Large-scale 3D Hall-MHD reconnection

Andrey Beresnyak

Plasma Physics Division Naval Research Laboratory, Washington, DC

Magnetic Reconnection

Solar X-ray flares

X-class flare: $6 \times 10^{32} erg \approx 10^{10} MT$ of energy released

Magnetic fields anchored in the Sun move around and release energy

CME

micro-jet

Reconnection in astrophysics

(not directly observed)

Reconnection in MHD

Lundquist number, dimensionless conductivity: $S = v_A L/\eta$

Ideal fluid; reconnection and dissipation rates are arbitrary

Sweet-Parker (1957)

Resistive/viscous, reconnection and dissipation rates go to zero as S goes to infinity $(1/S^{1/2})$

Lazarian-Vishniac (1999)

Rate does not depend on S, depends on M_A

How small the resistivity is?

Lundquist number: $S = v_A L/\eta \approx 10^{14}$ in the solar corona

Sweet-Parker:
$$au_{\mathrm{SP}} = \sqrt{S} \frac{L}{v_A} = 10^7 \frac{L}{v_A}$$

Observed:
$$au pprox 10 - 100 rac{L}{v_A}$$

Plasma and MHD simulations do not agree.

reconnection rate = 0.015 in MHD, 0.1 in Hall-MHD and plasma

Key questions:

- 1. Is reconnection fast, e.g. the rate is independent of scale separation between large scales and micro-scales? For $S=\infty$ Sweet-Parker model gives zero rate.
- 2. Is reconnection determined by plasma effects, e.g. $0.1V_A$ in e-p plasmas? That is plasma effects in the current layer makes it fast?
- 3. Do plasma effects propagates to larger scages? Rate on the Sun is 0.1-0.01 and the layer width $\sim 10^4 d_i$
- 4. Do outflows collide and produce turbulence? Is this turbulence scale-local?

Simplest turbulence driven by opposite B fields

Fully turbulent current layer in 3D: initial conditions are erased

Hall-MHD equations

$$\partial_t \mathbf{v} = \hat{S}(-\omega \times \mathbf{v} + \mathbf{j} \times \mathbf{b}) + \nu_n \nabla^4 \mathbf{v},$$

$$\partial_t \mathbf{b} = \nabla \times ((\mathbf{v} - d_i \mathbf{j}) \times \mathbf{b}) + \nu_n \nabla^4 \mathbf{b},$$

$$\partial_t \phi_i + (\mathbf{v} \cdot \nabla) \phi_i = \nu_n \nabla^4 \phi_i,$$

$$\partial_t \phi_e + ((\mathbf{v} - d_i \mathbf{j}) \cdot \nabla) \phi_e = \nu_n \nabla^4 \phi_e,$$

1CARU5 is a pseudospectral C++ code, solves:

Hydrodynamic, MHD, Reduced MHD, Hall MHD and Electron MHD goes at ~1μs/step/cell. Reached 0.3 Pflops on BG/Q Mira.

https://sites.google.com/site/andreyberesnyak/1caru5

Examples of MHD simulations:

Two 4096³ simulations, 14 dynamical times

Spectra, SFs and Python scripts are public:

https://sites.google.com/site/andreyberesnyak/simulations/big3

DOE INCITE 52 million hours (2017)

Hall-MHD 2304x4608² and 1536x3072² making ~10⁶ steps

Total steps*nodes=3.3e16 (petascale?)

Going to box sizes of $\sim 500d$ i

Mixing in ion and electron fluid

The spectra of kinetic (red) and magnetic (green) energies

Two cases with different d_i

 d_i =0.08/2 π of box size

 d_i =0.13/2 π of box size

Spacial dimension of the mixing surface measured by counting fraction of points within specified radius

We measure reconnection rate as the mixing rate of electron fluid

Reconnection rate as a function of layer width

ion and electron mixing rates converge

Summary

- Spontaneous turbulent reconnection is a fast reconnection with a certain reconnection rate and dissipation rate per unit area. What makes it fast is a turbulence locality separation between small and large-scale physics
- In plasmas the current layer is possibly also turbulent. So, what is the cause of fast reconnection turbulence or small-scale effects?
- The mixing layer is bi-fractal different physics on small and large scales electron turbulence on small scale and MHD turbulence on large scale
- Hall-MHD results which reached current layer width of $25d_i$ show that the rate decreases from the standard value of 0.1. What is the rate at L= 10^4d_i ? We don't know for sure, theory (turbulence locality) suggests it will approach MHD value of 0.015 and numerics hints it will happen at w= $200d_i$.
- Numerics suggests that ion and electron rates converge good news for the single-fluid MHD models.