

KITP, Santa Barbara, 2019-09-12

ero

Outline

- Introduction to the Vlasiator code
 - Science being done using Vlasiator

- Ion acceleration at the bow shock
 - Observations by MMS
 - As seen in Vlasiator

Magnetospheric Multiscale (MMS)

VL/SI/J@R

Ions are represented as a distribution function and follows Vlasov's eq.

$$\frac{\partial}{\partial t} f(\mathbf{r}, \mathbf{v}, t) + \mathbf{v} \cdot \nabla_{r} f(\mathbf{r}, \mathbf{v}, t) + \mathbf{a} \cdot \nabla_{v} f(\mathbf{r}, \mathbf{v}, t) = 0$$

- Maxwell's equations
- Electrons are treated as a cold, neutralizing fluid
- The electric field is closed by Ohm's law

$$\mathbf{E} = -\mathbf{V}_i \times \mathbf{B} + \frac{1}{en_i} \mathbf{j} \times \mathbf{B}$$

2D global simulation

 $\Delta x = 220 \text{ km}$

 $\Delta v = 30 \text{ km/s}$

Ongoing science with Vlasiator

Nightside auroral proton precipitation in Vlasiator

At locations \mathbf{r}_0 where the full VDFs are saved, the **precipitating proton differential flux** can be evaluated as a function of energy $E = m_p v^2/2$ by

- Integral energy flux of precipitation correlates well with parallel plasma velocity (available everywhere contrary to VDFs)
- •Parallel velocity bursts cannot always be traced back to current sheet, suggesting that the transition region can regulate precipitation bursts

Accepted paper: Grandin et al. (2019), Hybrid-Vlasov modelling of nightside auroral proton precipitation during southward interplanetary magnetic field conditions, *Annales Geophysicae*, https://doi.org/10.5194/angeo-2019-59.

Dayside reconnection in 2.9D

When extended into the 3rd dimension, the reconnection line curves and becomes unsteady

Bow shock structure

<u>Hypothesis</u>: A good metric for where the bow shock is will *minimize the path length* of the contour delineating the upstream and the downstream.

Examples of quasi-parallel shock contour with different required compression ratios np/np,sw

Statistically averaged path lengths minimize!

(Battarbee et al, in prep.)

Adding electrons to Vlasiator

- Goal: understand the evolution of the electron distribution functions with the Vlasov simulation
- Simulations can be done both globally and locally
- Challenges: resolve small spatial-temporal scales and capture high velocity regions of VDF

(Brito et al., in prep.)

3D simulation of the magnetosphere and solar wind

Southward IMF

Adaptive mesh refinement in 4 levels

Smallest resolution: 2250 km

Collisionless shock waves

Supernova remnant shock

NASA/CXC/SAO

Planetary bow shocks

11

NASA

Earth's bow shock

- Shocks can be very efficient ion accelerators, e.g.
 galactic cosmic ray
- The Earth's bow shock is the best collisionless shock laboratory for in situ studies
- But the bow shock is relatively weak, small, and short lived
- Goal: compare ion acceleration efficiency with MMS and Vlasiator to SNR shock simulations by (Caprioli & Spitkovsky, 2014, ApJ)

Bow shock observations

- Selected 136 bow shock crossings by MMS
- Shock parameters determined by another spacecraft far upstream
- Goal is to study ion distributions measured just downstream of the shock

Bow shock observations

80

Example MMS shock crossings

All downstream ion distributions

Acceleration efficiency

Defined as:
$$\frac{\text{Energy density above threshold}}{\text{Total energy density}} = \frac{U_E > E_{thr}}{U_0}$$

Acceleration efficiency

Defined as:
$$\frac{\text{Energy density above threshold}}{\text{Total energy density}} = \frac{U_E > E_{thr}}{U_0}$$

Acceleration efficiency

Defined as:
$$\frac{\text{Energy density above threshold}}{\text{Total energy density}} = \frac{U_E > E_{this}}{U_0}$$

Results

- Shock angle and Mach number are important for ion acceleration
- The acceleration efficiency at the bow shock is similar to simulations of larger shocks

Mach number or spacecraft position?

Ordered after fast magnetosonic Mach number

Ordered angle to Sun-Earth line

Shock age

- A field line connects to the bow shock at $\theta_{Bn}=90^\circ$ and then moves across the shock
- The position on the shock corresponds to the age of the shock

(Caprioli & Spitkovsky, 2014, ApJ)

Ion acceleration and shock age

The bow shock seen from the Sun

Shock age

- In 3D, there is no correlation between spacecraft position and age of the shock
- The age of the shock does not seem to impact acceleration efficiency

Now to Vlasiator

- Similar to MMS observations
 - Somewhat lower acceleration efficiency

 Again, no clear dependence on shock age

Summary

- The quasi-parallel bow shock is much more efficient at accelerating ions
 - This can qualitatively be replicated in Vlasiator
- Up to 5-10% of the energy can go to energetic ions
 - Quantitative match with simulations of SNR shocks
- Higher Mach number leads to more acceleration
- The time a field line has been connected to the bow shock is not important for ion acceleration
 - Limited size more important?

JOB OPENINGS: Postdoctoral Fellow Positions at the University of Helsinki, Space Physics Group, Finland

Additional slides

SLAMS

Local normal determination

Additional slides

Additional slides

Spectral slopes

 $f \sim \!\! E^q$ Only for $\theta_{Bn} < 45^\circ$

Preliminary Vlasiator results

Vlasiator is largely able to replicate the observed ion distribution functions

Sparse velocity grid

Not all veclocity space is represented in the memory

