

Nonthermal Particle Acceleration in Magnetic Reconnection

• **Goals:** Understand the physical mechanisms of nonthermal particle acceleration (*NTPA*) and characterize it quantitatively across a broad parameter space:

System parameters \rightarrow power-law index p and cutoff γ_c

Provide a usable prescription for the astro and space communities for NTPA parameters (p, γ_c) but also reconnection rate, electron/ion heating ratio, etc.

- **Tools:** PIC sims (+ some analytical theory)
- Multi-dimensional Parameter Space (flavors of collisionless reconnection):

Dimensionality, L _z /L _x	2D or 3D
Plasma Composition	pair, electron-ion, mixed
Boundary Conditions	periodic, open, receding
Guide field, B _g /B ₀	anti-parallel (B _g =0) or guide-field
Relativity (σ _h)	ultra-relativistic, semirelaltivistic, or non-relativistic
Extra Physics:	Radiation reaction, pair creation, etc.

OUTLINE:

Numerical (PIC) Studies of Nonthermal Particle Acceleration

in Collisionless Relativistic Magnetic Reconnection

- Ultra-relativistic pair plasma in 2D (with and without radiaction)
- 2. Semirelativistic electron-ion plasma in 2D
- 3. Ultra-relativistic pair plasma in 3D
- 4. Trans-relativistic pair plasma in 3D

Current Frontier!

Main goal: chart out the resulting observable particle acceleration and radiation parameters (spectral indices, cutoffs) as functions of system's input parameters: upstream magnetization σ , size L, guide magnetic field $B_{\rm g}$.

Magnetization σ parameter

- Physical parameters of ambient/upstream background plasma:
 - Particle density n_b ; Temperature $\theta_e = T/m_e c^2$,
 - Reconnecting magnetic field B_0 ; Guide magnetic field B_{gz}
- Important dimensionless parameter (upstream) magnetization σ :
 - "Cold" sigma: $\sigma = B_0^2/(4\pi n_b mc^2)$ (sets the scale for available magnetic energy per particle);
 - "Hot" sigma: $\sigma_h = B_0^2/(4\pi h)$, where $h = n_b < \gamma > mc^2 + p_b = \text{relativistic enthalpy density}$ (including rest-mass) --- governs Alfven velocity $V_A = c\beta_A = c \frac{\sqrt{\sigma_h}}{\sqrt{1+\sigma_h}}$ and thus how relativistic plasma motions are.
 - Relativistically-cold plasma ($T << m_e c^2$): $\sigma_h \approx \sigma$.
 - Ultrarelativistically-hot plasma ($T >> m_e c^2$): $h \approx 4 n_b \theta_e m c^2 \rightarrow \sigma_h \approx \sigma/4\theta_e = B_0^2/(16\pi n_b \theta_e m c^2) = 1/(2\beta)$

2D Relativistic Pair Reconnection: Nonthermal Particle Acceleration (2014-2019 view)

Important pioneering early work by Zenitani & Hoshino (2001, 2005, 2007-2008), also by Jaroschek+'04, Lyubarsky & Liverts '08, Bessho & Bhattacharjee'07-08, Liu+'11, Cerutti+'13-14, etc...

Recent (~2014) 2D PIC studies: relativistic reconnection in pair plasmas drives robust nonthermal particle acceleration!

- Sironi et al. Columbia/Princeton
- Guo et al. Los Alamos
- Werner et al. Colorado

How do power-law characteristics – power-law index α (aka p), high-energy cutoff γ_c – depend on system parameters?

Power-law index:

2D PIC studies with cold upstream plasma, so $\sigma_h \approx \sigma = B_0^2/(4\pi n_b mc^2)$

$$\sigma = B_0^2/(4\pi \text{ nmc}^2)$$

$$B_g = 0$$

$$f(\gamma) \sim \gamma^{-\alpha}$$

- $\alpha = \alpha(\sigma_h, L)$
- α converges to a finite value $\alpha_*(\sigma)$ as $L \to \infty$.
- $\alpha_*(\sigma)$ decreases with σ but approaches a finite asymptotic value $\alpha \approx 1-1.2$ as $\sigma_h \rightarrow \infty$.

(consistent with other studies: Zenitani & Hoshino, Lyubarsky & Liverts 2008, ...)

High-Energy Power-Law Cutoff

(Werner, Uzdensky, Cerutti, Nalewajko, Begelman 2016)

$$f(\gamma) = \frac{dN}{d\gamma} \propto \gamma^{-\alpha} \exp(-\gamma/\gamma_{c1} - \gamma^2/\gamma_{c2}^2)$$

- $\exp \left[-(\gamma/\gamma_{c2})^2 \right]; \ \gamma_{c2} \sim 0.1 L/\rho_0$
- independent of σ .

Total voltage drop: $\varepsilon_{\text{max}}^{\sim}$ e $E_{\text{rec}} L \sim 0.1$ e $B_0 L$ ("extreme", or Hillas, acceleration)

- exp $(-\gamma/\gamma_{c1})$; $\gamma_{c1} \sim 4\sigma \sim 10 < \gamma >$
- independent of *L*;

Confirmed by Kagan et al.'18

 $\alpha*(\sigma_h)^{2.0}$

Large-system regime:

10²

$$(\gamma_{c1} < \gamma_{c2})$$
:

10¹

$$L/\rho_0 > 40 \sigma$$

Why is there a $\gamma_c \approx 4\sigma$ cutoff?

Zenitani & Hoshino 2001

$$\rho_0 = m_e c^2/e B_0$$

$$\sigma = B_0^2/(4\pi \text{ nmc}^2)$$

(Werner et al. 2016)

- Cutoff comes from small laminar *elementary interplasmoid layers* at the bottom of the plasmoid hierarchy (marginally stable to tearing).
- Particles are accelerated in these layers but then become **trapped inside plasmoids**.
 - Cutoff: $\gamma_c = e E_{rec} l / m_e c^2 \approx 0.1 e B_0 l / m_e c^2 = 0.1 l / \rho_0$
 - Layers are marginally stable to tearing $\rightarrow l \sim 100 \, \delta$
 - Layer thickness: $\delta \simeq \rho(\langle \gamma \rangle) = \langle \gamma \rangle \rho_0 \simeq (\sigma/3) \rho_0$.
- Thus, $l/\rho_0 \simeq 100 \, \delta/\rho_0 \approx 30 \, \sigma \implies \gamma_c \simeq 3 \, \sigma$.

Further particle acceleration is possible, e.g., in:

- 2nd-stage reconnection in plasmoid mergers (but this occurs with lower σ and smaller L).
- slow adiabatic compression inside plasmoids (Petropolou & Sironi '18)

High-Energy Power-Law Cutoff

Petropoulou & Sironi 2018

Cutoff γ_c in large systems:

- first rises quickly to $\gamma_c \sim 4\sigma$;
- then slows down to $\gamma_c \sim t^{1/2}$, probably due to gradual compression of plasmoid cores + conservation of magnetic moment.
- Still remains below "extreme acceleration".

Radiative Magnetic Recoonnection with ICy Cooling

(Werner, Philippov, & Uzdensky 2019)

2D radiative-PIC sims of rel. reconnection with external inverse-Compton (ICy) radiaction.

Relevant to accreting BH coronae.

 $(\sigma_h = 100, B_{gz} = B_0/4)$

Weak cooling (large γ_{rad}/σ): usual hard power law

Strong cooling (small γ_{rad}/σ): variable steep power law

Intermediate (medium γ_{rad}/σ): both power laws

Inverse-Compton radiaction limit:

(Uzdensky'16)
$$\gamma_{\rm rad}^{\rm IC} = \left[\frac{3}{4} \frac{eE}{\sigma_T U_{\rm rad}}\right]^{1/2}$$

(See also Sironi & Beloborodov 2019)

Also: radiative QED-PIC relativistic reconnection with pair creation

(Schoeffler et al. 2019, Hakobyan et al. 2019)

Semi-Relativistic and Relativistic Reconnection in Electron-Ion Plasmas

M87 - EHT

Semi-Relativistic and Relativistic Reconnection in Electron-Ion Plasmas

Werner et al. (arXiv:1612.04493) - MNRAS 473, 4840 (2018)

[Black hole accretion flows, accretion disk coronae, jets]

- PIC studies of *electron-ion* relativistic reconnection began only recently (Werner et al. 2013-2018, Melzani et al. '14, Guo et al. '15, Sironi et al. '15-18).
- When both electrons and ions are ultra-relativistic, they behave the same → reconnection is similar to pair-plasma case.
- Semi-relativistic regime: ultra-relativistic electrons but non-relativistic ions.

Relativistic e-i reconnection: Key Results I: Energetics

Werner et al. MNRAS 2018 (arXiv:1612.04493)

Reconnection rate: $v_{in}/c = E/B_0$

Reconnection rate normalized to V_A is the usual 0.1.

Energy partitioning btw electrons and ions

In semirelativistic B_g = 0 case ions gain 3 times more energy than electrons.

Later extended to include β -dependence by Rowan et al...

Relativistic e-i reconnection: Key Results II: NTPA

Werner et al. MNRAS 2018 (arXiv:1612.04493)

$$B_g = 0$$

Nonthermal Particle Acceleration:

- electrons:
- -ions?

Electron power-law index p and cutoff γ_c :

$$p_e = 1.9 + 0.7 \, \sigma_h^{-1/2}$$

Werner et al. 2016-2018

Concrete simple prescription that can be used for BH coronae spectral modelling.

Later extended to include β -dependence by Ball et al'18

Guide Field Effects on Semirelativistic Electro-Ion Reconnection

Electron-ion energy partition vs. guide field

Electron energy fraction rises with B_g .

(see also Rowan et al.'19)

Particle spectra

Electron spectra show modest change until $B_{gz}/B_0>2$. But dependence is not monotonic: $B_{gz}=B_0$ shows stronger acceleration than smaller or larger B_{qz} .

(see also Dahlin et al for non-relativistic reconnection)

9/10/2019

10⁻¹

ions

ions, $\sigma_i = 0.1$, $10.7 L_x/c$

D. Uzdensky

Can we understand the $p_e = 1.9 + 0.7\sigma_h^{-1/2}$ scaling? 2D self-similar hierarchical plasmoid chain

Large system, plasmoid-mediated reconnection: hierarchical plasmoid chain.

(Shibata & Tanuma '01, Bhattacharjee et al. 2009, Uzdensky et al. 2010, Loureiro et al. 2012)

Shibata & Tanuma 2001 λn-1 δ_{n-1} $\lambda_{\mathbf{n}}$ δ_n λ_{n+1} δ_{n+1}

This picture applies to various plasma regimes:

Resistive MHD:

e.g., Bhattacharjee et al. '09 Loureiro et al. '12, etc.

Relativistic collisionless pair plasma (PIC):

e.g., Cerutti et al. '13, Sironi & Spitkovsky'14, Guo et al. '14, Werner '16-17, Sironi et al. '16

Larmor circle of a given particle

Self-similar chain: looks the same on each scale!

D. Uzdensky 9/10/2019 17

Basic Picture Uzdensky, in prep. (2019)

• Focus on *energetic relativistic* particles:

Energy
$$\varepsilon = \gamma m_e c^2$$
 with $\gamma \gg <\gamma>$;

Typical Larmor radius:
$$\rho_L = \gamma m_e c^2 / eB_0 = \gamma \rho_0$$
 $(\rho_0 = m_e c^2 / eB_0)$

$$\gamma \gg \langle \gamma \rangle \rightarrow \rho_L(\gamma) > \delta$$
 (but still $\ll L$)

- Such particles are **blind** to EM structures (e.g., small plasmoids) of size $w \ll \rho_L(\gamma)$.
- Primary acceleration of unmagnetized particles by main reconnection electric field $E_{\rm rec} \simeq \epsilon V_{\rm A} B_0/c = \epsilon \beta_{\rm A} B_0$ ($\epsilon \sim 0.1$).
- This rapid regular acceleration stops when particle gets magnetized by **reconnected** magnetic field B_v
- On any scale, B_v is bimodal:

$$B_y \sim B_1 \sim \epsilon B_0 \sim 0.1 B_0$$
 in inter-plasmoid current layers;

 $B_v \sim B_0$ in circularized plasmoids.

We will treat magnetization in B_1 and trapping in plasmoids separately.

Kinetic Equation Uzdensky, in prep. (2019)

$$\partial_t f(\gamma,t) = -\partial_\gamma (\dot{\gamma}_{
m acc} f) - rac{f(\gamma)}{ au_{
m magn}(\gamma)} - rac{f(\gamma)}{ au_{
m tr}(\gamma)}$$

3 Main Ingredients:

- Acceleration by reconnection electric field:
 - $\dot{\gamma}_{
 m acc} = e E_{
 m rec} c / m_e c^2 = \epsilon \beta_A \Omega_0$ -- independent of γ !
- Magnetization by reconnected B_1 -field (\rightarrow power-law).
- Trapping by large $[w > \rho_1(\gamma)]$ plasmoids (\rightarrow cutoff): controlled by plasmoid distribution.

Steady-State Kinetic Equation:

- Since $\dot{\gamma}_{\rm acc} = eE_{\rm rec}c/m_ec^2 = \epsilon\beta_A\Omega_0$ is independent of γ :
- $f(\gamma) = C \exp\left(-\frac{1}{\dot{\gamma}_{acc}} \int \frac{\mathrm{d}\gamma}{\tau(\gamma)}\right)$

where τ is escape time from acceleration zone: $\frac{1}{\tau(\gamma)} = \frac{1}{\tau_{magn}(\gamma)} + \frac{1}{\tau_{magn}(\gamma)}$

$$V_A = c\beta_A = c\frac{\sqrt{\sigma_h}}{\sqrt{1+\sigma_h}}$$

- Relativistic limit: $\sigma_h \gg 1 \rightarrow V_A \simeq c$
- Non-rel. limit: $\sigma_h \ll 1 \rightarrow$

$$\beta_A = V_A/c \simeq \sigma_h^{1/2} \ll 1.$$

Thus, reconnection may or may not be relativistic, but particles are relativistic.

$$\dot{\gamma}_{
m acc} \, rac{{
m d} f}{{
m d} \gamma} = -rac{f(\gamma)}{ au(\gamma)} \, ,$$

$$\frac{1}{\tau(\gamma)} = \frac{1}{\tau_{\text{magn}}(\gamma)} + \frac{1}{\tau_{\text{trap}}(\gamma)}$$

Magnetization by Reconnected Field

- Energetic particle passes right through small plasmoids.
- Distance a particle travels before it is magnetized by $B_1 = \varepsilon B_0$:

$$l_{\text{mag}}(\gamma) \sim \rho_{L}(\gamma, B_{1}) = (B_{0}/B_{1}) \rho_{L}(\gamma, B_{0}) = \varepsilon^{-1} \rho_{0} \gamma$$

- Magnetization time-scale: $\tau_{\rm mag}(\gamma) \sim \ell_{\rm mag}/c \sim \epsilon^{-1} \gamma \Omega_0^{-1}$
- $au_{\rm mag} \sim \gamma \Rightarrow {\rm balance\ of\ magnetization\ and\ acceleration\ by\ } E_{\rm rec}$: $\dot{\gamma}_{\rm acc} = eE_{\rm rec}c/m_ec^2 = \epsilon\beta_A\Omega_0$

gives a power-law solution: $f(v) \sim v^{-p}$

• power-law index:
$$p=p(\sigma_h)\sim rac{1}{eta_A}=\sqrt{rac{1+\sigma_h}{\sigma_h}}$$

- ultra-rel. $(\sigma_h \gg 1)$: $p \rightarrow const \approx 1$ (cf. Zenitani & Hoshino 2001)
- non-rel. case ($\sigma_h \ll 1$): $p \sim \sigma_h^{-1/2}$ (c.f., Werner et al. 2018)

3D Pair-Plasma Reconnection

• Most PIC reconnection sims are 2D, but real world is **3D**.

Should we be concerned?

- Reason for concern (Zenitani & Hoshino, 2007-2008):
 Relativistic Drift-Kink Instability (RDKI):
 - develops rapidly along the layer in ignorable z-direction, absent in 2D;
 - corrugates the layer and dramatically changes its structure;
 - suppressed by a strong guide magnetic field B_z.

Reconnecting current sheets in large systems ($L > 50-100 \, \rho_L$) are unstable to **secondary instabilities** (tearing and kink); reconnection is highly dynamic.

(Werner & Uzdensky ApJ Lett., 2017)

Direct 2D/3D comparison for **ultra-relativistic** pair reconnection, varying:

- Layer's aspect ratio L_z/L_x proxy for 3D;
- Guide magnetic field B_{gz}/B_0 .

$$T_{\rm b} >> m_{\rm e}c^2$$

$$\sigma_{\rm h} = {\rm B_0}^2/(4\pi \ {\rm n} \ \theta_{\rm e} {\rm mc}^2) = 25$$

Modest size: L_x up to 64 $\sigma \rho_0$.

9/10/2019

(Werner & Uzdensky 2017)

Particle spectra for different L_x : box-size dependence

$$B_z = 0$$

$$L_z/L_x = 1$$

Conclusion: Power-law index converges with L_x

Particle spectra for different L_z/L_x: no guide field

Conclusion: Energetics and NTPA in 2D and 3D are similar in ultra-relativistic pair reconnection.

Does this conclusion depend on guide field?

Conclusion: Nonthermal particle acceleration in relativistic pair-plasma reconnection is similar in 2D and 3D for any given guide field.

<u>Implication:</u> 2D simulations are sufficient, adequate for studies of NTPA in relativistic pair reconnection. (?)

D. Uzdensky 9/10/2019 26

Particle spectra for varying B_{gz}/B_0 :

<u>Conclusion:</u> Strong guide field $B_{\rm gz}$ slows down reconnection, reduces dissipated energy budget, inhibits NTPA, resists compression.

Proposal: Guide magnetic field's enthalpy, $B_{\rm gz}^2/4\pi$, modifies appropriate $\sigma_{\rm h}$:

$$\sigma_{h,eff} = B_0^2/(B_{gz}^2 + 4\pi h)$$

3D Reconnection in Transrelativistic Pair Plasma

(Werner & Uzdensky 2019, in prep.)

9/10/2019

$$-\sigma = B^2/(4\pi (2n_e) m_e c^2) = 10^4$$

$$-\sigma_h = \sigma/(2\theta_b)$$

- $B_{gz} = 0$ (unless otherwise noted)

 $\sigma_h = 1$

WORK IN PROGRESS!!

Motivation: easiest case, allows exploring most fundamental aspects for largest system sizes!

(Quasi-) 2D

Moderate σ_h =1: nearly 2D vs. 3D

(Werner & Uzdensky 2019, in prep.)

Electron current density

(Quasi-) 2D

$$L_z = L_x/16$$

3D
$$L_1 = L_2$$

2D/3D: energetics evolution during main reconnection phase

 $B_z = 0$ $\sigma_h = 1$

(Quasi-) 2D

3D

"unrBt" is transverse (Bx-By) magnetic energy in unreconnected region.
"recBt" is total transverse magnetic energy minus "unrBt"

D. Uzdensky

9/10/2019

Key findings: main reconnection phase:

- Reconnection layer morphology and energy dissipation are very different in 2D and 3D.
- Reconnection is slower in 3D;
- 2D: substantial magnetic energy remains in reconnected regions (in plasmoids);
- 3D: reconnected regions are much less magnetized! Almost all upstream energy goes to plasma.

Unreconnected magnetic flux

$$B_z = 0$$

$$\sigma_h = 1$$

$$L_x = 512 \sigma \rho_0$$

Particle spectra for different L_z/L_x :

- Nonthermal spectra in trans-relativistic (σ_h =1) pair-plasma reconnection similar in 2D and 3D
- NTPA is somewhat enhanced in 3D due to escape of particles from reconnected regions (plasmoids) enabling further acceleration. (c.f., Dahlin et al., Guo, Li et al., for non-rel. case)

3D Long-Term Evolution (50 Lx/c): Energy vs time vs Lz

B_y represents magnetic energy (reconnected flux) trapped in plasmoids.

SUMMARY

- Relativistic magnetic reconnection is a powerful particle accelerator!
- Reconnection-driven NTPA is amenable to PIC simulation studies.
- Significant and rapid *progress on 2D relativistic reconnection* in recent years, across a wide range of regimes.
- Reconnection in *3D* is the current frontier: more challenging numerically and difficult to analyze, but progress is now being made.