Cole Holcomb Aug 15, 2019 Collaborators:
Anatoly Spitkovsky,
Robert Raveanu

## Life story of a CR

Acceleration

Confinement

Escape from the Galactic disk/
CR Halo

**Point Source** 

Anisotropic Expansion ???? ????

Isotropic/Fluid
Transport

How do CR distributions evolve to isotropy from anisotropic initial conditions?

#### **CR Self-Confinement**

- CRs originate from point sources, but are somehow isotropized
- Need fluctuations to scatter on

#### Solution:

Self-Confinement Paradigm via

Gyroresonant Streaming Instability

CRs create the waves that they subsequently scatter on

Wentzel 68, Kulsrud & Pearce 69

#### Resonant interactions with Alfvén waves

Left polarization: (right/positive helicity)

Right polarization: (left/negative helicity)



Resonant with backward-traveling ions.

(In the wave frame)

Resonant with forward-traveling ions.

(In the wave frame)

Gyro resonance:

$$\omega$$
- $kv_z$ = $\pm\Omega$ 

Doppler-Shifted Wave Frequency = Gyrofrequency

In general,  $\omega << \Omega$ :

$$v_z = \pm \Omega/k$$



# For fixed momentum p

A spectrum of parallel-propagating circularly polarized waves is insufficient for achieving isotropy

Linearly polarized spectra are necessary

$$\mu_{\text{res}}(k, p) = \frac{v_{\text{ph}}(k)}{v(p)} - \frac{\Omega_0}{k\gamma(p)v(p)}$$

$$\mu \equiv \frac{\vec{p} \cdot \vec{B}}{|\vec{p}||\vec{B}|}$$

# CR Streaming Instability: Linear Theory

$$\mu \equiv \frac{\vec{p} \cdot \vec{B}}{|\vec{p}||\vec{B}|}$$

$$\Gamma_{\rm cr}^{\pm}(k) = \frac{\pi^2 q^2}{2} \frac{v_A^2}{c^2} \sum_{\pm} \iint \delta(\omega - k\mu v \pm \Omega(p)) \left(\frac{\partial f}{\partial p} + \left(\frac{kv}{\omega} - \mu\right) \frac{1}{p} \frac{\partial f}{\partial \mu}\right) v p^2 (1 - \mu^2) dp d\mu$$

Left and Right Polarization

**CR** anisotropy

**Gyroresonance Condition** 

Physical picture: unstable waves are "pushed" by net force of CR anisotropy

# CR Streaming Instability: Linear Theory

$$\Gamma_{\rm cr}(k) = \frac{1}{2} \frac{\pi}{4} \frac{\alpha - 3}{\alpha - 2} \frac{n_{\rm cr}}{n_i} \Omega_0 \left( \frac{v_{\rm dr}}{\omega/k} - 1 \right)$$
3.

"Streaming"

#### **Assuming:**

- Power-law CRs
- 2. Small bulk drift v<sub>dr</sub>
- 3. Distribution to infinite p
- 4. Wave frequency <<
  Gyrofrequency

#### Notes:

- 1. Instability requires  $v_{dr} > v_A$
- 2. Polarization degeneracy

In general: solve the full growth rate integral numerically

#### Power-Law CR Dispersion Relation

#### Full numerical solution



Typical PIC-friendly parameters  $n_{cr} = 2*10^{-4} n_i$   $v_D/v_A = .8c/.1c$   $\gamma = [2, 10]$ 

High anisotropy breaks degeneracy of left- and right-handed modes' growth rates

$$\Gamma_{\rm cr}(k) = \frac{1}{2} \frac{\pi}{4} \frac{\alpha - 3}{\alpha - 2} \frac{n_{\rm cr}}{n_i} \Omega_0 \left( \frac{v_{\rm dr}}{\omega/k} - 1 \right)$$

Approximate analytical solution

#### PIC Simulations



Example Initial
Condition:
Phase Space Density
For Power-Law CRs

- 1D3V periodic particle-in-cell
- Cold Maxwellian background plasma
- B<sub>0</sub> || x
- CRs with v<sub>dr</sub>/v<sub>A</sub> > 1
- $n_{cr} = \sim 10^{-4} \sim 10^{-2} n_i$

Two families of CR distribution:
Gyrotropic-Ring Distribution and
Power-Law Distribution

# Ring CR Distribution



$$f_{\rm ring}(p,\mu) = \frac{n_{\rm cr}}{2\pi p^2} \delta(p - p_0) \delta(\mu - \mu_0)$$

# All CRs occupy the same resonant bands

$$k_{\text{res}}(p_0, \mu_0) = \frac{-\Omega(p_0)}{\mu_0 v(p_0) - v_{\text{ph}}}$$

# Ring CR Distribution



$$f_{\rm ring}(p,\mu) = \frac{n_{\rm cr}}{2\pi p^2} \delta(p - p_0) \delta(\mu - \mu_0)$$

# All CRs occupy the same resonant bands

$$k_{\text{res}}(p_0, \mu_0) = \frac{-\Omega(p_0)}{\mu_0 v(p_0) - v_{\text{ph}}}$$

# Ring CR Distribution



$$k_{\text{res}}(p_0, \mu_0) = \frac{-\Omega(p_0)}{\mu_0 v(p_0) - v_{\text{ph}}}$$

# Ring CR Drift Evolution



CR drift speed evolution depends on wave spectrum

Large amplitude waves quickly reduce v<sub>dr</sub> → v<sub>A</sub>

Resonant trapping in small amplitude waves results in indefinite super-Alfvenic drift

# Ring Wave Spectra



$$k_{\text{res}}(p_0, \mu_0) = \frac{-\Omega(p_0)}{\mu_0 v(p_0) - v_{\text{ph}}}$$

All CRs are resonant with Parallel-Right and Antiparallel-Left modes



Quasimonochromatic spectrum

Trapped Particle
Dynamics

# Ring CR Instability Saturation



#### **Growth Rate**

**Trapping Frequency** 

$$\Omega_{\rm trap} = \sqrt{\frac{\delta B}{B_0} k v_{\perp} \Omega},$$

Sudan & Ott 71

$$\left(\frac{\delta B}{B_0}\right)_{\text{trap}} \approx \left(\frac{n_{\text{cr}}}{n_{\text{i}}}\right)^{2/3} \left(\frac{v_{\perp}(v_{\text{dr},0}-v_{\text{ph}})}{v_{\text{ph}}^2}\right)^{1/3}$$

Shevchenko+ 02

# Power Law Distribution | n<sub>cr</sub> = 2\*10-3 n<sub>i</sub> | v<sub>D</sub>/v<sub>A</sub> = .8c/.1c



# Power Law Distribution | n<sub>cr</sub> = 2\*10-3 n<sub>i</sub> | v<sub>D</sub>/v<sub>A</sub> = .8c/.1c



# **Growth Rate**

 $n_{cr} = 2*10^{-3} n_i$  $v_D/v_A = .8c/.1c$ 



# Power Law Spectra

 $n_{cr} = 2*10^{-3} n_i$  $v_D/v_A = .8c/.1c$ 



#### High Anisotropy

Right-Handed Spectrum



**Broad Spectrum** 

Pitch-Angle Diffusive Particle Dynamics

# Power-Law Distribution Evolution



High CR Density dB/B ~ 0.3

Low CR Density dB/B ~ 0.1

Isotropy is not achieved unless left-handed modes are generated

## Power-Law Wave Evolution



#### **Linear Phase Saturation:**

$$u_{
m QLT} pprox \Gamma_{
m cr}^{
m lin}$$

$$\left(\frac{\delta B}{B_0}\right)_{
m diff} pprox \sqrt{\gamma_{
m dr}\gamma_{
m cr} \frac{n_{
m cr}}{n_i} \left(\frac{v_{
m dr}}{v_{
m A}} - 1\right)}$$



### Power-Law Drift Evolution



#### **Linear Phase Saturation:**

$$\left(\frac{\delta B}{B_0}\right)^2(t) \approx \gamma_{\rm cr} \frac{n_{\rm cr}}{n_i} \frac{v_{\rm dr,0} - v_{\rm dr}(t)}{v_{\rm ph}}$$

#### **Total Saturation:**

$$t_{\mu} = \frac{3}{8} \int_{\mu_{\rm M}}^{\mu_0} d\mu \frac{(1 - \mu^2)^2}{D_{\mu\mu}}$$
$$\approx \frac{3}{4\pi} \left(\frac{\delta B}{B_0}\right)_{\rm diff}^{-2} \Omega^{-1} C_{\mu}$$

## **CR-Driven Winds**



CR-driven flow: ExB drifts propel the background plasma

## Periodic Simulations

- Linear theory predicts the instability growth rate to a satisfactory level in PIC simulations
  - (MHD-PIC codes perform better in this task; Lebiga+18, Bai+19)
- Can predict the nonlinear behavior of instability based on simple quasilinear scaling relations and conservation laws
- Initial anisotropy of CRs can have important impact on nonlinear evolution Right-handed modes cannot isotropize CRs (unless amplitudes are dB~B)
- If left-handed modes never appear (either because of anisotropy or damping), CRs will not be selfconfined
- v<sub>dr</sub> ~ 0.8c is pretty extreme and probably unrealistic, why bother?
  - We'd like to understand the qualitative features of highly anisotropic CR instability in a way that is continuous with the (low anisotropy) standard models, i.e., push the power-law to the limit
  - We'd like to understand the qualitative features of highly anisotropic CR instability in a periodic setting before moving on to aperiodic simulations, where anisotropy is a natural consequence of expansion away from a source

# Aperiodic CR Simulations



Figure 1. CR escape along the magnetic field  $\mathbf{B}_0$  from the two polar cusps of SNR with a stalled blast wave. (A color version of this figure is available in the online journal.)



Performed 1D PIC simulations with reflecting and outflow boundary conditions

A "cloud" of CRs is initialized and allowed to freely expand into background plasma

### **CR Cloud Simulations**

Large amplitude waves trap CRs near the injection site

High CR Density

time  $t = 0 \omega_{pe}^{-1}$ 





### **CR Cloud Simulations**

Large amplitude waves trap CRs near the injection site

High CR Density

time  $t = 0 \omega_{pe}^{-1}$ 





### **CR Cloud Simulations**



**Low CR Density** 

~95% of CRs escape before diffusive behavior is achieved

## CR Cloud Pressure Profiles

**High CR Density** 

"Low" CR Density





$$U = 4L_{\rm cr} \sqrt{\frac{m_{\rm e}}{m_{\rm i}}} \left(\frac{p^3}{n_{\rm i}} \int \int f \mathrm{d}\mu \mathrm{d}\phi\right)$$
$$\zeta = x/\sqrt{t}$$

Analytic model fails because of isotropy assumption(s)

## Trouble with Assumptions

Expansion via advection equation implies ballistic transport

Ballistic transport implies **CR** anisotropy

1. 
$$\frac{\partial f}{\partial t} + \mu v \frac{\partial f}{\partial x} = 0$$
  $f(t,x) = f(t=0, x-\mu vt)$ 



$$f(t,x) = f(t=0, x - \mu vt)$$

"Sharpened" resonance does not describe waveparticle interaction; does not capture asymmetry between left and righthanded modes

$$k = \frac{\Omega}{\mu v} \neq \frac{\Omega}{v}$$

## **Aperiodic Simulations**

- Models that do not account for anisotropy do not describe the simulated physics of CR expansion even qualitatively.
- CR structures can still be formed, but different from analytic predictions
- Large amplitude waves trap CRs, while right- and lefthand circularly polarized waves are required for fully diffusive behavior

# Wave Damping

CRs give energy to waves via streaming instability, but other mechanisms exist that drain energy instead:

$$\Gamma = \Gamma_{\rm cr} + \Gamma_{\rm damp} \stackrel{?}{=} 0$$

- Ion-Neutral Friction
- Nonlinear Landau Damping
- Turbulent Damping

ISM

IGM, ISM (maybe)

Everywhere??

# Nonlinear Landau Damping





25,000 particles per cell, induced electric field is barely resolved (70k cpu-hours on Perseus cluster at PU)

Self-consistent CR streaming + NLLD not feasible

# Nonlinear Landau Damping





Linearly Polarized:
Both components damp

Circularly Polarized: One damps, one grows

Damping rates within factor of 2 of prediction



# Ion-Neutral Damping



Randomly scatter ions with rate nu to model the effect of ion-neutral collisions

$$\Gamma_{\rm in} pprox - rac{
u_{
m in}}{2}$$

Very good agreement between model behavior and predicted damping rates

(except highest scattering rate, which is off by 2x)

Easy to implement in CR instability simulations

## Summary

- Predictions of linear and quasi-linear theories are in satisfactory agreement with simulations
- CR anisotropy is important on micro- and mesoscales; not accounted for by analytical models
- Self-confinement will be more difficult in the presence of wave damping
- Ion-Neutral damping will be relatively easy to include in simulations, but NLLD does not look promising

# Trapped Particle Dynamics



Sudan & Ott 71

#### Saturation Mechanism



$$\Gamma_{\rm cr}^{\pm}(k) = \frac{\pi^2 q^2}{2} \frac{v_A^2}{c^2} \sum_{\pm} \iint \delta(\omega - k\mu v \pm \Omega(p)) \left( \frac{\partial f}{\partial p} + \left( \frac{kv}{\omega} - \mu \right) \frac{1}{p} \frac{\partial f}{\partial \mu} \right) v p^2 (1 - \mu^2) dp d\mu$$

Instability is quenched when gradients are flattened

# Ion-Neutral Damping



IN damping broadens resonance gaps

# Continuous CR Injection



Low CR Density

Right-handed modes are unable to isotropize CRs