact Discontinuity

Reflected shocks; max. speed = $9v_s/8$, max. compression ratio = 2.5, \rightarrow softer cr and synchrotron spectra

- Magnetic field at CD ~ 1mG from RT instability
- Synchrotron observations: forward shock Γ =2.1-2.24, interior Γ ~3.14 (harder on west limb)
- Need reflected shock compression ratios > 2, velocities > 0.9v_s, QSF density contrast > 30
- Same thing as reverse shock hits ejecta knots?

Conclusions

- Reverse shock magnetic field of 1 mG appears unlikely, but possibly enough "wiggle room" for forward shock.
- Faster observed variability would favor reflected shock scenario.
- Chandra Cycle 11 observations (P.I. Dan Patnaude) will look for just that!
- RXJ1713.7-3946?