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Astrophysical motivation
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Questions we want to address
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How can we tackle this problem?

» Understanding particle acceleration by plasma turbulence
requires solving a complex, nonlinear multiscale problem

» An analytic treatment that solves the full initial value
problem is practically unfeasible

= we must rely on numerical simulations of the underlying
model equations

» The possible approaches essentially are:
= test particle stmulations

e with turbulent fields represented by prescribed fields
o with turbulent fields obtained from MHD /fluid simulations

= hybrid simulations (kinetic ions and fluid electrons)

= fully-kinetic simulations
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Our numerical method

» Fully-kinetic treatment:

= we solve the coupled Vlasov-Maxwell system of
equations through the PIC method

Equations of motion:
particle pusher

F,—u —x;

~

~

Field interpolation:
force on particles

(E,B) - F;

)

Current deposition
to grid points
(x,u) =

—

Maxwell’s equations:
updating fields

j —(E,B)

~/

» PIC code TRISTAN-MP (Spitkovsky 2005)

» large-scale 2D (41002-65600? cells) and 3D (2460° cells)
simulations (= to cover both MHD and kinetic turbulence)
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Turbulence setup

» Decaying turbulence
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» Pair plasma in the magnetically-dominated regime
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with wg = nmec? +nkpT [5/(5 — 1)]
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Fully-developed turbulence state

2D simulation with o9 = 10, § Bymso/Bo = 1, L/deo = 1640
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Fully-developed turbulence state

3D simulation with o9 = 10, 0 Bymso/Bo = 1, L/deo = 820
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Turbulent cascade from MHD to kinetic scales
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» Computational domain is large enough to capture both the MHD
cascade at large scales and the kinetic cascade at small scales
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Turbulent cascade from MHD to kinetic scales
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» Computational domain is large enough to capture both the MHD
cascade at large scales and the kinetic cascade at small scales
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Self-consistent development of nonthermal particles

2D simulation with o¢g = 10, 0 Bymso/Bo = 1, L/deo = 1640
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> A significant fraction of particles (~ 16% for this simulation)
populate the nonthermal-tail at late times
(see also Zhdankin et al 2017/18, Néttild 2019)
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Different dimensionality, similar outcome?

3D simulation with oo = 10, 6 Bymso/Bo = 1, L/deo = 820
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Can we extrapolate our results to much larger systems?

AN/dIn(y-1)

» The results are converged to p = const and v, ~ e\/(B2)l/mc?.

2D simulations with o¢g = 10, 0 Bymso/Bo = 1
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(see also Zhdankin et al 2018)
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The power-law slope can become quite hard

2D simulations with oy = 40, L/d.o = 3280
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» For larger initial fluctuations é Bymso/Bo ad magnetization oy,
the power-law index decreases and can be p < 2.
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Let’s recap what we learned from PIC simulations

cant fraction (~ 15% — 30%) of

v increases linearly with the
of turbulence

wer law become harder for larger
%0 and higher initial fluctuations

» We still need to understand the particle acceleration
mechanism (i.e., the most interesting part starts now)
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An instructive (2nd) movie
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Particle Injection

(@ 10°¢
107 ¢

10'E

6
ct/l
» The vast majority of the particles belonging to the
nonthermail tail experience a sudden energy jump from

’ym02 ~ 'ythmc2 to 'ym62 > 'ythmc2
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Statistics of the current density at injection
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» Most of the high-energy particles reside at injection at
|J2pl > 2J;rms (current sheets)
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Most particle injection occurs at current sheets
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Reconnecting current sheets

» Collisionless tearing mode dispersion relation for a
relativistic pair plasma:
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» In a forming current sheet, the mode that becomes
nonlinear in the shortest time disrupts the sheet when
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> \g > d,, for outer-scale current sheets with & ~ [ >> d,,
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Reconnecting current sheets

Luca Comisso

A single reconnecting current sheet
can “process” the upstream plasma
up to a distance

&

VAN,

AR,j = BRr,j T ~ Br,jC

Thus, in one large-eddy turnover
time, the reconnecting current
sheets process a plasma volume

Ve =2, r;&l;~ BrL?

Br is the average reconnection rate.
For fast reconnection Sr = O(0.1)

Magnetic reconnection can process
a large volume of plasma in few
outer-scale eddy turnover times
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Let’s take a further look...
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Particle energization: single particle

Energization history [W) | (t) = qfot Ej (t')-v(t')dtl'] for a typical
high-energy particle
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» The initial v - E| energization contributes only up to a certain

energy. Then the v - E, energization complete the work.
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Particle energization: single particle

Same particle — slightly different plot
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> But...how much “typical” is this typical high-energy particle?
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Particle energization: particle statistics
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» The low Ay-range is prevailed by the energization via v - E

» v - FE,| energization dominates the overall budget if Ay > ggyino
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Particle energization: particle statistics
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> The expected Ay governed by Ej is
Ajinj ~ W) /me® ~ kom0, 09 > 1 (1)

» The length linj required to reach Avipj is linj = 51 /%’ythde,
R

which is always guaranteed for large enough systems, i.e. [ >> liyj.
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What if we artificially remove Ej?
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— self-consistent particles

— test particles with no E,
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» The normalization drops by 2 orders of magnitude (only ~ 0.2%
of the particles in the nonthermal tail)

> On the other hand, the slope p is similar, as the high-energy
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particles “forget” their initial conditions
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Particle energy diffusion
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» From the particles evolution ((Ay)?) = — (Y (t) = Y (t:))?
p n=1
» Diffusive behavior in energy space, ((A’y)Q x At (see also Wong
et al 19 for similar PIC results)
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Diffusion coefficient in energy space
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> The energy diffusion coefficient (in units of ¢/I) can be calculated

2
((A)7)
2At
> The power-law tail of the particle spectrum starts at v/v, 2 1

as D, = (see also Wong et al 19 for similar PIC results)
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Diffusion coefficient in energy space
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» The simulations are well fitted by D, ~ 0.1c <%) 2

» Note that for a stochastic process akin to the original Fermi

1
mechanism D, = §<'y‘2/ﬁ‘2/)%72 (e.g., Lemoine 2019)
mfp
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Two-stage acceleration process
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> Injection phase controlled by E gives —*= = iﬁR(SBrms
dt me

d(v)

> Acceleration controlled by D. gives T = 4KgtocO (;) ~y
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What happens to the particle distribution?

Sf(cosa, v)
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» The pitch-angle distribution develops distinguishing features at
low, intermediate, and high values of v
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The anisotropy ranges are magnetization dependent
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> v ~ (00/2)yino = particles v are strongly anti/aligned with B
> v~ 5(00/2)Vtno = distribution with minima at cosa = 1,0

> v > 5(00/2)ytho = particles v are mostly perpendicular to B
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Anisotropy of the 4-velocity distribution
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» The (domain-averaged) 4-velocity distribution is isotropic in the
plane 1 to By = B2, while for planes that contain B:

e core region elongated in the v, direction
e elongated in the direction 1 to By at high energies
e double cone region at intermediate energies
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Anisotropy of the 4-velocity distribution
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» The (domain-averaged) 4-velocity distribution is isotropic in the
plane 1 to By = BpZz, while for planes that contain By:

e core region elongated in the v, direction
e elongated in the direction 1 to By at high energies
e double cone region at intermediate energies
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Summary

(RELATVISTIC) EXTENMEN NONT HERMA L
PLASYIA TURBULeNCE PAKTICLE ENERGY specTrom
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FORNATION OF ACCELERATION VIA
RECONNECT ING STOCHASTIC SCATTERING

CURRENT SHEETS OFF TURBULENT FLUCTOAT(ORS
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