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Astrophysical motivation

Meyer et al 2010 Abdo et al 2010 Ackermann et al 2011
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Questions we want to address

I Is turbulence in magnetically-dominated plasmas an
efficient source of nonthermal particles?

I If so, how does the nonthermal spectrum depend on the
system parameters?

I Mechanisms of particle acceleration? Interplay with
magnetic reconnection?

The results discussed in this talk can be found in:
Comisso & Sironi, PRL 2018 ; Comisso & Sironi, ApJ 2019
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How can we tackle this problem?

I Understanding particle acceleration by plasma turbulence
requires solving a complex, nonlinear multiscale problem

I An analytic treatment that solves the full initial value
problem is practically unfeasible

⇒ we must rely on numerical simulations of the underlying
model equations

I The possible approaches essentially are:

⇒ test particle simulations

with turbulent fields represented by prescribed fields
with turbulent fields obtained from MHD/fluid simulations

⇒ hybrid simulations (kinetic ions and fluid electrons)

⇒ fully-kinetic simulations
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Our numerical method

I Fully-kinetic treatment:

⇒ we solve the coupled Vlasov-Maxwell system of
equations through the PIC method

I PIC code TRISTAN-MP (Spitkovsky 2005)

I large-scale 2D (41002-656002 cells) and 3D (24603 cells)
simulations (⇒ to cover both MHD and kinetic turbulence)
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Turbulence setup
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I Decaying turbulence

I mean magnetic field 〈B〉 = B0ẑ

I turbulence develops from
uncorrelated magnetic fluctuations
δBx and δBy in Fourier harmonics

I energy-carrying scale: l = 2π/kf

I Pair plasma in the magnetically-dominated regime

σ0 =
δB2

rms0

4πw0
� 1,

δBrms0

B0
∼ 1, θ =

kBT

mec2
∼ 1

with w0 = nmec
2 + nkBT [γ̂/(γ̂ − 1)]
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Fully-developed turbulence state

2D simulation with σ0 = 10, δBrms0/B0 = 1, L/de0 = 1640
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I Copious generation of current sheets and plasmoids
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Fully-developed turbulence state

3D simulation with σ0 = 10, δBrms0/B0 = 1, L/de0 = 820

I Copious generation of current sheets and flux ropes
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Fly-through Jz along the z-direction
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Turbulent cascade from MHD to kinetic scales
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I Computational domain is large enough to capture both the MHD
cascade at large scales and the kinetic cascade at small scales
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Turbulent cascade from MHD to kinetic scales
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I Computational domain is large enough to capture both the MHD
cascade at large scales and the kinetic cascade at small scales
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Self-consistent development of nonthermal particles

2D simulation with σ0 = 10, δBrms0/B0 = 1, L/de0 = 1640

10
-1

10
0

10
1

10
2

10
3

γ -1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

dN
/d

ln
(γ

 -
1

)

p=2.8

ct/l
0.0 4.0 8.0 12.0

10
0

10
1

10
2

σ0

1
 

2
 

3
 

4

p

(δBrms0/B0)
2= 1

(δBrms0/B0)
2= 4

I A significant fraction of particles (∼ 16% for this simulation)
populate the nonthermal-tail at late times

(see also Zhdankin et al 2017/18, Nättilä 2019)
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Different dimensionality, similar outcome?

3D simulation with σ0 = 10, δBrms0/B0 = 1, L/de0 = 820
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Can we extrapolate our results to much larger systems?

2D simulations with σ0 = 10, δBrms0/B0 = 1
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I The results are converged to p = const and γc ∼ e
√
〈B2〉l/mc2.

(see also Zhdankin et al 2018)
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The power-law slope can become quite hard

2D simulations with σ0 = 40, L/de0 = 3280
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I For larger initial fluctuations δBrms0/B0 ad magnetization σ0,
the power-law index decreases and can be p < 2.
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Let’s recap what we learned from PIC simulations

I The generation of a significant fraction (∼ 15%− 30%) of
nonthermal particles is a generic by-product of
magnetically-dominated plasma turbulence

I The cutoff Lorentz factor γc increases linearly with the
energy containing scale of turbulence

I The slope p of the power law become harder for larger
initial magnetization σ0 and higher initial fluctuations
δBrms0/B0

but...

I We still need to understand the particle acceleration
mechanism (i.e., the most interesting part starts now)

Luca Comisso KITP AstroPlasma19



An instructive (1st) movie
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An instructive (2nd) movie
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Particle Injection
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I The vast majority of the particles belonging to the
nonthermail tail experience a sudden energy jump from

γmc2 ∼ γthmc2 to γmc2 � γthmc
2
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Statistics of the current density at injection
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I Most of the high-energy particles reside at injection at
|Jz,p| ≥ 2 Jz,rms (current sheets)
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Most particle injection occurs at current sheets
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Reconnecting current sheets

I Collisionless tearing mode dispersion relation for a
relativistic pair plasma:

�

γ

��
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γ1/2τ
1/2
H

(
λ

dw

)3/2Γ [(Υ− 1)/4]

Γ [(Υ + 5)/4]
= − 8

π
∆′

Υ = γτH
λ
dw

, τH = 1
kξvAλ

, dw =
√

mc2

4πne2
w

I In a forming current sheet, the mode that becomes
nonlinear in the shortest time disrupts the sheet when

λd ∼ d2/3w ξ1/3

[
ln

(
1

2ε̂1/2

(
dw
ξ

) 4−α
6

)]−1/3

I λd � dw for outer-scale current sheets with ξ ∼ l ≫ dw
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Reconnecting current sheets

I A single reconnecting current sheet
can “process” the upstream plasma
up to a distance

λR,j = βR,j c τnl,j ∼ βR,j c
ξj

vAλ,j

I Thus, in one large-eddy turnover
time, the reconnecting current
sheets process a plasma volume

VR =
∑
j λR,j ξj l‖,j ∼ βRL3

I βR is the average reconnection rate.
For fast reconnection βR = O(0.1)

I Magnetic reconnection can process
a large volume of plasma in few
outer-scale eddy turnover times
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Let’s take a further look...
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Particle energization: single particle

Energization history [W‖,⊥(t) = q
∫ t
0
E‖,⊥(t′) · v(t′) dt′] for a typical

high-energy particle
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I The initial v ·E‖ energization contributes only up to a certain
energy. Then the v ·E⊥ energization complete the work.
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Particle energization: single particle

Same particle → slightly different plot
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I But...how much “typical” is this typical high-energy particle?
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Particle energization: particle statistics
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I The low ∆γ-range is prevailed by the energization via v ·E‖
I v ·E⊥ energization dominates the overall budget if ∆γ � σ0γth0
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Particle energization: particle statistics
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I The expected ∆γ governed by E‖ is

∆γinj ∼W‖/mc2 ∼ κσ0γth0 , σ0 � 1 (1)

I The length linj required to reach ∆γinj is linj =
κ

βR

√
σ

w
γthde,

which is always guaranteed for large enough systems, i.e. l� linj.
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What if we artificially remove E‖?
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I The normalization drops by 2 orders of magnitude (only ∼ 0.2%
of the particles in the nonthermal tail)

I On the other hand, the slope p is similar, as the high-energy
particles “forget” their initial conditions
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Particle energy diffusion
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I Diffusive behavior in energy space, 〈(∆γ)
2〉 ∝ ∆t (see also Wong

et al 19 for similar PIC results)
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Diffusion coefficient in energy space
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I The energy diffusion coefficient (in units of c/l) can be calculated

as Dγ =
〈(∆γ)

2〉
2∆t

(see also Wong et al 19 for similar PIC results)

I The power-law tail of the particle spectrum starts at γ/γσ & 1
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Diffusion coefficient in energy space
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Two-stage acceleration process
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What happens to the particle distribution?
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I The pitch-angle distribution develops distinguishing features at
low, intermediate, and high values of γ
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The anisotropy ranges are magnetization dependent
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I γ ∼ (σ0/2)γth0 ⇒ particles v are strongly anti/aligned with B

I γ ∼ 5(σ0/2)γth0 ⇒ distribution with minima at cosα = ±1, 0

I γ � 5(σ0/2)γth0 ⇒ particles v are mostly perpendicular to B
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Anisotropy of the 4-velocity distribution
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I The (domain-averaged) 4-velocity distribution is isotropic in the
plane ⊥ to B0 = B0ẑ, while for planes that contain B0:

core region elongated in the γβz direction
elongated in the direction ⊥ to B0 at high energies
double cone region at intermediate energies
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Anisotropy of the 4-velocity distribution
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double cone region at intermediate energies
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Summary
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