Fermions, fermions, fermions!

Jan Zaanen

THEORETICAL PHYSICS

A black hole full of answers

Jan Zaanen

A facet of string theory, the currently favoured route to a 'theory of everything', might help to explain some properties of exotic matter phases — such as some peculiarities of high-temperature superconductors.

NATURE|Vol 448|30 August 2007

Plan

Koenraad: AdS/CFT and the emergent Fermi liquid

- 1. Why condensed matter needs AdS/CFT: the Fermion signs.
- 2. Geometrizing the fermion signs: the Ceperley path integral and the conformal Feynmannian backflow state.

The quantum in the kitchen: Landau's miracle

Fermi surface of copper

Electrons are waves

Pauli exclusion principle: every state occupied by one electron

Unreasonable: electrons strongly interact!!

Landau's Fermi-liquid: the highly collective low energy quantum excitations are like electrons that do not interact.

'Shankar/Polchinski' functional renormalization group

UV: weakly interacting Fermi gas

Integrate momentum shells: functions of running coupling constants

All interactions (except marginal Hartree) irrelevant => Scaling limit might be perfectly ideal Fermi-gas

The end of weak coupling

Strong interactings:

Fermi gas as UV starting point does not make sense!

=> 'emergent' Fermi liquid fixed point remarkably resilient (e.g. 3He)

=> Non Fermi-liquid/non 'Hartree-Fock' (BCS etc) states of fermion matter?

Fermion sign problem

Imaginary time path-integral formulation

$$\mathcal{Z} = \operatorname{Tr} \exp(-\beta \hat{\mathcal{H}})$$
$$= \int d\mathbf{R} \rho(\mathbf{R}, \mathbf{R}; \beta)$$
$$\mathbf{R} = (\mathbf{r}_1, \dots, \mathbf{r}_N) \in \mathbb{R}^{Nd}$$

$$\rho_{B/F}(\mathbf{R}, \mathbf{R}; \beta) = \frac{1}{N!} \sum_{\mathcal{P}} (\pm 1)^{\mathcal{P}} \rho_D(\mathbf{R}, \mathcal{P}\mathbf{R}; \beta)$$

$$= \frac{1}{N!} \sum_{\mathcal{P}} (\pm 1)^{\mathcal{P}} \int_{\mathbf{R} \to \mathcal{P}\mathbf{R}} \mathcal{D}\mathbf{R}(\tau) \exp \left\{ -\frac{1}{\hbar} \int_0^{\hbar/T} d\tau \left(\frac{m}{2} \dot{\mathbf{R}}^2(\tau) + V(\mathbf{R}(\tau)) \right) \right\}$$

Boltzmannons or Bosons:

- integrand non-negative
- probability of equivalent classical system: (crosslinked) ringpolymers

Fermions:

- negative Boltzmann weights
- non probablistic: NP-hard problem (Troyer, Wiese)!!!

Phase diagram high Tc superconductors

Mystery quantum critical metal (van der

Marel et al. Nature 425, 271,2003; JZ, Nature 430, 512,2004)

Fermionic quantum phase transitions in the heavy fermion metals

A UV that is strongly interacting critical ...

UV governed by conformal invariance, no Fermi-surface, no Fermi energy

Emergent heavy Fermi-liquid in the IR that can disappear at a QPT

This is effortlessly encoded in Koenraad's AdS/CFT!

Emergent non Fermi-liquids with Fermi-surfaces

Hong Liu's emergent 2D CFT "AdS/ARPES":

- Truly critical: renormalized Fermi energy is zero.
- But the Fermi surface is remembered as singularity structure in momentum space.

Critical Fermi-surface (Senthil); phenomenological.

Gauge theories (Sung-Sik, Subir): Shankar/Polchinski attitude.

Geometrizing Fermi-Dirac statistics

Ceperley's path integral: encoding Fermi-Dirac statistics in geometry: the nodal hypersurface.

- Fermi-liquid: Fermi-energy is encoded in the local geometry but the Fermi-surface is encoded globally

F. Krueger et al., arXiv:0802.2455

- Feynmannian backflow ansatz: nodal geometry turns fractal, the state is conformal but room for globally encoded Fermi-surface information.

F. Krueger, JZ, arXiv:0804.2161

The nodal hypersurface

Antisymmetry of the wave function

$$\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_i,\ldots,\mathbf{r}_j,\ldots,\mathbf{r}_N) = -\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_j,\ldots,\mathbf{r}_i,\ldots,\mathbf{r}_N)$$

Free Fermions

d=2

Pauli hypersurface

$$P = \bigcup_{i \neq j} P_{ij}$$

$$P_{ij} = \left\{ \mathbf{R} \in \mathbb{R}^{Nd} | \mathbf{r}_i = \mathbf{r}_j \right\}$$

$$\dim P = Nd - d$$

Nodal hypersurface

$$\Omega = \left\{ \mathbf{R} \in \mathbb{R}^{Nd} | \Psi(\mathbf{R}) = 0 \right\}$$
$$\dim \Omega = Nd - 1$$

Test particle

Constrained path integrals

Formally we can solve the sign problem!!

$$\rho_F(\mathbf{R}, \mathbf{R}; \beta) = \frac{1}{N!} \sum_{\mathcal{P}, \text{even}} \int_{\gamma: \mathbf{R} \to \mathcal{P} \mathbf{R}}^{\gamma \in \Gamma(\mathbf{R}, \mathcal{P} \mathbf{R})} \mathcal{D} \mathbf{R}(\tau) \exp \left\{ -\frac{1}{\hbar} \int_0^{\hbar/T} d\tau \left(\frac{m}{2} \dot{\mathbf{R}}^2(\tau) + V(\mathbf{R}(\tau)) \right) \right\}$$

$$\Gamma(\mathbf{R}, \mathbf{R}') = \{ \gamma : \mathbf{R} \to \mathbf{R}' | \rho_F(\mathbf{R}, \mathbf{R}(\tau); \tau) \neq 0 \}$$

Ceperley path integral: Fermi gas in momentum space

Single particle propagator:

$$g(\mathbf{k}, \mathbf{k}', \tau) = 2\pi \delta(\mathbf{k} + \mathbf{k}') e^{-\frac{|\mathbf{k}|^2 \tau}{2\hbar m}}$$

single particle momentum conserved

N particle density matrix:

$$\rho_{F}(\boldsymbol{K}, \boldsymbol{K}', \tau) = \frac{1}{N!} \sum_{\mathcal{P}} (-1)^{\mathcal{P}} \prod_{i=1}^{N} g(\boldsymbol{k}_{i}, \boldsymbol{k}'_{p(i)}, \tau)$$

$$= \frac{1}{N!} e^{-\sum_{i=1}^{N} \frac{|\boldsymbol{k}_{i}|^{2} \tau}{2\hbar m}} \sum_{\mathcal{P}} (-1)^{\mathcal{P}} \prod_{i=1}^{N} 2\pi \delta(\boldsymbol{k}_{i} - \boldsymbol{k}'_{p(i)})$$

$$= \prod_{\boldsymbol{k}_{1} \neq \boldsymbol{k}_{2} \neq \dots \neq \boldsymbol{k}_{N}} 2\pi \delta(\boldsymbol{k}_{i} - \boldsymbol{k}'_{i}) e^{-\frac{|\boldsymbol{k}_{i}|^{2} \tau}{2\hbar m}}$$
'harmonic potential'

Sergei Mukhin

Fermi gas = cold atom Mott insulator in harmonic trap!

$$\rho_F(K,K";\tau) = \prod_{k_1 \neq k_2 \neq \cdots \neq k_N} 2\pi \delta(k_i - k_i) e^{-\frac{|k_i|^2 \tau}{2\hbar m}}$$

Mukhin, JZ, ..., Iranian J. Phys. (2008)

Reading the worldline picture

Fermi-energy: confinement energy imposed by local geometry

$$l^{2}(\tau) = \langle (\mathbf{r}_{i}(\tau) - \mathbf{r}_{i}(0))^{2} \rangle = 2d\mathcal{D}\tau = 2d\frac{\hbar}{2m}\tau$$
$$l^{2}(\tau_{c}) \simeq r_{s}^{2} \to \tau_{c} \simeq \frac{1}{2d}\frac{2m}{\hbar}n^{-2/d}$$
$$\hbar\omega_{c} = \frac{\hbar}{\tau_{c}} \simeq d\frac{\hbar^{2}}{2m}n^{2/d} \simeq E_{F}$$

Fermi surface encoded globally: $\rho_F = Det(e^{ik_i r_j}) = 0$

Change in coordinate of one particle changes the nodes everywhere

Finite T:
$$\rho_F = (4\pi\lambda\beta)^{-dN/2} Det \left[exp \left(-\frac{(r_i - r_{j0})^2}{4\lambda\tau} \right) \right]$$

$$\lambda = \hbar^2/(2M)$$

Non-locality length:
$$\lambda_{nl} = v_F \tau_{inel} = v_F \left(\frac{E_F}{k_B T}\right) \left(\frac{\hbar}{k_B T}\right)$$

Average node to node spacing

$$\sim r_s = \left(\frac{V}{N}\right)^{1/d} = n^{-1/d}$$

Key to fermionic quantum criticality

At the QCP scale invariance, no E_F

Nodal surface has to become fractal !!!

Fractal Cauliflower (romanesco)

Geometrizing Fermi-Dirac statistics

Ceperley's path integral: encoding Fermi-Dirac statistics in geometry: the nodal hypersurface.

- Fermi-liquid: Fermi-energy is encoded in the local geometry but the Fermi-surface is encoded globally
 - F. Krueger et al., arXiv:0802.2455
- Feynmannian backflow ansatz: nodal geometry turns fractal, the state is conformal but room for globally encoded Fermi-surface information.
 - F. Krueger, JZ, arXiv:0804.2161

Vacuum structure

Long time, zero temperature:

$$\rho_F(R,R(\tau);\tau\to\infty)=\Psi^*(R)\Psi(R(\infty))$$

IR fermionic information encoded in the ground state wavefunction.

Need a wave function ansatz!

Hydrodynamic backflow

Classical fluid: incompressible flow

Feynman-Cohen: mass enhancement in ⁴He

Wave function ansatz for "foreign" atom moving through He superfluid with velocity small compared to sound velocity:

$$g(\mathbf{r}) \sim rac{\mathbf{kr}}{r^3} \quad o \quad \Psi = \phi \exp[i\mathbf{k} \left(\mathbf{r}_A + \sum_{i
eq A} rac{\mathbf{r}_i - \mathbf{r}_A}{r_{iA}^3}
ight)]$$

Backflow wavefunctions in Fermi systems

$$\psi_{bf}(\mathbf{R}) \sim \operatorname{Det}\left(e^{i\mathbf{k}_{i}\tilde{\mathbf{r}}_{j}}\right)_{ij}$$

$$\tilde{\mathbf{r}}_{j} = \mathbf{r}_{j} + \sum_{l(\neq j)} \eta(r_{jl})(\mathbf{r}_{j} - \mathbf{r}_{l})$$

Widely used for node fixing in QMC

→ Significant improvement of variational GS energies

Frank's fractal nodes ...

Feynman's fermionic backflow wavefunction:

$$\psi_{bf}(\mathbf{R}) \sim \operatorname{Det}\left(e^{i\mathbf{k}_{i}\tilde{\mathbf{r}}_{j}}\right)_{ij}$$

$$\tilde{\mathbf{r}}_{j} = \mathbf{r}_{j} + \sum_{l(\neq j)} \eta(r_{jl})(\mathbf{r}_{j} - \mathbf{r}_{l})$$

$$\eta(r) = \frac{a^{3}}{r^{3} + r_{0}^{3}}$$

Frank Krüger

Extracting the fractal dimension

The Hausdorff dimension. The Hausdorff dimension of a metric space X, $\dim_H(X)$, is the infimimum of the numbers α with the following property: For any $\epsilon > 0$ there is a $\delta > 0$ and a cover $\mathfrak U$ of X such that the sets $B \in \mathfrak U$ all have diameter |B| smaller than δ and

$$\sum_{B \in \mathfrak{U}} (|B|)^{\alpha} < \epsilon.$$

The correlation integral:

$$C(r) = \lim_{n \to \infty} \frac{1}{n^2} \sum_{i,j=1}^n \Theta(r - |\mathbf{r}_i - \mathbf{r}_j|)$$
$$= \int_0^r d^D r' c(\mathbf{r}')$$

For fractals:

$$C(r) \sim r^{\nu}, \quad \nu \leq \dim_H$$

Inequality very tight, relative error below 1%

Grassberger & Procaccia, PRL (1983)

Fractal dimension of the nodal surface

Calculate the correlation integral $C(r) \sim r^{\nu}$ on random d=2 dimensional cuts

$$Nd - 1 < D_H = N\nu_d < Nd$$

$$d - \frac{1}{N} < \nu_d < d$$

$$N=13:$$
 $\nu=1.976\pm0.012$ $\rightarrow D_H=25+(0.69\pm0.16)$ $N=29:$ $\nu=1.982\pm0.008$ $\rightarrow D_H=57+(0.48\pm0.23)$

Backflow turns nodal surface into a fractal !!!

Fermionic quantum phase transitions in the heavy fermion metals

Paschen et al., Nature (2004)

Turning on the backflow

Nodal surface has to become fractal !!!

Try backflow wave

functions

$$\psi_{bf}(\mathbf{R}) \sim \operatorname{Det} \left(e^{i\mathbf{k}_i \tilde{\mathbf{r}}_j} \right)_{ij}$$

$$\tilde{\mathbf{r}}_j = \mathbf{r}_j + \sum_{l(\neq j)} \eta(r_{jl}) (\mathbf{r}_j - \mathbf{r}_l)$$

$$\eta(r) = \frac{a^3}{r^3 + r_0^3}$$

Collective (hydrodynamic) regime:

$$a \gg r_s$$

MC calculation of n(k)

The fixed point Hamiltonian

$$\psi_{bf}(\mathbf{R}) \sim \operatorname{Det}\left(e^{i\mathbf{k}_{i}\tilde{\mathbf{r}}_{j}}\right)_{ij} = \mathbf{r}_{j} + \sum_{l(\neq j)} \eta(r_{jl})(\mathbf{r}_{j} - \mathbf{r}_{l}) = \left|k_{1}, ..., k_{N}\right\rangle_{bf} = \int_{q_{1}, ..., q_{N}} \left|k_{1} + q_{1}, ..., k_{N} + q_{N}\right\rangle_{bare}$$
turns singular at the OPT.

It is the ground state of a Fermi-gas of backflow particles:

Expressed in bare particles:

$$H \propto \sum_{k} \varepsilon_{k} c_{k}^{\dagger} c_{k} + \sum_{N=2}^{\infty} \left(\frac{a}{r_{s}}\right)^{N} \sum_{\{ka\}} f(\{k,q\}) \left(c_{\dots}^{\dagger} c_{\dots}\right)^{N}$$

- At the critical point $a \rightarrow r_s$ the fixed point Hamiltonian reveals a divergence in N where N refers to N-body interaction!
- No symmetry change, criticality is entirely of 'statistical' nature (information in nodal surface)!

Where is the Fermi-surface?

Fractality originating in the non-locality of the nodes:

$$\rho_F = Det \left(\exp \left[ik_i (r_j + \sum_j \eta(r_{ij})(r_i - r_j)) \right] \right) = 0$$

=> Dynamics becomes conformal (vanishing of renormalized Fermi energy).

But Fermi-surface information is also globally wired into the nodes through backflow particle gas: $|k| < k_F$!

Conjecture: there have to be singularities at the 'remnant' Fermi surface that are not conflicting with scale invariant dynamics because of the local-global dichotomy.

In conclusion ...

Fermions at finite density: the fermion signs are wrecking established mathematical machinery, but it leaves room for BIG surprises.

AdS/CFT has started to show it muscles: the emergent Fermi-liquid (Koenraad), the singular-, marginal - ... Fermi liquids (Hong).

Does a critical Fermion liquid need a Fermi-surface? The scale invariant backflow state suggests that the Fermi-surface is wired into the global structure of the nodal surface that is locally fractal.

Outlook

AdS/CFT is a very rich mathematical machine: rich enough to literally describe the fermion side of condensed matter?

- Magnetic fields: Landau quantization of fermions? Fractional quantum Hall??
- Bosonic (chiral) phase transitions: what happens with the coexisting Fermions?
- Hartnoll's 'hairy black hole': is the superconductivity BCS like?
- Total currents versus fermionic currents: linear resistivity??
- Fermionic pair susceptibilities: BCS mechanism for fermionic quantum critical states??
- Fermions in the non-relativistic AdS/CFT ??

In conclusion ...

Fermions at finite density: the fermion signs are wrecking established mathematical machinery, but it leaves room for BIG surprises.

AdS/CFT has started to show it muscles: the emergent Fermi-liquid (Koenraad), the singular-, marginal - ... Fermi liquids (Hong).

Does a critical Fermion liquid need a Fermi-surface? The scale invariant backflow state suggests that the Fermi-surface is wired into the global structure of the nodal surface that is locally fractal.

Quantum critical transport in heavy fermion systems

Critical Cuprates are Planckian Dissipators

van der Marel, JZ, ... Nature 2004:

Optical conductivity QC cuprates

Frequency less than temperature:

$$\sigma_1(\omega, T) = \frac{1}{4\pi} \frac{\omega_{pr}^2 \tau_r}{1 + \omega^2 \tau_r^2}, \quad \tau_r = A \frac{\hbar}{k_B T}$$

$$\Rightarrow \left[\frac{\hbar}{k_B T \sigma_1}\right] = const.(1 + A^2 \left[\frac{\hbar \omega}{k_B T}\right]^2)$$

A= 0.7: the normal state of optimally doped cuprates is a Planckian dissipator!

Why the Wilsonian renormalization group fails ...

PRL 95, 107002 (2005)

Phillips

Chamon

- (a) Charge conservation ('hydrodynamics') imposes engineering scaling dimensions on current
- (b) Scale invariance: assume **one** diverging length scale.

$$\sigma(\omega, T) = \frac{e^2}{\hbar} \left(\frac{k_B T}{\hbar c}\right)^{\frac{d-2}{z}} \Sigma \left(\frac{\hbar \omega}{k_B T}\right) \implies \sigma_{DC}(T) = \frac{e^2}{\hbar} \Sigma(0) \left(\frac{k_B T}{\hbar c}\right)^{\frac{d-2}{z}}$$

$$\sigma_{DC} \propto \frac{1}{T}$$
?? **d =2 or 3 implies that z < 0 !?**

Superconductorinsulator QCP

Empty

Empty