Fermi-LAT observations of Supernova remnants

S. Funk, Kavli Institute for Astroparticle Physics & Cosmology, Stanford University & SLAC

TeV gamma-ray observations

- 4 shell-like objects, detected in TeV gamma-rays
- Young historical SNRs
 - RX J1713.7-3946
 - Vela Junior
 - RCW 86
 - **SN 1006**
- All show rather clear correlation with non-thermal X-ray emission
- Also detection of Cas A, upper limits for Tycho, Kepler, ...

VHE y-rays

Protons or Electrons?

Some of the relevant questions:

SN 1006

Koyama, 1995 Bamba, 2003

What is the p/e ratio in accelerated particles?

What is the acceleration rate / time?

Where does acceleration cut off? Do SNR accelerate CRs up to the knee – are they Pevatrons?

How efficiently is shock kinetic energy converted to CR energy?

Magnetic fields in SNR shells

- Mounting evidence that
 - B-fields amplified in SNR shocks
 - 1. X-ray Filaments
 - 2. X-ray Variability
 - Cosmic ray pressure is significant
 - 1. position of CD
 - 2. post-shock temperature
 - 3. high B-fields

Magnetic fields in SNR shells

If this is true ...

- TeV gamma-ray emission in young SNRs should be hadronic
- Fermi-LAT sensitivity sufficient to detect these sources in a hadronic scenario in ~1 year of data

If this is true ...

- TeV gamma-ray emission in young SNRs should be hadronic
- Fermi-LAT sensitivity sufficient to detect these sources in a hadronic scenario in ~1 year of data

■ DISCLAIMER: unfortunately, I will not be able to tell you about young SNRs with Fermi today ...

Fermi-LAT early results ...

... on Supernova remnants and Pulsar Wind Nebulae

General comments

- Any positional coincidence with an SNR must be tested vs pulsars
- Clear detection of bright GeV gamma-ray sources coinciding with mid-aged SNRs interacting with molecular clouds
 - W51C, W44 and W28
 - **■** IC 443

Supernova remnant W51C

ROSAT X-ray (color), VLA (contours)

- D ~ 6 kpc, Age ~ 20 kyears
- Molecular cloud interaction
- SNR diameter ~ 30'
- Physical size rather large (90pc x 70 pc
- + recent H.E.S.S. discovery

Fermi View on W51C Region

The W51C source is extended

 Mean surface brightness (2-8 Gev) as a function of distance from the SNR center vs. Fermi-LAT PSF

Close-up View on W51C Region

Color: Fermi LAT counts map (2-8 GeV) Black: ROSAT X-ray map (0.1-2.4 keV)

Green: VLA 1.4 GHz

X-rays:

 Thermal emission by shock-heated plasma (kT=0.2 eV)

Radio:

- Peaks are HII regions
- Synchrotron radiation of SNR W51C well matched to thermal X-rays

X CXOJ192318.5+140305 (neutron star?)

Supernova remnant W44

Blue: VLA (324 MHz) Green + Red: Spitzer

- Middle-aged (~ 2.0 × 10⁴ yr)
- mixed-morphology SNR
 Distance: ~ 3kpc
- Spatial extent: ~ 35' × 26'
- Spatially coincident with 3EG J1856+0114
- Cloud-shell interactions
 - CO (Seta et al. 2004),
 - OH maser (1720 MHz: Hoffman et al. 2005)
 - mid-IR(traces shocked
 H₂; Reach et al. 2006)

Supernova remnant W44

Blue: VLA (324 MHz) Green + Red: Spitzer

Also Extended

Smoothed Counts > 1 GeV

- Profile along rectangle
- Red: observed, black: PSF
- Contribution from diffuse background and nearby sources subtracted

Also Extended

Smoothed Counts > 1 GeV

- Profile along rectangle
- Red: observed, black: PSF
- Contribution from diffuse background and nearby sources subtracted

W 28 Region

- Mixed-morphology SNR
- TeV detected by HESS (steep spectrum)
- Distance 1.8-3.3 kpc
- Age: ~35000-150000yr
- South TeV source is star forming region

W 28 Region

- Mixed-morphology SNR
- TeV detected by HESS (steep spectrum)
- Distance 1.8-3.3 kpc
- Age: ~35000-150000yr
- South TeV source is star forming region

Fermi-LAT count map of W28

2-10GeV

Green: H.E.S.S.

Black: Fermi 95% confidence region

Magenta: NANTEN (CO J=1-0)

Extension

2.15-4.64GeV

... again, clearly extended emission

Origin of the GeV Y-rays

- Extended emission matching the radio extent
- Very large luminosity (W51: ~4×10³⁵ erg/s at 6 kpc)
- Very faint in TeV (W51: 1% Crab, cf. 70% for RX J1713)
- Mid-aged SNR interacting with molecular cloud
- Similar pictures for W51C, W44, IC 443 and W28

... what do we learn from this?

- Completely different picture to TeV gamma-rays:
 - Young SNRs are not bright Fermi-LAT GeV sources
 - Mid-aged SNRs interacting with molecular clouds can be extremely bright
 - Origin?

Pulsar Wind Nebulae

- Largest population of Galactic TeV sources
- Dominated by IC of relativistic electrons
- Prototypes:
 - Crab Nebula
 - Vela-X Nebula
 - MSH 15-52

What do we expect?

TeV PWN might be harder to detect since IC component drops significantly when going to lower energies

The Crab Nebula

Emission clearly detected in the off-pulsar phase

The Crab Nebula

- Synchrotron cutoff at 100 MeV (Comptel + LAT)
- IC component suggests B-field 100-200 μG well below the equipartition field (300 μG)

- Prototype crushed and evolved PWN (south of pulsar)
- Mid-aged Pulsar, very energetic
- X-ray emission (cocoon) matching the TeV emission

Blondin, 2001

- lons in the relativistic wind?
 - When looking only at the cocoon:
 - Only 10⁻³ of energy output of pulsar ... where is missing energy?
 - Horns et al. 2005, gamma-ray flux hadronic?

- SED well measured need two population of electrons
- Cocoon: recently injected electrons (cooling feature)
- Larger radio PWN: older electrons related to higher-spin power of pulsar

- SED well measured need two population of electrons
- Cocoon: recently injected electrons (cooling feature)
- Larger radio PWN: older electrons related to higher-spin power of pulsar

Vela X

- Off-pulse emission of the brightest persistent GeV source
- In the original 3-month Vela publication we reported an upper limit

Vela X

 After 9 months of data, extended source coinciding with radio emission clearly detected in the off data

Summary

- Fermi-LAT starts to release results on extended sources in the Galactic plane coinciding with SNRs and PWNe
 - These are amongst the hardest sources to analyse with the Fermi-LAT
- Having GeV to TeV coverage plus radio and X-ray will severely constrain models of emitting particle populations
- Mid-aged SNRs interacting with molecular clouds are bright GeV gamma-ray sources.