Whistlers and Suppressed Heat Fluxes in the Intracluster Medium

James Drake (Dept. of Physics & JSI, Univ. of Maryland)
Chris Reynolds (Institute of Astronomy, Cambridge)

With... Gareth Roberg-Clark, Marc Swisdak (U.Maryland)

Roberg-Clark, Drake, Reynolds, Swisdak (2016), ApJL, 830, L9 Roberg-Clark, Drake, Reynolds, Swisdak (2018), PRL, 120, 035101 Roberg-Clark, Drake, Swisdak, Reynolds (2018), ApJ, 867, 154

Outline

- Motivation : Cooling cores of clusters role of thermal conduction
- ICM as a high-β, weakly collisional, magnetized plasma
- Punchlines:
 - Electron heat flux carried at whistler phase speed
 - Suppression below (saturated) Spitzer by factor β
- Drivers of the whistler instability; Importance of obliquity (and >1D)
- Comparison with solar wind
- Scattering of energetic electrons
- Analogies with CR transport problem

Potential roles of thermal conduction

- Direct heating of cool cores... reducing the need for AGN heating (e.g. Binney & Cowie 1981; Zakamska & Narayan 2003; Bogdanovic et al. 2009; Ruszkowski & Oh 2010; Yang & CSR 2016; Fang et al. 2018)
- Suppression of cooling instabilities... regulation of AGN fueling (e.g. Field 1965; Voit et al. 2008; Yang & CSR 2016)
- Dissipation of AGN-driven waves... mechanism for AGN heating (e.g. Fabian et al. 2005; Tang & Churavov 2018; Zweibel et al. 2018)

Potential roles of thermal conduction

- Direct heating of cool cores... reducing the need for AGN heating (e.g. Binney & Cowie 1981; Zakamska & Narayan 2003; Bogdanovic et al. 2009; Ruszkowski & Oh 2010; Yang & CSR 2016; Fang et al. 2018)
- Suppression of cooling instabilities... regulation of AGN fueling (e.g. Field 1965; Voit et al. 2008; Yang & CSR 2016)
- Dissipation of AGN-driven waves...
 mechanism for AGN heating (e.g. Fabian
 et al. 2005; Tang & Churavov 2018; Zweibel et al.
 2018)

Potential roles of thermal conduction

- Direct heating of cool cores... reducing the need for AGN heating (e.g. Binney & Cowie 1981; Zakamska & Narayan 2003; Bogdanovic et al. 2009; Ruszkowski & Oh 2010; Yang & CSR 2016; Fang et al. 2018)
- Suppression of cooling instabilities...
 regulation of AGN fueling (e.g. Field 1965;
 Voit et al. 2008; Yang & CSR 2016)
- Dissipation of AGN-driven waves...
 mechanism for AGN heating (e.g. Fabian
 et al. 2005; Tang & Churavov 2018; Zweibel et al.
 2018)

Perseus unsharp mask (Sanders et al. 2006)

The Physics of Conduction: Classical Theory

- "Classical" result (Spitzer)
 - Assuming strong collisionality

$$\mathbf{q} = -\chi \nabla T$$

$$\chi = 4.6 \times 10^{-7} T^{5/2} \operatorname{erg cm}^{-1} \operatorname{s}^{-1} \operatorname{K}^{-1}$$

$$\left(\kappa \equiv \frac{\chi T}{P} \sim \lambda_e^2 \nu_{ce}\right)$$

 Modification for magnetic fields (Braginskii) – heat flux strongly suppressed across field lines, but proceeds like above along field lines

$$\mathbf{q} = -\chi \mathbf{b} (\mathbf{b} \cdot \nabla) T$$

09/10/2019 KITP astroplasma

With anisotropic conduction, temperature (not entropy) gradients drive buoyancy instabilities...

$b_{z} \frac{dT}{dz}$	<0 (Outskirts)	>0 (Core)
≈0	MTI	g-mode driven overstable by radiative cooling
≈1	g-mode driven overstable by conductive heat flux	HBI

Temperature (color) and magnetic field (lines) 2.2 g (b) Avara et al. (2012) also... Parrish & Quataert (2008)McCourt et al. (2011)

Balbus & Reynolds (2010)

Heat-flux driven and radiative-cooling overstabilities (T.Bogdanovic 2013, unpublished)

Microphysics of the ICM

• Electron gyroradius
$$r_e \approx 2 \times 10^8 \left(\frac{T}{8 \, \mathrm{keV}}\right)^{1/2} \left(\frac{B}{1 \mu \mathrm{G}}\right)^{-1} \, \mathrm{cm}$$

• Ratio of thermal-to-magnetic pressure
$$\beta \equiv \frac{p_{
m th}}{p_{
m mag}} \sim 100$$

• Very susceptible to instabilities driven by deviations of velocity distribution from isotropic Maxwellian.

PIC (p3d) models of heat flux

Sustain electron temperature via hot and cold plate boundary conditions Re-inject particles from hot and cold thermal reservoirs when they hot boundary B allowed to evolve freely

2D domain; either freeze ions or assume close-to-physical mass ratio

09/10/2019 KITP astroplasma 12

Example high- β case; β =64

- Heat flux drives whistlers
- Driven by particles resonating with whistlers $\omega = kv_x + n\Omega_e$ (n = -1, 0, +1)
- When $\delta B/B>0.3$, overlapping resonances scatter e⁻; suppresses heat flux

Roberg-Clark et al. (2016); Roberg-Clark et al. (2018); also Komarov et al. (2018)

Roberg-Clark et al. (2018b)

KITP astroplasma

Heat flux in terms of whistler phase speed...

Dispersion relation...

$$\omega = \frac{k^2 \rho_e^2 \Omega_e}{\beta_e} \qquad k\rho_e \sim 1$$

$$\Rightarrow \frac{\omega}{k} \sim \frac{v_{Te}}{\beta_e}$$

 Whistlers as scattering centers – imagine whistler as a bucket that traps particles and convects their energy along the B-field:

$$q_{\parallel} = \alpha n_0 \frac{\omega}{k} T_{eh} \sim n_0 m_e \frac{v_{Teh}^3}{\beta_{e0h}} = v_{Teh} \frac{B_0^2}{8\pi}$$

If L_T is temperature scale length then we replace Spitzer

$$Q_{\text{Spitzer}} = \frac{0.5n_e m_e v_T^3}{L_T/\lambda_e + 4}$$

with

$$Q_{\text{icm}} = \frac{0.5n_e m_e v_T^3}{L_T / \lambda_e + 4 + \beta / 3}$$

Whistler physics becomes important when _____

$$L_T < \frac{\beta}{3}\lambda_e \sim 30\lambda_e$$

As well as suppression, heat flux has different scaling with T and depends on B. Important for stability calculations

Physics of whistler suppression

Electron temperature evolution

Steady state

- Whistler waves driven unstable by the electron heat flux
 - Right-hand rotating electromagnetic waves
 - Oblique waves with $k\rho_{eh} \sim 1$
 - Resonantly scatters electrons (Karimabadi et al 1992, GRC et al 2016, Dalena et al 2012)

Time evolution of temperature and heat flux profiles

Variation in steady state with parameters

- Heat flux largely insensitive to imposed temperature gradient
- Follows linear scaling with $1/\beta_{e0h}$ (inset)

Scattering by whistlers (heat flux instability)

- Anisotropic distribution functions from the heat flux are robustly unstable to a whistler instability at high β
 Instability is resonant, with energy conservation in the frame of a parallel whistler.
 Pitch angle scattering (μ-non-conservation) and trapping for resonant particles particles.
- For parallel whistlers, resonance happens with backward-moving electrons (primary cyclotron resonance).
 Only weak scattering of backward electrons for parallel whistlers
 Only single resonance

Off-angle whistlers

 Oblique propagation introduces resonances at multiple harmonics of the electron cyclotron frequency:

$$\omega - k_x v_x - n\Omega = 0$$

with n an integer

 For a large amplitude wave the resonances overlap, causing irreversible diffusive behavior – effective at reducing heat flux

Particle trajectories from simulation

- Diffusion in pitch angle occurs rapidly (time scale order of cyclotron period)
 - On a constant energy contour in the whistler frame – slow compared with the thermal speed

Diffusion in space

- Scattering in real space (left) is also very fast (order cyclotron period).
- Spacetime plot (right) shows diffusive nature of trajectories

$$D_{\parallel} \sim 7 \rho_{e0h}^2 \Omega_{e0}$$

Whistlers as moving scattering centers

- Spacetime plot (left) of fluctuations reveals mostly uniform translation of waves to towards cold plate.
- Power spectra have a peak near $k\rho_e \sim 1$ even when β changes.

Confirmation in solar wind observations

Heat flux is suppressed at below the free-streaming value

$$q_0 = \frac{3}{2} n_0 T_0 v_{te}$$

- Tong et al. [arXiv 2018] confirm that maximum heat flux scales as β for $\beta > 2$
- What happens in our simulations at lower β?

09/10/2019 KITP astroplasma

PIC simulations of low β

- Same setup as before, but with hot/cold temperature ratio of 10 and stronger magnetic field (lower β)
- Mobile ions
- Whistlers and double layers (DLs) act together to suppress heat flux for a range of
- DLs were not there previously because the whistler scattering reduces the return current driver.

Beta 1 vs. 16: Transition from whistler to DL

Heat flux versus β

Heat flux rolls over to a constant value at
 β ~ 4

Scattering of energetic electrons

- The possible self-confinement of energetic electrons during reconnection or at shocks is critical to understanding mechanisms for acceleration and resultant spectra
 - Free streaming transit time is often short compared with energy gain times in non-relativistic reconnection

KITP astroplasma

- Can whistlers scatter high energy (relativistic electrons)
- Carry out simulations with an initial κ distribution of energetic electrons with $T_{ell} >> T_{ell}$

$$f_e \sim \left(1 + \frac{v_x^2}{\kappa v_{tx}^2} + \frac{v_\perp^2}{\kappa v_{t\perp}^2}\right)^{-(1+\kappa)}$$

Scattering of electrons

- The anisotropic κ distribution drives oblique whistlers
 - Drive dominated by the n=-1 resonance the "fan instability"
 - Energetic electrons also scattered through the n=1,0,-1,-2,-3, ... resonances
- Large trapping widths in phase space

Roberg –Clark et al 2019

Modeling electron thermal transport in ICM plasma

- Need a model that includes convection of thermal energy down a temperature gradient but also includes parallel diffusion limited by either whistlers or classical Coulomb collisions
- Follow the lead of the modelers of cosmic rays (e.g., Thomas and Pfrommer 2019)
- Include equations for the electron energy, electron momentum and right and leftward propagating whistler waves
 - Include the drag force of whistlers acting on the hot electrons and the backreaction on the whistlers
 - Include both the energy drive of the whistlers and energy dissipation (phenomenological)

Electron transport equations

- Three coupled equations for the electron energy $\varepsilon_h = 3p_h/2$, the electron momentum m_en_hV_{hd} and the right and left propagating whistler waves ε₊
 - Can also include the forces acting on the background ions but ignore for now
- Coupling takes place through the drag forces mediated by the whistlers g_±

• Energy
$$\frac{\partial \varepsilon_h}{\partial t} \pm \nabla_{\parallel} \Big(V_d (\varepsilon_h + P_h) \Big) = -V_w g_+ + V_w g_- + Q_{w+} + Q_{w-}$$

Momentum

$$0 = -\nabla_{||}P_{h} - g_{+} - g_{-}$$

$$g_{\pm} = \upsilon_{\pm} \rho_h (V_{hd} \mp V_w)$$

Whistlers

$$\frac{\partial \mathcal{E}_{\pm}}{\partial t} \pm \nabla_{\parallel} (V_{w} \mathcal{E}_{\pm}) = \pm V_{w} g_{\pm} - Q_{w\pm}$$

$$\upsilon_{\pm} = \alpha \Omega_e \frac{\varepsilon_{\pm}}{\varepsilon_B}$$

Electron transport equations (cont.)

Energy

$$\frac{\partial \varepsilon_h}{\partial t} \pm \nabla_{\parallel} \left(V_{st} (\varepsilon_h + P_h) \right) - \nabla_{\parallel} D_{\parallel} \nabla_{\parallel} P_h = V_{st} \nabla_{\parallel} P_h + 4\rho_h V_w^2 \frac{\upsilon_+ \upsilon_-}{\upsilon_+ + \upsilon_-} + Q_{w+} + Q_{w-}$$

Whistlers

$$\frac{\partial \varepsilon_{\pm}}{\partial t} \pm \nabla_{\parallel} (V_{w} \varepsilon_{\pm}) = \mp \frac{v_{\pm}}{v_{+} + v_{-}} V_{w} \nabla_{\parallel} P_{h} - 2\rho_{h} V_{w}^{2} \frac{v_{+} v_{-}}{v_{+} + v_{-}} - Q_{w\pm}$$

$$V_{st} = \frac{v_{+} - v_{-}}{v_{+} + v_{-}} V_{w} \qquad D_{\parallel} = \frac{\varepsilon_{h} + P_{h}}{\rho_{h}(v_{+} + v_{-})} \sim \rho_{th}^{2} \Omega_{e} \frac{\varepsilon_{B}}{\varepsilon_{+} + \varepsilon_{-}} \qquad v_{\pm} = \alpha \Omega_{e} \frac{\varepsilon_{\pm}}{\varepsilon_{B}}$$

- Smooth transition from Bohm-like to Spitzer conductivity
- How do temperature fronts propagate? What about thermal instability?

Conclusions

- Heat flux instability strongly suppresses thermal conduction at high β via oblique whistlers
- At lower β whistlers become subdominant and heat flux levels off to constant fraction of free-streaming value
- Whistlers scatter energetic electrons through high order resonances of oblique waves – implications for cosmic ray transport?
- Transport model for electron heat flux limited by whistlers is being developed for implementation in large-scale simulation models
- Implications for the thermal stability of galaxy clusters remains to be explored