Modeling of Pulsar Wind Nebulae

Elena Amato

INAF-Osservatorio Astrofisico di Arcetri

Collaborators: Jonathan Arons, Niccolo' Bucciantini, Luca Del Zanna, Delia Volpi

Pulsar Wind Nebulae

Why are they interesting at all?

- Best probes of the physics of relativistic astrophysical plasmas
- As many positrons as electrons
- ✓ Particle acceleration at the highest speed shocks in Nature (10^4 < Γ < 10^7)
- ✓ Direct evidence for PeV particles

THE Pulsar Wind Nebula

electromagnetic braking of fast-spinning magnetized NS

Magnetized relativistic wind

If wind is efficiently confined by surrounding SNR

Star rotational energy visible as non-thermal emission of the magnetized relativistic plasma

1-D and 2-D steady state or self-similar MHD models of PWNe (Kennel & Coroniti 84; Emmering & Chevalier 87; Begelman & Li 92)

The anisotropic wind energy flow

Split monopole solutions

(Michel 73, Bogovalov 99; FF sim: Gruzinov 04, Spitkovsky 06; RMHD sim: Komissarov 06, Bucciantini et al. 06)

Streamlines asymptotically radial beyond R_{LC}

Most of the energy flux is at low latitudes:

 $F \propto \sin^2(\theta)$

Magnetic field components:

 $B_r \propto 1/r^2$ $B_\phi \propto \sin(\theta)/r$ Within ideal MHD σ stays large Current sheet around equatorial plane

Lowering or in the current sheet?

- reconnection not fast enough if minimum rate assumed (Lyubarsky & Kirk 01)
- ■dN/dt~10⁴⁰ s⁻¹ required for Crab (Kirk & Skjaeraasen 03)
- This contrasts with PSR theory (e.g. Hibschman & Arons 01: κ ~10³-10⁴ ⇒dN/dt~10³8 for Crab) but just right for radio emitting particles

Termination Shock structure

Axisymmetric RMHD simulations of PWNe

Komissarov & Lyubarsky 03, 04 Del Zanna et al 04, 06 Bogovalov et al 05

 $F \propto \sin^2(\theta)$

 $\Gamma \propto \sin^2(\theta)$

 $B_{\phi} \propto \sin(\theta) G(\theta)$

A: ultrarelativistic PSR wind

B: subsonic equatorial outflow

C: supersonic equatorial funnel

a: termination shock front

b: rim shock

c: FMS surface

Flow pattern

_{o=0.03}

Magnetization Velocity 1.5 1.0 1.0 0.5 0.5 0.0 0.0 -0.5-0.5-1.0-0.5-1.00.5 1.0 -1.5-1.51.5 -1.0-0.50.0 0.5 1.0 1.5 0.0 0.2 0.4 0.6 0.8 1.0 -2.0-1.5-0.50.0 0.5 1.0

- •For sufficiently high σ , equipartition is reached in equatorial region
- Equatorial flow is diverted towards higher latitudes
- ■A fast channel may then form along the axis

Dependence on σ of the flow velocity

Dependence on field structure

Synchrotron Emission maps X-rays optical σ=0.025, b=10 0.5 (Weisskopf et al 00) run B: surface brightness I, (X-ray) E_{max} is evolved with the flow (Hester et al 95) $f(E) \propto E^{-\alpha}, E < E_{max}$ σ=0.1, b=1 (Del Zanna et al 06) Between 3 and 15 % of the wind Energy flows with σ <0.001 (Pavlov et al 01)

The Crab Nebula integrated emission spectrum

Quantitative fit of the spectral properties of the Crab Nebula requires injection spectrum with α =2.7!!!! But....

- •Optical spectral index maps (Veron-Cetty & Woltjer 92) suggest flatter injection spectrum: $\alpha \sim 2.2$ (but see also Kargaltsev & Pavlov 09)
- Suspicion that particles are loosing too little: average B too low?
- In order to recover total flux number of particles artificially large
- ■Synchrotron only offers combined information on n_e and B: $L_{syn} \propto n_e$ B²
- ■But computation of ICS offers additional constraints: $L_{ICS} \propto n_e U_{ph}$

γ-ray spectrum from Crab

γ-ray emission from Crab

Properties of the flow and particle acceleration

Particle acceleration occurs at the highly relativistic termination shock

This is a collisionless shock: transition between non-radiative (upstream) and radiative (downstream) takes place on scales too small for collisions to play a role

Self-generated electromagnetic turbulence mediates the shock transition: it must provide both the dissipation and particle acceleration mechanisms

The detailed physics and the outcome of the process strongly depend on composition (e^--e^+-p?) magnetization (σ =B²/4 π n\Gammamc²) and geometry (Γ × Θ (B·n)) Of the flow

Particle Acceleration mechanisms

Composition: mostly pairs

Magnetization: σ >0.001 for most of the flow

Geometry: transverse

Requirements:

- ✓ Outcome: power-law with α ~2.2 for optical/X-rays α ~1.5 for radio
- ✓ Maximum energy: for Crab ~few \times 10¹⁵ eV (close to the available potential drop at the PSR)
- ✓ Efficiency: for Crab ~10-20% of total L_{sd}

Proposed mechanisms:

- Fermi mechanism if/where magnetization is low enough
- Shock drift acceleration
- Acceleration associated with magnetic reconnection taking place at the shock (Lyubarsky & Liverts 08)
- Resonant cyclotron absorption in ion doped plasma (Hoshino et al 92, Amato & Arons 06)

Pros & Cons

DSA and SDA

oSDA not effective at superluminal shocks such as the pulsar wind TS unless unrealistically high turbulence level (Sironi & Spitkovsky 09)

- ✓In Weibel mediated e+-e⁻ (unmagnetized) shocks Fermi acceleration operates effectively (Spitkovsky 08)
- ✓ Power law index adequate for the optical/X-ray spectrum of Crab (Kirk et al 00) but e.g. Vela shows flatter spectrum (Kargaltsev & Pavlov 09)

oSmall fraction of the flow satisfies the low magnetization (σ <0.001) condition (see MHD simulations)

Magnetic reconnection

- •Spectrum: -3 or -1? (e.g. Zenitani & Hoshino 07)
- Efficiency? Associated with X-points involving small part of the flow...
- •Investigations in this context are in progress (e.g. Lyubarsky & Liverts 08)

Resonant absorption of ion cyclotron waves

Established to effectively accelerate both e⁺ and e⁻ if the pulsar wind is sufficiently cold and ions carry most of its energy (Hoshino & Arons 91, Hoshino et al. 92, Amato & Arons 06)

Resonant cyclotron absorption in ion

shock from doped plasma

Leading edge of a transverse relativistic shock in 1D PIC

Subtleties of the RCA process

In order for the process to work the pulsar wind must be really very cold ($\delta u/u < m_e/m_i$)!!!!

Particle spectra and acceleration efficiency

Acceleration efficiency:

~few% for U_i/U_{tot} ~60% ~30% for U_i/U_{tot} ~80%

Spectral slope:

>3 for U_i/U_{tot}~60%
<2 for U_i/U_{tot}~80%

Maximum energy:

~20% $m_i c^2 \Gamma$ for $U_i / U_{tot} \sim 60\%$ ~80% $m_i c^2 \Gamma$ for $U_i / U_{tot} \sim 80\%$

Electron acceleration!!!

Less efficient than for positrons:

(low $m_i/m_e \Rightarrow large n_i/n_e$ to ensure $U_i/U_{tot} > 0.5$) \rightarrow elliptical polarization of the waves

Extrapolation to realistic m_i/m_e predicts same efficiency

Acceleration via RCA and related issues

✓ Nicely fits with correlation (Kargaltsev & Pavlov 08; Li et al 08) between

X-ray emission of PSRs and PWNe: everything depends on

Ui/Utot and ultimately on electrodynamics of underlying compact object

If Γ ~ few x 10⁶

√Maximum energy ~ what required by observations

 $\sqrt{\text{Required (dN}_i/\text{dt)}} \sim 10^{34} \, \text{s}^{-1} \sim (\text{dN}_i/\text{dt})_{GJ}$ for Crab: return current for the pulsar circuit

✓ Natural explanation for Crab wisps (Gallant & Arons 94) and their variability (Spitkovsky & Arons 04) (although maybe also different explanations within ideal MHD) (e.g. Begelman 99; Camus et al 09)

Puzzle with Γ

Radio electrons dominant by number require $(dN/dt)\sim10^{40}$ s⁻¹ and $\Gamma\sim10^4$ Preliminary studies based on 1-zone models (Bucciantini et al. in prep.) contrast with idea that they are primordial!

1-zone models for the PWN evolution

$$\dot{N}(E,t) = C_o(t)(E/\epsilon_c)^{-\gamma_1} for \ \epsilon_c < E < \epsilon_v$$

 $\dot{N}(E,t) = C_o(t)(E/\epsilon_c)^{-\gamma_2} for \ \epsilon_m < E < \epsilon_c$

$$\eta_e L(t) = \int_{\epsilon_m}^{\epsilon_v} \dot{N}(E, t) E dE$$

$$\dot{N}(t) = \int_{\epsilon_w}^{\epsilon_v} \dot{N}(E, t) dE$$

$$N(E, t) = \int_{-\infty}^{\infty} \dot{N}(E_o t_o) \frac{\partial t_o}{\partial E}(E, E_o, t) dE_o$$

$$N(E,t) = \int_{E}^{\infty} \dot{N}(E_{o}t_{o}) \frac{\partial t_{o}}{\partial E}(E,E_{o},t) dE_{o} \qquad \epsilon_{v} \propto L(t)^{1/2} \epsilon_{c}/\epsilon_{v} = \cos \gamma_{w} = L(t)/(dN/dt)$$

Summary and Conclusions

- \blacksquare Nebular dynamics and emission allow to constrain σ at the termination shock
- The value of σ is low enough as to require effective magnetic dissipation
- Dissipation of magnetic energy before or at the termination shock is required
- \blacksquare The value of σ inferred by MHD simulations is however too large to allow efficient Fermi acceleration in a pair plasma
- A possibility is that different acceleration mechanisms operate at different latitudes
- •Preliminary results from simplified modeling of the evolution of these systems suggest values of Γ as low as to rule out the best candidate (ions cannot carry most of the wind energy if Γ is below 10⁶)

Where to look for answers

RMHD simulations:

- •Investigation of the parameters space
- More refined model for the evolution of n(E)

High Energy Observations

- •Fermi: Emission spectrum around the synchrotron cut-off and variability
- Pion decay TeV γ-rays and neutrinos